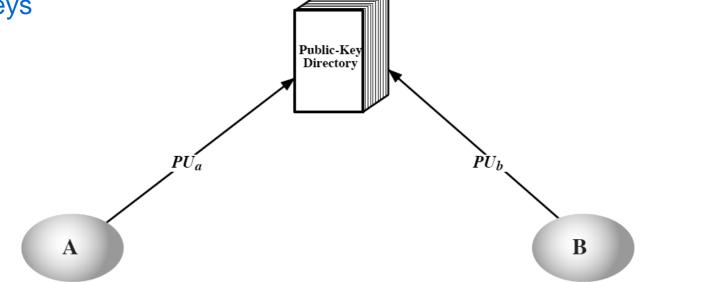
Public Key Management

CSS 322 – Security and Cryptography

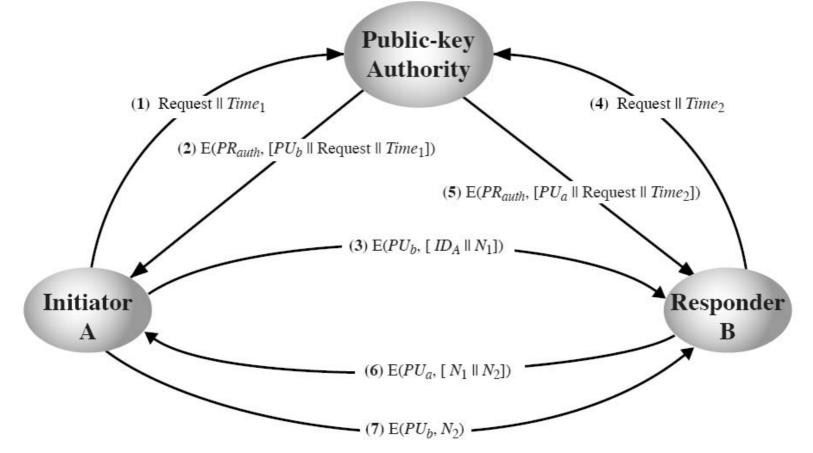
Distributing Public Keys


- A major advantage of public key cryptosystems (versus symmetric key) is the key distribution
 - Relatively easy to distribute keys
 - Can use public key system to distribute secret (symmetric) keys
- How to distribute public keys:
 - 1. Public announcements
 - 2. Publicly available directory
 - 3. Public-key authority
 - 4. Public-key certificate

Public Announcements

- Make your public key available in open forum:
 - Announce it at a conference
 - Publish in the newspaper
 - Include in email signature
 - Put it on your web page
 - ...
- Very convenient and simple
- Major weakness:
 - The announcement can be forged
 - Anyone in this class could send an email to maillist saying "I am Steve and my public key is X"
 - Until I detect this, you can encrypt all messages intended to me

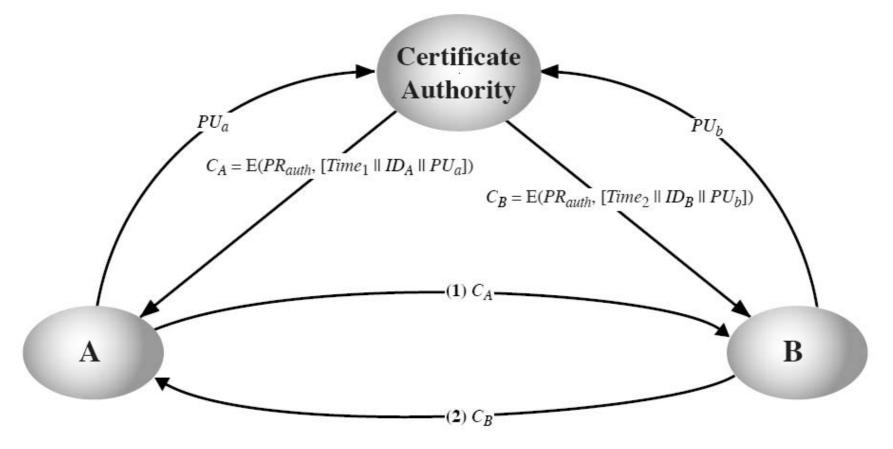
Publicly Available Directory


- All users publish their public keys to a central directory
 - Users must identify themselves before publishing
 - Users may replace public keys at any time
 - Users electronically obtain keys from directory (needs to be secure)
- More secure than public announcements, but:
 - If directory is compromised, easy for attacker to send fake public keys

4

Public Key Authority

- Assume:
 - Directory (central authority) maintains public keys
 - Users have public key of central authority


