
Malicious Software

CSS 322 – Security and Cryptography

CSS 322 - Malicious Software 2

Contents
• Terminology and Classification
• Viruses
• Worms
• Buffer Overflow Attacks
• Denial of Service Attacks

CSS 322 - Malicious Software 3

Classifying Malicious Programs
• Host Dependence

– Host Dependent: Code/programs are embedded in actual
programs, e.g. viruses, backdoors

– Host Independent: Programs can be run separately by OS, e.g.
worms, zombies

• Replication
– Non-replicating: programs usually activated by a trigger, e.g.

logic bombs, backdoors
– Replicating: make copies of themselves, e.g. viruses, worms

CSS 322 - Malicious Software 4

Terminology of Malicious Programs
• Virus: Attaches itself to a program and propagates copies of itself to other programs
• Worm: Program that propagates copies of itself to other computers
• Logic bomb: Triggers action when condition occurs
• Trojan horse: Program that contains unexpected additional functionality
• Backdoor (trapdoor): Program modification that allows unauthorized access to functionality
• Exploits: Code specific to a single vulnerability or set of vulnerabilities
• Downloaders: Program that installs other items on a machine that is under attack. Usually, a

downloader is sent in an e-mail.
• Auto-rooter: Malicious hacker tools used to break into new machines remotely
• Kit (virus generator): Set of tools for generating new viruses automatically
• Spammer programs: Used to send large volumes of unwanted e-mail
• Flooders: Used to attack networked computer systems with a large volume of traffic to carry out a

denial of service (DoS) attack
• Keyloggers: Captures keystrokes on a compromised system
• Rootkit: Set of hacker tools used after attacker has broken into a computer system and gained

root-level access
• Zombie Program: activated on an infected machine that is activated to launch attacks on other

machines

CSS 322 - Malicious Software 5

Backdoor
• Secret entry point into a program to allow attacker to

gain access, bypassing normal security access control
• Programmers use backdoors for legitimate testing

procedures
– When testing or debugging, often a programmer will want to

avoid going through authentication procedures, or lengthy logins
– Programmer issue a special set of commands that bypass

normal procedures (e.g. special user ID or sequence of inputs)

• Backdoors are malicious when programmers create and
use backdoors to gain unauthorised access to real
systems

CSS 322 - Malicious Software 6

Logic Bomb
• Code embedded in a program that executes when certain conditions

are met:
– Absence or presence of certain files
– Date or time
– Particular user executing a command

• Once triggered, the bomb may perform malicious operations:
– Delete, modify files
– Crash a computer
– Send information to another computer

• Example: ex-employees leave logic bombs in company; Tim Lloyd
was chief network engineer and 20 days after fired a logic bomb
deleted most of the company software design and code; cost more
than $US10m; Lloyd was jailed for 3 years

CSS 322 - Malicious Software 7

Nature of Viruses
• A virus is piece of software that “infects” programs and

copies itself to other programs
• The phases of a virus are:

– Dormant: virus is idle; will be activated by some event (like logic
bomb)

– Propagation: virus copies itself into other programs or areas of
operating system

– Triggering: virus is activated to perform some function; similar
triggers to logic bombs, but also number of times virus copied

– Execution: function is performed, either harmless (display a
message) or malicious (delete or modify files)

• Most viruses are specific to operating systems and/or
hardware platforms

CSS 322 - Malicious Software 8

A Simple Virus
program V :=

{goto main;
1234567;
subroutine infect-executable :=

{loop:
file := get-random-executable-file;
if (first-line-of-file = 1234567)

then goto loop
else prepend V to file; }

subroutine do-damage :=
{whatever damage is to be done}

subroutine trigger-pulled :=
{return true if some condition holds}

main: main-program :=
{infect-executable;
if trigger-pulled then do-damage;
goto next;}

next:
}

CSS 322 - Malicious Software 9

Compression Virus
• The simple virus can be detected because file length is different

from original program
• This detection can be avoided using compression:

