CSS 322 - QuIz 3 Answers

First name: \qquad Last name: \qquad

ID: \qquad Total Marks: \qquad
out of 10
Question 1 [3 marks]
Assume you have designed a 4-bit block cipher that produces the following Ciphertext when used with a key K :

\mathbf{P}	\mathbf{C}	\mathbf{P}	\mathbf{C}	\mathbf{P}	\mathbf{C}	\mathbf{P}	\mathbf{C}
0000	0101	0100	0010	1000	1110	1100	1000
0001	1001	0101	0111	1001	1011	1101	0100
0010	1101	0110	0000	1010	1100	1110	0011
0011	1111	0111	1010	1011	0001	1111	0110

If you use your cipher in the Counter mode of operation (with initial value of 0), what is the plaintext for the ciphertext $\mathrm{C}=011001001010$ and key K.

Answer

Counter mode encrypts the counter value, and then XORs the result with the ciphertext block to get the original plaintext.
$\mathrm{E}(0000)=0101$
$\mathrm{E}(0001)=1001$
$\mathrm{E}(0010)=1101$
$\mathrm{P}_{1} \quad=\quad \mathrm{C}_{1} \operatorname{XOR} \mathrm{E}(0000)$
$=0110$ XOR 0101
$=0011$
$\mathrm{P}_{2} \quad=\quad \mathrm{C}_{2} \operatorname{XOR} \mathrm{E}(0001)$
$=0100$ XOR 1001
$=1101$
$\mathrm{P}_{3} \quad=\quad \mathrm{C}_{3}$ XOR E(0010)
$=1010$ XOR 1101
$=0111$

Therefore the plaintext is: 001111010111

Question 2 [3 marks]
The following diagram shows the encryption phase of the Output Feedback Mode of operation for 64-bit block ciphers.

Assume you are using a modified Output Feedback Mode that operates on 4-bit block ciphers and it is used with the encryption algorithm designed in Question 2. The plaintext blocks are 2-bits. What is the ciphertext for the plaintext $\mathrm{P}=01101011$ encrypted using key K ? The Initialisation Vector is 0000 .

Answer		
IV	=	0000
Output of Encrypt	=	0101
$\mathrm{C}_{1} \quad=\mathrm{P}_{1}$ XOR 01	=	00
V	=	0001
Output of Encrypt	=	1001
$\mathrm{C}_{2}=\mathrm{P}_{2}$ XOR 10	$=$	00
V	=	0110
Output of Encrypt	=	0000
$\mathrm{C}_{3}=\mathrm{P}_{3}$ XOR 00	$=$	10
V	=	1000
Output of Encrypt	=	1110
$\mathrm{C}_{4}=\mathrm{P}_{4} \mathrm{XOR} 11$	$=$	00

Ciphertext $=00001000$

Question 3 [4 marks]
Assume you designed your own encryption algorithm, A, which uses 4 -bit blocks and 2-bit keys. The ciphertext for a selection of plaintext and keys for the algorithm, A, are given below.

	Key			
Plaintext	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 0}$	$\mathbf{1 1}$
$\mathbf{0 0 0 1}$	1101	0111	1101	0110
$\mathbf{0 1 0 1}$	0000	0110	0111	1010
$\mathbf{0 1 1 1}$	0101	1101	1111	0011
$\mathbf{1 0 0 0}$	0111	1000	1100	1101

To increase the strength of your algorithm, A, against brute-force attack, you apply the algorithm twice using a 4-bit key, K. The first two bits of K are used as a key into A to encrypt the plaintext to produce output X, and the second two bits of K are used as a key into A to encrypt X to produce the ciphertext. You call this new algorithm Double-A.

An attacker has discovered a pair of (plaintext, ciphertext) for Double-A:
(0101, 1101)
a) Use the meet-in-the-middle attack to determine the most likely key K used to produce this ciphertext.
b) A limitation of the meet-in-the-middle attack is the amount of memory needed. Explain why, and give the approximate amount of memory needed to perform the attack on Double-DES (which uses two 56-bit keys)?

Answer

a)

Encrypting 0101 with a key K_{1}, will produce one of four possible values:

$$
\begin{aligned}
& \mathrm{K}_{1}=00: \mathrm{X}=0000 \\
& \mathrm{~K}_{1}=01: \mathrm{X}=0110 \\
& \mathrm{~K}_{1}=10: \mathrm{X}=0111 \\
& \mathrm{~K}_{1}=11: \mathrm{X}=1010
\end{aligned}
$$

Decrypting 1101 with a key K_{2}, will produce one of four possible values:

$$
\begin{aligned}
& \mathrm{K}_{2}=00: \mathrm{X}=0001 \\
& \mathrm{~K}_{2}=01: \mathrm{X}=0111 \\
& \mathrm{~K}_{2}=10: \mathrm{X}=0001 \\
& \mathrm{~K}_{2}=11: \mathrm{X}=1000
\end{aligned}
$$

Since $X=0111$ matches in both encryption and decryption then the key is: $K_{1}=10, K_{2}=01$, therefore K = 1001.
b)

With the meet-in-the-middle attack, the plaintext is encrypted with every possible key to produce 2^{k} values of X, each n-bits in length. Each value of X needs to be stored in memory for the next phase (decrypting the ciphertext and comparing against the values of X). For Double-DES this requires approximately 576,000 Terabytes of memory:
2^{56} values of X, where X is 64 bits (or 8 bytes) $=576460752303423488$ bytes (approx 5.8×10^{17})

