CSS322 - Number Theory Summary

Modular Arithmetic

Addition: $a+b(\bmod n) \equiv(a+b) \bmod (n)$
Additive Inverse: if $a+b(\bmod n) \equiv 0$ then a is additive inverse of b, or $a=A I(b)$
Every number has a additive inverse.
Subtraction: $\quad a-b(\bmod n) \equiv a+A I(b)(\bmod n)$
Multiplication: $a * b(\bmod n) \equiv(a * b) \bmod (n)$
Multiplicative Inverse: if $a * b(\bmod n) \equiv 1$ then a is amultiplicative inverse of b, or $a=M I$ (b)

Not every number has a multiplicative inverse. In fact, a number a has a multiplicative inverse in $(\bmod n)$ if a and n are relatively prime or $\operatorname{gcd}(a, n)=1$
Division: $a / b(\bmod n) \equiv a * M I(b)(\bmod n)$
Exponentiation: $\quad a^{b}(\bmod n) \equiv\left(a^{b}\right) \bmod n$
Property of multiplication: $(a * b)(\bmod n) \equiv[(a \bmod n) *(b \bmod n)] \bmod (n)$
Inverse Exponentiation is called Discrete Logarithm: $\quad \operatorname{dlog}_{a, n}(b)$ is x such that $b \equiv a^{x}(\bmod n)$
Not every number has a discrete logarithm. Calculating the discrete logarithm of very large numbers if very difficult.

Prime Numbers

A prime number, p, is an integer if $p>1$ and if and only if the only divisors of p are ± 1 and $\pm p$. Any integer, $a>1$ can be factored by only prime numbers.

Determining the prime factors of a very large integer is very difficult.
Relatively Prime: Two integers a and b are relatively prime if they have no prime factors in common. Or in other words, if $\operatorname{gcd}(a, b)=1$ then a and b are relatively prime.

The integer 1 is relatively prime with every other integer.

Fermat's and Euler's Theorems

Fermat's Theorem: if p is prime and a is a positive integer not divisible by p, then:

$$
a^{p-1} \equiv 1(\bmod p)
$$

Or alternatively, if p is prime and a is a positive integer:

$$
a^{p} \equiv a(\bmod p)
$$

Euler's Totient: $\quad \phi(n)=x$ where x is the count of integers less than n that are relatively prime with n.

If p is prime, $\quad \phi(p)=p-1$
If p and q are prime, $\quad \phi(p * q)=\phi(p) * \phi(q)=(p-1) *(q-1)$
Euler's Theorem: For every a and n that are relatively prime:

$$
a^{\phi(n)} \equiv 1(\bmod n)
$$

Or alternatively, for any integers a and n :

$$
a^{\phi(n)+1} \equiv a(\bmod n)
$$