– Assume program P1 is infected with virus CV
• (1) For each uninfected file P2, the virus compresses P2 to produce P2’
• (2) Virus CV is pre-pended to P2’ (so resulting size is same as P2)
• (3) P1’ is uncompressed and (4) executed

CSS 322 - Malicious Software 10

Compression Virus Algorithm
program CV :=

{goto main;
01234567;
subroutine infect-executable :=

{loop:
file := get-random-executable-file;

if (first-line-of-file = 01234567) then goto loop;
(1) compress file;
(2) prepend CV to file;

}

main: main-program :=
{if ask-permission then infect-executable;

(3) uncompress rest-of-file;
(4) run uncompressed file;}
}

CSS 322 - Malicious Software 11

Types of Viruses
• Parasitic Virus: virus attaches to executable file and copies itself to

other executables that it can find
• Memory-resident virus: stored in main memory as part of current

program executing; infects other programs that execute
• Boot sector virus: stored in boot sector of hard or floppy disk;

spreads when system boots from disk (a popular method before
computer networks were widespread)

• Polymorphic virus: changes (mutates) with each copy, so harder to
detect based on signatures
– E.g. Add extra, redundant code; re-order code

• Metamorphic virus: change appearance as well as behaviour
– Very hard to detect

CSS 322 - Malicious Software 12

Macro Viruses
• Macro viruses became most common type of virus in

1990’s
• Reasons for threat of macro viruses:

– Most macro viruses are for Microsoft based applications (e.g.
Word, Excel) which are very common; can infect any computer
system that uses these applications

– Infect documents, not programs; documents are more
widespread (and exchanged much more often) than executable
programs; users are (were?) less suspecting of documents than
executables

• Macros are executable programs embedded in
documents

CSS 322 - Malicious Software 13

Email Viruses
• Macro viruses and viruses in executables require the

user to run the program (e.g. open the Word document)
– These mainly are sent by email

• Visual Basic scripting capabilities of email clients (e.g.
Microsoft Outlook) allowed viruses to be written and run
by just opening an email (not the attachment)
– Much easier to spread and harder to prevent users from opening
– Requires safe use of Internet utilities and applications (e.g. safe

scripting languages, or no scripting)

CSS 322 - Malicious Software 14

Distribution of Viruses/Worms
• Assume a worm infects 4 new computer every hour

time in hours number of new victims

1 4

2 16

3 64

4 256

5 1024

6 4096

7 16384

8 65536

9 262144

10

24

1048576

1014

Only 1010 people
in world!

CSS 322 - Malicious Software 15

Melissa Virus
• Virus released by David Smith in 26 March 1999

– Posted a message to a newsgroup containing a MS Word attachment –
the attachment contained a macro virus

– Estimated damage up to $US1000million (34 billion Baht)
• Mainly cost of downtime (users not working) and removing virus from

systems
– Smith was arrested in 1 April 1999

• After deals, Smith spent about 2 years in prison
• Designed to infect computers with Word 97/2000

– Virus sent as attachment to email
• Subject: “Important message from <username>”
• Body: “Here is that document you asked for … don’t show anyone else”

– When executed, the macro automatically sent the email to 50 people in
address book

• Required MS Outlook to be running
• Look like you receive an email from someone you know

– Macro would also copy itself into normal.dot (the standard template for
Word) – therefore infect all other documents created on the computer

CSS 322 - Malicious Software 16

Worms
• Software that replicates itself and sends copies to other computers

– And copies on new computers repeat the process (copy and send)
– May perform some function as well (e.g. delete files)

• Is an email virus a virus or worm or both?
– Email virus requires users to propagate
– Worms propagate by themselves (without user intervention)

• Worms use network connections to propagate:
– Email software, e.g. Simple Mail Transfer Protocol (SMTP)
– Remote execution, Remote Procedure Call, sockets
– Remote login, e.g. telnet, rlogin, rsh, …

• Three main steps of worm:
1. Search for other systems to infect
2. Connect to a remote system
3. Copy itself to remote system and cause the copy to execute

CSS 322 - Malicious Software 17

Morris Worm
• Robert Morris (undergrad at Cornell) released worm on Internet in

1988
– One of the first major worms on the Internet
– Infected about 3000 computers; 5% of the Internet
– Caused shutdown of Internet for several days

