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Contents
• A selection of issues (some historical, others still current) 

related to security of web applications
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URLs and URIs
• URI = Uniform Resource Identifier; can be either:

– URL = Uniform Resource Locator; or
– URN = Uniform Resource Name

• URL structure:
– Protocol://domainname.com/directory/file
– E.g. http://ict.siit.tu.ac.th/sgordon/index.html

• URLs can include username and password:
– ftp://siit:stevecourse@ict.siit.tu.ac.th/sgordon/lecture.pdf
– HTTP does not use username/password but other protocols (e.g. 

FTP) may
• Port numbers can also be included:

– http://ict.siit.tu.ac.th:8080/sgordon/index.html
– HTTP defaults to port 80 if no port number given

http://ict.siit.tu.ac.th/sgordon/index.html
ftp://siit:stevecourse@ict.siit.tu.ac.th/sgordon/lecture.pdf
http://ict.siit.tu.ac.th:8080/sgordon/index.html
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HTTP
• HTTP = HyperText Transfer Protocol

– Request/response protocol, with two main request types from 
client:

• GET – request a web page from server
• POST – send information to server

– E.g. when you fill in a form, POST is used to send the form data to the 
web server

– Response contains content/information from server and status 
code (e.g. 200 OK; 404 File Not Found; …)

– Request may contain many fields, including:
• FROM – email address of user; can lead to spam; no longer used 

by most browsers
• AUTHORIZATION – username logged in; used for authentication
• COOKIE – discussed soon …
• REFERRER – URL of page from which the client came from; can be 

used to track users’ activities
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HTTP Authentication
• Securing web access:

– HTTP over SSL (HTTPS): secure, but complex to implement
– In-built HTTP authentication:

• HTTP Basic Authentication
• HTTP Digest Authentication

• Basic approach is:
– Web browser requests a web page
– Web server sends the web page (HTML) back to client
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Challenges of HTTP Authentication
• HTTP is stateless
• User needs to be authentication, who may be connecting 

from machine with no user-specific information (e.g. 
Internet café)
– Hence, we need to use passwords

• A lot of requests may be to same server; so we want to 
avoid extra authentication for each request

• Aim: If attacker steals server database, attacker cannot 
impersonate user on that server, or on other servers 
(even if use same password)
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HTTP Basic Authentication

GET page.html

401 Unauthorized

GET page.html
Username/password

page.html

Client Server
Client requests a page
(does not know authoriza-
tion is need)

Server tells client authorization
is needed for a realm

Client requests page and
includes username and
password Server sends page.html

Username and password are sent as plaintext – very insecure!
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HTTP Digest Authentication
• Same as Basic Authentication, except MD5 hash of 

password is sent:
– HA1 = MD5(username, realm, password)
– HA2 = MD5(url)
– Response = MD5 (HA1, server nonce, nonce count, client 

nonce, quality of protection, HA2)

• Browser will cache hash, URL and realm for the user
– Subsequent requests do not need user input

• Server stores hash of password and associated realm
– If attacker steals server database, can impersonate user in same

realm (not in other realms or servers, even if same password)
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HTTP Digest Authentication
• Server sends a nonce value to client

– Client sends nonce back to server, and also increment the nonce 
count (nc) by 1 for each subsequent request

• Avoids server always requesting authorization (saves 1 round trip 
time)

• Allows server to identify replay attacks (server stores nonce and 
nonce count – if receive same value again, then replay)

• Quality of protection (qop)
– Can specify authentication and/or integrity

• auth = authentication only
• auth-int = authentication and integrity
• auth,auth-int = authentication is required, integrity is preferable
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HTTP Authentication Example
• Initial Client Request

• Server 401 Response
HTTP/1.0 401 Unauthorised 
Server: SokEvo/0.9 
Date: Sun, 10 Apr 2005 20:26:47 GMT 
WWW-Authenticate: Digest 

realm="testrealm@host.com", 
qop="auth,auth-int", 
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093", 
opaque="5ccc069c403ebaf9f0171e9517f40e41" 

Content-Type: text/html 
Content-Length: 311
<<error web page included here>>

GET /dir/index.html HTTP/1.0 
Host: localhost



CSS 322 - Internet Security 11

HTTP Authentication Example
• Client Authorized Request

• Server Response
– Sends the web page

GET /dir/index.html HTTP/1.0 
Host: localhost

Authorization: Digest 
username="Mufasa", 
realm="testrealm@host.com", 
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093", 
uri="/dir/index.html", 
qop=auth, 
nc=00000001, 
cnonce="0a4f113b", 
response="6629fae49393a05397450978507c4ef1", 
opaque="5ccc069c403ebaf9f0171e9517f40e41" 

nonce count
client
nonce

quality of protection
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Cookies
• HTTP is stateless

