
Web Security Issues

CSS 322 – Security and Cryptography

CSS 322 - Internet Security 2

Contents
• A selection of issues (some historical, others still current)

related to security of web applications

CSS 322 - Internet Security 3

URLs and URIs
• URI = Uniform Resource Identifier; can be either:

– URL = Uniform Resource Locator; or
– URN = Uniform Resource Name

• URL structure:
– Protocol://domainname.com/directory/file
– E.g. http://ict.siit.tu.ac.th/sgordon/index.html

• URLs can include username and password:
– ftp://siit:stevecourse@ict.siit.tu.ac.th/sgordon/lecture.pdf
– HTTP does not use username/password but other protocols (e.g.

FTP) may
• Port numbers can also be included:

– http://ict.siit.tu.ac.th:8080/sgordon/index.html
– HTTP defaults to port 80 if no port number given

http://ict.siit.tu.ac.th/sgordon/index.html
ftp://siit:stevecourse@ict.siit.tu.ac.th/sgordon/lecture.pdf
http://ict.siit.tu.ac.th:8080/sgordon/index.html

CSS 322 - Internet Security 4

HTTP
• HTTP = HyperText Transfer Protocol

– Request/response protocol, with two main request types from
client:

• GET – request a web page from server
• POST – send information to server

– E.g. when you fill in a form, POST is used to send the form data to the
web server

– Response contains content/information from server and status
code (e.g. 200 OK; 404 File Not Found; …)

– Request may contain many fields, including:
• FROM – email address of user; can lead to spam; no longer used

by most browsers
• AUTHORIZATION – username logged in; used for authentication
• COOKIE – discussed soon …
• REFERRER – URL of page from which the client came from; can be

used to track users’ activities

CSS 322 - Internet Security 5

HTTP Authentication
• Securing web access:

– HTTP over SSL (HTTPS): secure, but complex to implement
– In-built HTTP authentication:

• HTTP Basic Authentication
• HTTP Digest Authentication

• Basic approach is:
– Web browser requests a web page
– Web server sends the web page (HTML) back to client

CSS 322 - Internet Security 6

Challenges of HTTP Authentication
• HTTP is stateless
• User needs to be authentication, who may be connecting

from machine with no user-specific information (e.g.
Internet café)
– Hence, we need to use passwords

• A lot of requests may be to same server; so we want to
avoid extra authentication for each request

• Aim: If attacker steals server database, attacker cannot
impersonate user on that server, or on other servers
(even if use same password)

CSS 322 - Internet Security 7

HTTP Basic Authentication

GET page.html

401 Unauthorized

GET page.html
Username/password

page.html

Client Server
Client requests a page
(does not know authoriza-
tion is need)

Server tells client authorization
is needed for a realm

Client requests page and
includes username and
password Server sends page.html

Username and password are sent as plaintext – very insecure!

CSS 322 - Internet Security 8

HTTP Digest Authentication
• Same as Basic Authentication, except MD5 hash of

password is sent:
– HA1 = MD5(username, realm, password)
– HA2 = MD5(url)
– Response = MD5 (HA1, server nonce, nonce count, client

nonce, quality of protection, HA2)

• Browser will cache hash, URL and realm for the user
– Subsequent requests do not need user input

• Server stores hash of password and associated realm
– If attacker steals server database, can impersonate user in same

realm (not in other realms or servers, even if same password)

CSS 322 - Internet Security 9

HTTP Digest Authentication
• Server sends a nonce value to client

– Client sends nonce back to server, and also increment the nonce
count (nc) by 1 for each subsequent request

• Avoids server always requesting authorization (saves 1 round trip
time)

• Allows server to identify replay attacks (server stores nonce and
nonce count – if receive same value again, then replay)

• Quality of protection (qop)
– Can specify authentication and/or integrity

• auth = authentication only
• auth-int = authentication and integrity
• auth,auth-int = authentication is required, integrity is preferable

CSS 322 - Internet Security 10

HTTP Authentication Example
• Initial Client Request

• Server 401 Response
HTTP/1.0 401 Unauthorised
Server: SokEvo/0.9
Date: Sun, 10 Apr 2005 20:26:47 GMT
WWW-Authenticate: Digest

realm="testrealm@host.com",
qop="auth,auth-int",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
opaque="5ccc069c403ebaf9f0171e9517f40e41"

Content-Type: text/html
Content-Length: 311
<<error web page included here>>

GET /dir/index.html HTTP/1.0
Host: localhost

CSS 322 - Internet Security 11

HTTP Authentication Example
• Client Authorized Request

• Server Response
– Sends the web page

GET /dir/index.html HTTP/1.0
Host: localhost

Authorization: Digest
username="Mufasa",
realm="testrealm@host.com",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
uri="/dir/index.html",
qop=auth,
nc=00000001,
cnonce="0a4f113b",
response="6629fae49393a05397450978507c4ef1",
opaque="5ccc069c403ebaf9f0171e9517f40e41"

nonce count
client
nonce

quality of protection

CSS 322 - Internet Security 12

Cookies
• HTTP is stateless

– There is no information stored at server that connect multiple
requests from clients

– Many web applications want to know if a request is a follow-up
from a previous request

• Cookies add state to web browsing (HTTP)
• A cookie is a data structure created by server and stored

at client
• Cookies can be used to:

– Create electronic shopping carts
– Log in to web sites
– Personalise web pages
– Track browsing activities of users

CSS 322 - Internet Security 13

Why are Cookies Needed?
• Alternatives?