• Cost of repair between $US100,000 and $US10,000,000
– Morris was one of first people arrested, tried and convicted for releasing

malicious computer program
• Received 3 years probation (no prison time) and $US10,000 fine

• Spread on UNIX systems (the main computers on the Internet at the
time)
– Worm propagated using UNIX remote login commands
– Gain unauthorised access to systems using:

• Legitimate trusted host features of rsh, rexec commands for remote login
• Crack passwords using 432 common passwords, variations on username

and a UNIX dictionary
• Exploit a bug in sendmail
• Exploit a buffer overflow bug in fingerd

CSS 322 - Malicious Software 18

Code Red
• CodeRed (16 July 2001)

– Worm aimed at Microsoft Internet Information Server (IIS) web servers
(not users)

– Sent to web server as HTTP GET request
• Bug in IIS allows the code to be stored by the server
• Worm was stored in RAM; a reboot deleted the worm (but many web servers

run 24 hours per day)
– Worm had several states:

• On first 19 days of month, send HTTP GET requests to random IP
addresses, with the intention of infecting other web servers

• On days 20 to 28 create a denial-of-service attack on www.whitehouse.gov
• Dormant for remainder of month

– Infected 200,000 servers in 5 hours
– Consumed significant network resources (denial of service attack)

• CodeRed II (4 August 2001)
– Similar to CodeRed but also installed a trojan horse on the web server

• Allowed anyone with web browser to send commands to web server:
– E.g. delete or modify files on server

http://www.whitehouse.gov/

CSS 322 - Malicious Software 19

I Love You Worm
• Reported on 4 May 2000; writers from Philippines

– Damages up to $US9 billion
• Infected more than half of US companies; 10,000 mail servers in Europe

– 1 in 28 emails sent on Internet were from ILOVEYOU worm
– Writers were identified but not arrested as was not a crime in Philippines

• Used similar mechanism as Melissa to propagate (except sent email
to everyone in address book)
– Not technically a virus: Did not infect other programs
– Email included attachment: LOVE-LETTER-FOR-YOU.txt.vbs
– When opened, executed a Visual Basic Script

• Delete files from hard drive by replacing the file with the worm
• Point web browser to site in Philippines to download a Trojan horse that

collected passwords from victims machine and emailed them back to
attacker

CSS 322 - Malicious Software 20

Current Trends in Worms
• New worms have new technologies:

– Multiplatform: not limited to Windows, also Linux distributions
and MAC

– Mutliexploit: Exploit different bugs in web servers, client
applications, P2P network software, email servers, …

– Ultrafast spreading: utilise network software to first determine
which computers have bugs (instead of randomly send to
computers)

– Polymorphic: avoid detection by create different copies that
perform the same (look different but behave the same)

– Metamorphic: avoid detection by creating copies that modify
their behaviour

– Zero-day exploit: Exploit vulnerabilities (bugs) that are unknown
until the worm is released

Buffer Overflow Attacks

CSS 322 - Malicious Software 22

Buffer Overflows
• A common buffer overflow error in C language:

– Store data in an array of size 6; write 8 characters to the array

• Memory is also used to store program status (e.g. stack)
– Function F() call function G()
– Program stack contains pointer to where G() will return to

• Called the Instruction Pointer
– G() may overwrite the instruction pointer with new value

• Hence G() will return to another location in F() (or elsewhere)

array int

s e c u r i t y \0

CSS 322 - Malicious Software 23

Buffer Overflow Example

Instruction pointer
should be here

But we change value
to point to here

/* OverwriteIp.c */
void printMessage()
{

char strTmp[] = “The Message.”;
int* piRet;
/* Modify the IP. Decrement it 5 bytes. */
piRet = (int*)(strTmp + 28);
*(piRet) -= 5;
/* Print ‘The Message’ */
printf(“%s\n”, strTmp);
return;

}
int main()
{

printMessage();
return 0;

}

CSS 322 - Malicious Software 24

Buffer Overflow Attacks
• Basic Principle:

– Attacker writes a string to memory with the intent of overflowing a buffer
and overwriting the Instruction Pointer with a new value

• String is longer than the buffer can hold
• String contains the malicious commands to execute
• String also contains value of new Instruction Pointer

– Often contains many repeated values of new IP, since cannot be certain which
piece of memory stores the actual IP

– New IP points to the start of malicious commands

– If string overwrites the actual Instruction Pointer with the new Instruction
Pointer, then on return from function, the malicious code will be
executed

• Issues:
– How is malicious code provided to program?
– Where is the existing Instruction Pointer?
– What should the new Instruction Pointer point to?

CSS 322 - Malicious Software 25

Passing Malicious Code to Program
• Input:

– Pass the code as a command line argument to the program

• Format of malicious code:
– C/C++ program written, compiled and disassembled
– Obtain the byte codes of the executable malicious program
– Pass the byte codes as a string into the host program

• Executing the malicious code:
– With the new (malicious value) of the Instruction Pointer pointing

to the place in memory of the byte codes, when the function
returns the byte code (that is, the malicious code) will be
executed

CSS 322 - Malicious Software 26

Exploit Code
• This example source code executes a shell:

• Example output of compiling and running above code:

/* exploitCodeUsingExecve.c */

#include <unistd.h>

int main()
{

char* argv[1];
argv[0] = “/bin/sh”;
argv[1] = NULL;
execve(argv[0], argv,

0);
return 0;

}

[ig@hostname]$ gcc –static –ggdb –o exploitCodeUsingExecve
exploitCodeUsingExecve.c
[ig@hostname]$./exploitCodeUsingExecve
sh-2.05b$

CSS 322 - Malicious Software 27

Convert Exploit Code to Bytes
• gdb (or similar) can be used to disassemble the

executable to obtain the assembly language code and
the byte (instruction) code:

• Example assembly code:

gdb exploitCodeUsingExecve
(gdb) disassemble main
(gdb) disassemble execve

0x80481d0 <main>: push %ebp
0x80481d1 <main+1>: mov %esp,%ebp
0x80481d3 <main+3>: sub $0x8,%esp
0x80481d6 <main+6>: and $0xfffffff0,%esp
…
0x804cfe8 <execve+28>: push %ebx
0x804cfe9 <execve+29>: mov %edi,%ebx
0x804cfeb <execve+31>: mov $0xb,%eax
0x804cff0 <execve+36>: int $0x80
…

CSS 322 - Malicious Software 28

Convert Exploit Code to Bytes
• Example byte code:

• Example byte code as a string in C:

(gdb) x/b 0x80481e0
0x80481e0 <main+16>: 0x55
(gdb)
0x80481e1 <main+17>: 0x89
(gdb)
0x80481e2 <main+18>: 0xe5
(gdb)
0x80481e3 <main+19>: 0x83
(gdb)
0x80481e4 <main+20>: 0xec
...

char code[] = “\x83\xc4\x40\x55\x89\xe5\x83\xec”
“\x08\x89\xe3\xb9\xff\x2f\x73\x68\xc1\xe9”
“\x08\x51\x68\x2f\x62\x69\x6e\x31\xc0\x83”
“\xeb\x08\x89\x5d\xf8\x89\x45\xfc\x83\xec”
“\x04\x50\x8d\x45\xf8\x50\xff\x75\xf8\x55”
“\x55\x31\xc0\x89\xe5\x85\xc0\x57\x53\x8b”
“\x7d\x08\x8b\x4d\x0c\x8b\x55\x10\x53\x89”
“\xfb\x31\xc0\x83\xc0\x0b\xcd\x80”;

CSS 322 - Malicious Software 29

Finding Existing Instruction Pointer
• The attacker needs to overwrite the existing Instruction

Pointer – where is it?