– There is no information stored at server that connect multiple 
requests from clients

– Many web applications want to know if a request is a follow-up 
from a previous request

• Cookies add state to web browsing (HTTP)
• A cookie is a data structure created by server and stored 

at client
• Cookies can be used to:

– Create electronic shopping carts
– Log in to web sites
– Personalise web pages
– Track browsing activities of users
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Why are Cookies Needed?
• Alternatives?

– Assume TCP session uniquely identifies user
• Client IP, Client Port, Server IP, Server Port
• Every request from same Client IP/Port to a web server is treated as 

from one unique user
• But in practice, many users go through proxy (e.g. SIIT):

– From a web servers point of view, all users on SIIT network are seen 
as coming from same Client IP/Port

– Browser include username in every request (possible in HTTP)
• But what if you want to browse anonymously

– Browse includes random number X representing user in every 
request

• Allows you to browse anonymously, but if attacker intercepts X, they 
can impersonate you
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How do Cookies Work?
• Procedure:

– Web server creates a cookie
• E.g. when you first visit a web site

– Web server sends cookie to client in HTTP response
• In HTTP header:

– Client stores the cookie
– When client visits the web server again, it sends the cookie, 

unchanged
• In HTTP Get request:

• Now the server can connect the current page you are 
visiting with the previous pages you visited

set-cookie: name=value

cookie: name=value
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Cookie Rules
• Cookies have lifetimes

– Cookie must be deleted from browser if past its expiry date or (if 
no persistent) when browser closes

• Cookies can only be sent to a domain:
– If web server www.siit.tu.ac.th sends your browser a cookie, you 

can only send it back to any machine in tu.ac.th domain (e.g. 
siit.tu.ac.th or eng.tu.ac.th – your browser cannot send cookie to 
google.com)

• This is simple way to prevent tracking specific users, however some 
tracking is still possible …

http://www.siit.tu.ac.th/


CSS 322 - Internet Security 16

Tracking Users with Cookies
• What?

– Identify which sites a user visited, but not identify the user
– Identify that user X has visited a particular site several times
– (With extra information) Identify a user and all the sites they visit

• Why?
– Information about user’s behaviour is valuable

• Target advertising
• E.g. insurance company deny you medical insurance if they know you have 

visited sites about serious diseases
– Many privacy issues arise (that we do not have time to cover!)

• How?
– Sites collude (share information) or put information into REFERRER 

field
• If user logs in to one site, can identify user across all sites
• Correlating information across sites can be performed using:

– Web server logs, proxy logs, HTTP redirects or embedded images, …
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Site Spoofing
• A malicious user creating a website pretending to be another 

website:
– As a result, the malicious user can obtain account details (PINs, 

passwords) as well as track interests
• If using SSL (HTTPS), this is impossible? 

– SSL: assured you are talking to correct site if:
1. No CA you trust issued a certificate to verify BadBank’s public key belongs 

to the name GoodBank
2. Your list of trusted CAs (e.g. in browser) is not modified to include public 

key’s of un-trusted CAs
3. URL you are browsing to is for organisation you expect

– Example:
• BadBank has a domain: gg.tv
• You click on a link: 

http://www.goodbank.com!secure_login_to_goodbank@gg.tv/
• Takes you to gg.tv (but you think it is www.goodbank.com)
• SSL will check certificate of gg.tv – will be successful if gg.tv has certificate 

signed by CA in your browser

http://www.goodbank.com!secure_login_to_goodbank@gg.tv/
http://www.goodbank.com/
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User Impersonation
• HTTP requires username/password for each page

– But web browsers cache username/password in cookies so easy for 
user

• If someone users browser after you, the username/password may 
still be cached (they can login as you)
– Should only cache cookies for short time
– Cookies should be deleted when browser closes (not all are!)

• Browsers now save usernames/passwords in stable storage (not in 
cookies)
– Even harder to force browser to delete information; hence easier for 

malicious user to impersonate you
• Similar issues arise with browsers storing  telephone numbers, 

addresses, email etc to make life easier for user
• Many security and privacy issues arise from this
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