5

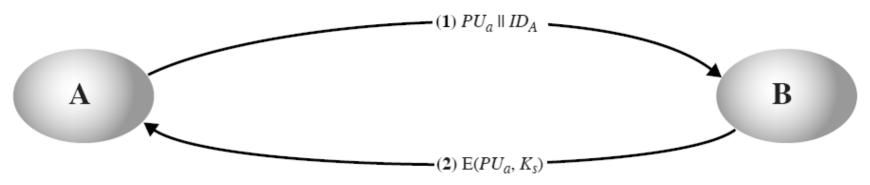
Public Key Authority

- If the users cache keys, then the first 4 steps are infrequent only need last 3 steps to do regular updates
- Limitations:
 - Directory may become a bottleneck
 - All users must go to directory for every other user they want to contact
 - If directory is compromised, fake public keys can be issued

Public Key Certificate

- Third party is certificate authority
 - Users provide Public key to CA and receive certificate
 - This must be done in person or via secure channel

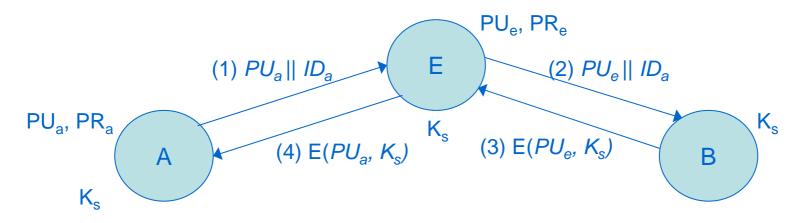
Public Key Certificate


- Certificate is encrypted with CAs Private Key and contains:
 - ID of user
 - Public key of user
 - Time of issue
- If private key is compromised, obtain new certificate and inform all parties of new certificate
- X.509 is a standard for public key certificates:
 - Used in IPsec, SSL and other applications

Distributing Secret Keys

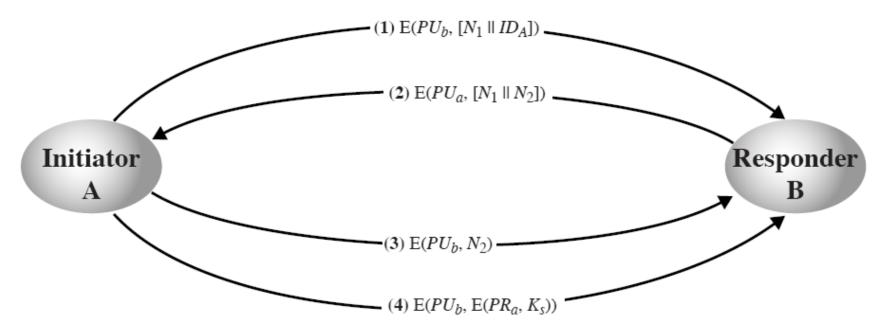
- Public key encryption is significantly slower than symmetric key encryption
- In practice, use public key encryption to create secure channel, then exchange symmetric/private keys for data encryption

Simple Secret Key Distribution


- Steps:
 - A generates own public/private key and sends Public key to B
 - B generates secret key and sends it back to A, encrypted with A's public key
 - Now both A and B have secret key and can discard public/private keys

- Simple scheme, which creates secure connection

Man-in-the-Middle Attack


• The simple scheme can be attacked by a third party C:

- Now A and B have K_s and can send encrypted data
 - But C also has K_s and can decrypt all the data
 - A or B do not know C has secret key

Secret Key Distribution

- With Confidentiality and Authentication
- Assume A and B have exchanged public keys (e.g. using certificates)

Diffie-Hellman Exchange

- Diffie and Hellman proposed public key cryptosystems in 1976
 - They described a method for exchanging keys
 - Based on discrete logarithms
 - Easy to calculate exponentials module a prime
 - Hard to calculate inverse: discrete logarithms Given integer b, prime p, primitive root a of p: $b \equiv a^i \pmod{p}$

 $i = discretelog_{a,p}(b)$

Only used for exchange of secret value

Diffie-Hellman Steps

Global Public Elements		
q	prime number	
α	$\alpha < q$ and α a primitive root of q	

User A Key Generation			
Select private X_A	$X_A < q$		
Calculate public Y_A	$Y_A = \alpha^{X_A} \mod q$		

User B Key Generation			
Select private X_B	$X_B < q$		
Calculate public Y_B	$Y_B = \alpha^{X_B} \mod q$		

Calculation of Secret Key by User A $K = (Y_{B})^{X_{A}} \mod q$

Calculation of Secret Key by User B $K = \left(Y_A\right)^{X_B} \bmod q$