• How big is the stack used in the program?
– Typically 100 to 300 bytes
– For example, repeat the new IP many times so we eventually

overwrite the existing IP with the new IP
– When function returns, it will execute the code pointed to by the

new IP

Stack used by function F()

Instruction Pointer

CSS 322 - Malicious Software 30

Choosing new Instruction Pointer
• Need to choose a value of new Instruction Pointer to

point to start of malicious code
– Very hard to accurately choose memory position of code
– Therefore, estimate a position and start malicious code with

many No-Operation instructions (NOPs)
• NOPs do nothing (just slow the CPU)
• The behaviour of the malicious code stays the same, and highly

likely the new Instruction Pointer can be chosen to point to
somewhere in the NOP set of instructions

CSS 322 - Malicious Software 31

Old
IP

Old
IP

Malicious code IP

NOP Malicious code IP=3

IP IP IP IP

IP=3 IP=3 IP=3 IP=3NOPNOPNOPNOP

IP should point here
But we can only guess
the position in memory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Old
IP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Malicious code IP
We can only guess where
old IP is …

Position in
memory

… so we write many copies of new IP
and hopefully we overwrite old IP

… so we write many NOPs and hopefully
IP will point to one of them

CSS 322 - Malicious Software 32

DNS Example
• Simple example of a DNS program that, given a domain

name, returns an IP address
• Assume the DNS is executed with root (administrator)

privileges
– Initial strcpy() copies command line argument into buffer
– If we supply the exploit code (in byte form) as a command line

argument:
• The buffer storing the string will overflow
• The instruction pointer in our exploit code will overwrite the real

instruction pointer
• Our new instruction pointer will point to the start of our exploit code

(or to a NOP at the start)
• The exploit code will be run

– Our example code starts a shell (sh)
– After running, we obtain access to a shell (command line) as

root/administrator user

CSS 322 - Malicious Software 33

Preventing Buffer Overflow Attacks
• Proactive defences try to prevent overflows

– Check every memory read/write
• E.g. always use strncpy() instead of strcpy()
• The program may become slow

– Languages that cause compile errors when potential overflows,
e.g. Java

– Extra software that will automatically scan your code for buffer
overflow errors

• Reactive defences allow buffer overflows but try to
prevent unexpected use of memory
– Special software that checks the stack and prevents overwriting

Instruction Pointer
• Good programming can help prevent attacks

– sprintf; fgetc in loops; gets; system; strcpy; strcat; strcmp; argv
are all vulnerable functions in C

Denial of Service Attacks

CSS 322 - Malicious Software 35

Distributed Denial of Service Attacks
• Security Service: Availability

– A network or computer system should be available to users for the
normal intended purpose

• Denial of Service (DoS) Attack:
– Aim to prevent real users from using the system
– Comes from a single computer towards a single computer or network

• Distributed DoS Attack:
– DoS from multiple (often many) computers to single computer or

network
– Very hard to prevent and also sometimes hard to detect early:

• Is it a DDoS on your web server or just a rapid increase in traffic
(flashcrowd, slashdot)?

– Typically involves an attacker taking control of many hosts on Internet,
and these infected hosts perform the attacks on a single target

CSS 322 - Malicious Software 36

TCP SYN Flooding Attack
• Attacker takes control of many slave hosts
• Each slave sends TCP SYN segments to a single (target) host (e.g.

web server)
– (Remember: TCP sender initiates a connection by sending SYN to TCP

receiver; receiver will respond with a SYN+ACK; then the sender
respond with ACK; then they can transfer data)

– Each TCP SYN has fake/incorrect source IP addresses
– The target server responds to each TCP SYN with a SYN+ACK (if

accepted) or a RST (if not accepted)
• Target server also creates a data structure in memory for each accepted

connection, as it is waiting for the final ACK to come back
– As a result, target becomes overflowed with processing many SYNs, as

well as storing data about each connection in memory
– Target cannot process any legitimate connection requests

• Prevention:
– Difficult to stop completely, but filtering of packets on routers as well as

techniques like SYN cookies (Linux) reduce the impact of SYN Floods

CSS 322 - Malicious Software 37

TCP SYN Flooding Attack

CSS 322 - Malicious Software 38

ICMP Attack
• Attacker takes control of many slave hosts
• Each slave sends ICMP ECHO messages (Ping’s) to set of reflector

hosts
– (Remember: Ping uses ICMP ECHO messages to test connectivity; an

ECHO message is sent to a destination, and the destination responds to
the source)

