CSS 322 - QUIZ 5 Answers

First name: \qquad Last name: \qquad

ID: \qquad Total Marks: \qquad

Question 1 [2 marks]
Perform the following calculations using modular arithmetic:
a) Modular 13:
12×6
b) Modular 17:

8-15
c) Modular 15:
$12 \div 6$
d) Modular 17:
$12 \div 6$

Answers

a. $12 \times 6=72.72 \bmod 13=7$
b. $8+$ additive_inverse $(15)=8+2=10$
c. 6 does not have a multiplicative inverse in mod 15, and no answer.
d. $12 \times$ mult_inverse(6) $=12 \times 3=36.36$ mod $17=2$

Question 2 [2 marks]

Calculate the following:
a) $\varnothing(16)$
b) $\varnothing(17)$
c) $\varnothing(13)$
d) $Ø(221)$

Answers

a. Factors of 16 are 2, 4, 8, 16. Numbers relatively prime to 16 are: $1,3,5,7,9,11,13,15$. Hence answer is 8 .
b. 17 is prime, hence answer is 16 .
c. 13 is prime, hence answer is 12 .
d. $221=17 \times 13$, hence answer is $16 \times 12=192$.

Question 3 [1 mark]
Euler's theorem states that, for two relatively prime numbers, a and n :

$$
a^{\phi(n)} \equiv 1(\bmod n)
$$

Derive the answer of: $15^{8} \bmod 16$? You must show (or explain) calculations/derivation.

Answer

Since $\emptyset(16)=8$, and 15 is relatively prime to 16 , then Eulers theorem applies if $\mathrm{a}=15$ and $\mathrm{n}=$ 16. Therefore $15^{8} \bmod 16=a^{\varnothing(n)} \bmod 16=1$

