Simplified RC4 Example

Example

Steven Gordon

1 Simplified RC4 Example

Lets consider the stream cipher RC4, but instead of the full 256 bytes, we will use 8×3-bits. That is, the state vector \mathbf{S} is 8 x 3 -bits. We will operate on 3-bits of plaintext at a time since S can take the values 0 to 7 , which can be represented as 3 bits.

Assume we use a 4×3-bit key of $\mathbf{K}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$. And a plaintext $\mathbf{P}=\left[\begin{array}{lll}1 & 2 & 2\end{array}\right.$ 2 $]$
The first step is to generate the stream.
Initialise the state vector \mathbf{S} and temporary vector \mathbf{T}. \mathbf{S} is initialised so the $\mathrm{S}[\mathrm{i}]=\mathrm{i}$, and \mathbf{T} is initialised so it is the key \mathbf{K} (repeated as necessary).
$\mathbf{S}=\left[\begin{array}{lll}0 & 1 & 2 \\ 3 & 4 & 6 \\ 7\end{array}\right]$
$\mathbf{T}=\left[\begin{array}{ll}12 & 361236\end{array}\right]$
Now perform the initial permutation on S .

```
j = 0;
for i = 0 to 7 do
    j = (j + S[i] + T[i]) mod 8
    Swap(S[i],S[j]);
end
For i = 0:
j = (0+0 + 1) mod 8
    = 1
Swap(S[0],S[1]);
S = [10 2 3 4 5 6 7]
For i=1:
j = 3
Swap(S[1],S[3])
S = [1 3 2 04 5 6 7];
For i = 2:
j = 0
Swap(S[2],S[0]);
S = [2 3104 5 7 7];
For i= 3:
j = 6;
Swap(S[3],S[6])
S = [2 3 1 6 4 5 0 7];
```

For $\mathrm{i}=4$:
$\mathrm{j}=3$
Swap(S[4],S[3])
S = [2 3146507];
For $\mathrm{i}=5$:
$j=2$
Swap(S[5],S[2]);
S = [2 354610 7];
For $\mathrm{i}=6$:
j = 5;
Swap(S[6],S[4])
S = [2 354016 7];
For $\mathrm{i}=7$:
j = 2;
Swap(S[7],S[2])
S = [2 374016 5];
Hence, our initial permutation of S = [2 374016 5];
Now we generate 3-bits at a time, k , that we XOR with each 3-bits of plaintext to produce the ciphertext. The 3 -bits k is generated by:

```
i, j = 0;
while (true) {
    i = (i + 1) mod 8;
    j = (j + S[i]) mod 8;
    Swap (S[i], S[j]);
    t = (S[i] + S[j]) mod 8;
    k = S[t]; }
```

The first iteration:
$\mathbf{S}=\left[\begin{array}{ll}23740165\end{array}\right]$
$\mathrm{i}=(0+1) \bmod 8=1$
$j=(0+S[1]) \bmod 8=3$
Swap(S[1],S[3])
$\mathbf{S}=\left[\begin{array}{ll}24 & 7 \\ 3 & 165\end{array}\right]$
$\mathrm{t}=(\mathrm{S}[1]+\mathrm{S}[3]) \bmod 8=7$
$\mathrm{k}=\mathrm{S}[7]=5$
Remember, $\mathbf{P}=\left[\begin{array}{lll}1 & 2 & 2\end{array} 2\right]$
So our first 3-bits of ciphertext is obtained by: k XOR P
5 XOR $1=101$ XOR $001=100=4$
The second iteration:
S = [24730165]
$\mathrm{i}=(1+1) \bmod 8=2$
$j=(3+S[2]) \bmod 8=2$
Swap(S[2],S[2])
$\mathbf{S}=\left[\begin{array}{ll}24 & 7 \\ 0 & 16\end{array}\right.$ 5]

$$
\begin{aligned}
& \mathrm{t}=(\mathrm{S}[2]+\mathrm{S}[2]) \bmod 8=6 \\
& \mathrm{k}=\mathrm{S}[6]=6
\end{aligned}
$$

Second 3-bits of ciphertext are:
6 XOR $2=110$ XOR $010=100=4$
The third iteration:
$\mathbf{S}=\left[\begin{array}{ll}24 & 70165\end{array}\right]$
$\mathrm{i}=(2+1) \bmod 8=3$
$\mathrm{j}=(2+\mathrm{S}[3]) \bmod 8=5$
Swap(S[3],S[5])
$\mathbf{S}=\left[\begin{array}{ll}24 & 10365\end{array}\right]$
$\mathrm{t}=(\mathrm{S}[3]+\mathrm{S}[5]) \bmod 8=4$
$\mathrm{k}=\mathrm{S}[4]=0$
Third 3-bits of ciphertext are:
0 XOR $2=000$ XOR $010=010=2$

The final iteration:
$\mathbf{S}=\left[\begin{array}{ll}24710365\end{array}\right]$
$\mathrm{i}=(1+3) \bmod 8=4$
$\mathrm{j}=(5+\mathrm{S}[4]) \bmod 8=5$
Swap(S[4],S[5])
$\mathbf{S}=\left[\begin{array}{ll}24 & 7 \\ 3 & 065\end{array}\right]$
$\mathrm{t}=(\mathrm{S}[4]+\mathrm{S}[5]) \bmod 8=3$
$\mathrm{k}=\mathrm{S}[3]=1$
Last 3-bits of ciphertext are:
1 XOR $2=001$ XOR $010=011=3$

So to encrypt the plaintext stream $\mathbf{P}=\left[\begin{array}{lll}1 & 2 & 2\end{array}\right]$ with key $\mathbf{K}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ 6sing our simplified RC4 stream cipher we get $\mathbf{C}=\left[\begin{array}{lll}4 & 4 & 2\end{array}\right]$.
(or in binary: $\mathbf{P}=001010010010, \mathbf{K}=001010011110$ and $\mathbf{C}=100100010011$)