– Reflector hosts are usually random hosts that are not infected or under
control of attacker

– ICMP ECHO from slaves has a spoofed source IP address – it is set to
the target’s IP address

– Every reflector host sends a ICMP response to the source, that is to the
target

– Target’s router is overloaded with ICMP packets, leaving no network
resources for the target (or other nodes on its network)

• Prevention:
– Not respond to ICMP messages; routers drop ICMP messages

CSS 322 - Malicious Software 39

ICMP Attack (Ping Flood)

CSS 322 - Malicious Software 40

Classifying DDoS Attacks
• Resource consumed:

– Internal host resources such as CPU and memory
• Host can not handle any more requests
• E.g. TCP SYN flood

– Data transmission capability of network
• Network/router cannot carry normal traffic
• E.g. ICMP Ping flood

• Source of attacks
– Direct DDoS Attack

• Attacker controls slaves (or hierarchy of slaves), and the slaves attack the
target directly

– Reflector DDoS Attack
• Attacker controls slaves (or hierarchy of slaves), and the slaves send data to

reflectors which then forward to the target
– Reflectors are not under control of attacker

• Easier to involve more hosts than direct DDoS and hence send more traffic
and create more damage

• Harder to trace back to original attacker if reflectors are used

CSS 322 - Malicious Software 41

Direct DDoS Attack

CSS 322 - Malicious Software 42

Reflector DDoS Attack

CSS 322 - Malicious Software 43

Constructing Attack Network
• Attacker must get many slave hosts under its control

– Infect the hosts with zombie software
– Attacker must:

• Create software that will perform the attacks. This should:
– Be able to run on different hardware architectures and OSes
– Hide, that is not be noticeable to the normal user of the zombie host
– Be able to be contacted by attacker to trigger an attack

• Identify vulnerability (bug) in large number of systems, in order to
install the zombie software

• Locate vulnerable machines, using scanning:
– Attacker finds vulnerable machines and infects with zombie software
– Then the zombie software searches for vulnerable machines and

infects with zombie software
– And so on, until a large distributed network of slaves is constructed
– (Hence one function a worm may perform is to install zombie software

in preparation for DDoS attacks)

CSS 322 - Malicious Software 44

Preventing DDoS Attacks
• Prevention

– Allocate backup resources and modify protocols that are less
vulnerable to attacks

– Aim is to still be able to provide some service when under DDoS
attack

• Detection
– Aim to quickly detect an attack and respond (minimise the

impact of the attack)
– Detection involves looking for suspicious patters of traffic

• Response
– Aim to identify attackers so can apply technical or legal

measures to prevent
• Cannot prevent current attack; but may prevent future attacks

	Malicious Software
	Contents
	Classifying Malicious Programs
	Terminology of Malicious Programs
	Backdoor
	Logic Bomb
	Nature of Viruses
	A Simple Virus
	Compression Virus
	Compression Virus Algorithm
	Types of Viruses
	Macro Viruses
	Email Viruses
	Distribution of Viruses/Worms
	Melissa Virus
	Worms
	Morris Worm
	Code Red
	I Love You Worm
	Current Trends in Worms
	Buffer Overflow Attacks
	Buffer Overflows
	Buffer Overflow Example
	Buffer Overflow Attacks
	Passing Malicious Code to Program
	Exploit Code
	Convert Exploit Code to Bytes
	Convert Exploit Code to Bytes
	Finding Existing Instruction Pointer
	Choosing new Instruction Pointer
	DNS Example
	Preventing Buffer Overflow Attacks
	Denial of Service Attacks
	Distributed Denial of Service Attacks
	TCP SYN Flooding Attack
	TCP SYN Flooding Attack
	ICMP Attack
	ICMP Attack (Ping Flood)
	Classifying DDoS Attacks
	Direct DDoS Attack
	Reflector DDoS Attack
	Constructing Attack Network
	Preventing DDoS Attacks