– Assume TCP session uniquely identifies user
• Client IP, Client Port, Server IP, Server Port
• Every request from same Client IP/Port to a web server is treated as

from one unique user
• But in practice, many users go through proxy (e.g. SIIT):

– From a web servers point of view, all users on SIIT network are seen
as coming from same Client IP/Port

– Browser include username in every request (possible in HTTP)
• But what if you want to browse anonymously

– Browse includes random number X representing user in every
request

• Allows you to browse anonymously, but if attacker intercepts X, they
can impersonate you

CSS 322 - Internet Security 14

How do Cookies Work?
• Procedure:

– Web server creates a cookie
• E.g. when you first visit a web site

– Web server sends cookie to client in HTTP response
• In HTTP header:

– Client stores the cookie
– When client visits the web server again, it sends the cookie,

unchanged
• In HTTP Get request:

• Now the server can connect the current page you are
visiting with the previous pages you visited

set-cookie: name=value

cookie: name=value

CSS 322 - Internet Security 15

Cookie Rules
• Cookies have lifetimes

– Cookie must be deleted from browser if past its expiry date or (if
no persistent) when browser closes

• Cookies can only be sent to a domain:
– If web server www.siit.tu.ac.th sends your browser a cookie, you

can only send it back to any machine in tu.ac.th domain (e.g.
siit.tu.ac.th or eng.tu.ac.th – your browser cannot send cookie to
google.com)

• This is simple way to prevent tracking specific users, however some
tracking is still possible …

http://www.siit.tu.ac.th/

CSS 322 - Internet Security 16

Tracking Users with Cookies
• What?

– Identify which sites a user visited, but not identify the user
– Identify that user X has visited a particular site several times
– (With extra information) Identify a user and all the sites they visit

• Why?
– Information about user’s behaviour is valuable

• Target advertising
• E.g. insurance company deny you medical insurance if they know you have

visited sites about serious diseases
– Many privacy issues arise (that we do not have time to cover!)

• How?
– Sites collude (share information) or put information into REFERRER

field
• If user logs in to one site, can identify user across all sites
• Correlating information across sites can be performed using:

– Web server logs, proxy logs, HTTP redirects or embedded images, …

CSS 322 - Internet Security 17

Site Spoofing
• A malicious user creating a website pretending to be another

website:
– As a result, the malicious user can obtain account details (PINs,

passwords) as well as track interests
• If using SSL (HTTPS), this is impossible?

– SSL: assured you are talking to correct site if:
1. No CA you trust issued a certificate to verify BadBank’s public key belongs

to the name GoodBank
2. Your list of trusted CAs (e.g. in browser) is not modified to include public

key’s of un-trusted CAs
3. URL you are browsing to is for organisation you expect

– Example:
• BadBank has a domain: gg.tv
• You click on a link:

http://www.goodbank.com!secure_login_to_goodbank@gg.tv/
• Takes you to gg.tv (but you think it is www.goodbank.com)
• SSL will check certificate of gg.tv – will be successful if gg.tv has certificate

signed by CA in your browser

http://www.goodbank.com!secure_login_to_goodbank@gg.tv/
http://www.goodbank.com/

CSS 322 - Internet Security 18

User Impersonation
• HTTP requires username/password for each page

– But web browsers cache username/password in cookies so easy for
user

• If someone users browser after you, the username/password may
still be cached (they can login as you)
– Should only cache cookies for short time
– Cookies should be deleted when browser closes (not all are!)

• Browsers now save usernames/passwords in stable storage (not in
cookies)
– Even harder to force browser to delete information; hence easier for

malicious user to impersonate you
• Similar issues arise with browsers storing telephone numbers,

addresses, email etc to make life easier for user
• Many security and privacy issues arise from this

	Web Security Issues
	Contents
	URLs and URIs
	HTTP
	HTTP Authentication
	Challenges of HTTP Authentication
	HTTP Basic Authentication
	HTTP Digest Authentication
	HTTP Digest Authentication
	HTTP Authentication Example
	HTTP Authentication Example
	Cookies
	Why are Cookies Needed?
	How do Cookies Work?
	Cookie Rules
	Tracking Users with Cookies
	Site Spoofing
	User Impersonation

