
SIIT CSS 322 – Security and Cryptography

Simplified RC4 6 Dec 2007 1

Simplified RC4 Example
Example

Steven Gordon

1 Simplified RC4 Example
Lets consider the stream cipher RC4, but instead of the full 256 bytes, we will use 8 x 3-bits. That
is, the state vector S is 8 x 3-bits. We will operate on 3-bits of plaintext at a time since S can take
the values 0 to 7, which can be represented as 3 bits.

Assume we use a 4 x 3-bit key of K = [1 2 3 6]. And a plaintext P = [1 2 2 2]

The first step is to generate the stream.

Initialise the state vector S and temporary vector T. S is initialised so the S[i] = i, and T is
initialised so it is the key K (repeated as necessary).

S = [0 1 2 3 4 5 6 7]
T = [1 2 3 6 1 2 3 6]

Now perform the initial permutation on S.

j = 0;
for i = 0 to 7 do
 j = (j + S[i] + T[i]) mod 8
 Swap(S[i],S[j]);
end

For i = 0:
j = (0 + 0 + 1) mod 8
 = 1
Swap(S[0],S[1]);

S = [1 0 2 3 4 5 6 7]

For i = 1:
j = 3
Swap(S[1],S[3])
S = [1 3 2 0 4 5 6 7];

For i = 2:
j = 0
Swap(S[2],S[0]);
S = [2 3 1 0 4 5 6 7];

For i = 3:
j = 6;
Swap(S[3],S[6])
S = [2 3 1 6 4 5 0 7];

SIIT CSS 322 – Security and Cryptography

Simplified RC4 6 Dec 2007 2

For i = 4:
j = 3
Swap(S[4],S[3])
S = [2 3 1 4 6 5 0 7];

For i = 5:
j = 2
Swap(S[5],S[2]);
S = [2 3 5 4 6 1 0 7];

For i = 6:
j = 5;
Swap(S[6],S[4])
S = [2 3 5 4 0 1 6 7];

For i = 7:
j = 2;
Swap(S[7],S[2])
S = [2 3 7 4 0 1 6 5];

Hence, our initial permutation of S = [2 3 7 4 0 1 6 5];

Now we generate 3-bits at a time, k, that we XOR with each 3-bits of plaintext to produce the
ciphertext. The 3-bits k is generated by:

i, j = 0;
while (true) {
 i = (i + 1) mod 8;
 j = (j + S[i]) mod 8;
 Swap (S[i], S[j]);
 t = (S[i] + S[j]) mod 8;
 k = S[t]; }

The first iteration:
S = [2 3 7 4 0 1 6 5]
i = (0 + 1) mod 8 = 1
j = (0 + S[1]) mod 8 = 3
Swap(S[1],S[3])
S = [2 4 7 3 0 1 6 5]
t = (S[1] + S[3]) mod 8 = 7
k = S[7] = 5

Remember, P = [1 2 2 2]

So our first 3-bits of ciphertext is obtained by: k XOR P
5 XOR 1 = 101 XOR 001 = 100 = 4

The second iteration:
S = [2 4 7 3 0 1 6 5]
i = (1 + 1) mod 8 = 2
j = (2 + S[2]) mod 8 = 1
Swap(S[2],S[1])
S = [2 7 4 3 0 1 6 5]

SIIT CSS 322 – Security and Cryptography

Simplified RC4 6 Dec 2007 3

t = (S[2] + S[1]) mod 8 = 3
k = S[3] = 3

Second 3-bits of ciphertext are:
3 XOR 2 = 011 XOR 010 = 001 = 1

The third iteration:
S = [2 7 4 3 0 1 6 5]
i = (2 + 1) mod 8 = 3
j = (1 + S[3]) mod 8 = 4
Swap(S[3],S[4])
S = [2 7 4 0 3 1 6 5]
t = (S[3] + S[4]) mod 8 = 3
k = S[3] = 0

Third 3-bits of ciphertext are:
0 XOR 2 = 000 XOR 010 = 010 = 2

The final iteration:
S = [2 7 4 0 3 1 6 5]
i = (1 + 3) mod 8 = 4
j = (4 + S[4]) mod 8 = 7
Swap(S[4],S[7])
S = [2 7 4 0 5 1 6 3]
t = (S[4] + S[7]) mod 8 = 0
k = S[0] = 2

Last 3-bits of ciphertext are:
2 XOR 2 = 010 XOR 010 = 000 = 0

So to encrypt the plaintext stream P = [1 2 2 2] with key K = [1 2 3 6] using our simplified RC4
stream cipher we get C = [4 1 2 0].

(or in binary: P = 001010010010, K = 001010011110 and C = 100001010000)

