# CSS 322 – QUIZ 3 ANSWERS

First name: \_\_\_\_\_

Last name: \_\_\_\_\_

ID: \_\_\_\_\_

Total Marks: \_\_\_\_\_

out of 10

### Question 1 [3 marks]

Assume you have designed a 4-bit block cipher that produces the following Ciphertext when used with a key *K*:

| Р    | С    | Р    | С    | Р    | С    | Р    | С    |
|------|------|------|------|------|------|------|------|
| 0000 | 0101 | 0100 | 0010 | 1000 | 1110 | 1100 | 1000 |
| 0001 | 1001 | 0101 | 0111 | 1001 | 1011 | 1101 | 0100 |
| 0010 | 1101 | 0110 | 0000 | 1010 | 1100 | 1110 | 0011 |
| 0011 | 1111 | 0111 | 1010 | 1011 | 0001 | 1111 | 0110 |

If you use your cipher in the Counter mode of operation (with initial value of 0), what is the plaintext for the ciphertext C = 011001001010 and key *K*.

#### Answer

Counter mode encrypts the counter value, and then XORs the result with the ciphertext block to get the original plaintext.

E(0000) = 0101

E(0001) = 1001

E(0010) = 1101

- $\mathbf{P}_1 \qquad = \qquad \mathbf{C}_1 \text{ XOR E}(0000)$ 
  - = 0110 XOR 0101
    - = 0011
- $P_2 = C_2 XOR E(0001)$ 
  - = 0100 XOR 1001
  - = 1101
- $P_3 = C_3 XOR E(0010)$ = 1010 XOR 1101
  - 1010 AOK 1
  - = 0111

Therefore the plaintext is: 0011 1101 0111

## Question 2 [3 marks]

The following diagram shows the encryption phase of the Output Feedback Mode of operation for 64-bit block ciphers.



Assume you are using a modified Output Feedback Mode that operates on 4-bit block ciphers and it is used with the encryption algorithm designed in Question 2. The plaintext blocks are 2-bits. What is the ciphertext for the plaintext P = 01101011 encrypted using key *K*? The Initialisation Vector is 0000.

| Answ           | /er              |     |      |
|----------------|------------------|-----|------|
| IV             |                  | =   | 0000 |
| Outpu          | it of Encrypt    | =   | 0101 |
| C <sub>1</sub> | $= P_1 XOR 01$   | =   | 00   |
|                |                  |     |      |
| V              |                  | =   | 0001 |
| Outpu          | it of Encrypt    | =   | 1001 |
| $C_2$          | $= P_2 XOR 10$   | =   | 00   |
|                |                  |     |      |
| v              |                  | =   | 0110 |
| Outpu          | it of Encrypt    | =   | 0000 |
| C <sub>3</sub> | $= P_3 XOR 00$   | =   | 10   |
|                |                  |     |      |
| V              |                  | =   | 1000 |
| Outpu          | it of Encrypt    | =   | 1110 |
| C <sub>4</sub> | $= P_4 XOR 11$   | =   | 00   |
|                |                  |     |      |
| Ciphe          | ertext = 0000100 | )() |      |

## Question 3 [4 marks]

Assume you designed your own encryption algorithm, *A*, which uses 4-bit blocks and 2-bit keys. The ciphertext for a *selection* of plaintext and keys for the algorithm, *A*, are given below.

|           | Key  |      |      |      |  |  |  |  |
|-----------|------|------|------|------|--|--|--|--|
| Plaintext | 00   | 01   | 10   | 11   |  |  |  |  |
| 0001      | 1101 | 0111 | 1101 | 0110 |  |  |  |  |
| 0101      | 0000 | 0110 | 0111 | 1010 |  |  |  |  |
| 0111      | 0101 | 1101 | 1111 | 0011 |  |  |  |  |
| 1000      | 0111 | 1000 | 1100 | 1101 |  |  |  |  |

To increase the strength of your algorithm, A, against brute-force attack, you apply the algorithm twice using a 4-bit key, K. The first two bits of K are used as a key into A to encrypt the plaintext to produce output X, and the second two bits of K are used as a key into A to encrypt X to produce the ciphertext. You call this new algorithm *Double-A*.

An attacker has discovered a pair of (plaintext, ciphertext) for Double-A:

(0101, 1101)

- a) Use the meet-in-the-middle attack to determine the most likely key K used to produce this ciphertext.
- b) A limitation of the meet-in-the-middle attack is the amount of memory needed. Explain why, and give the approximate amount of memory needed to perform the attack on Double-DES (which uses two 56-bit keys)?

#### Answer

#### a)

Encrypting 0101 with a key K<sub>1</sub>, will produce one of four possible values:

 $K_1 = 00: X = 0000$   $K_1 = 01: X = 0110$   $K_1 = 10: X = 0111$  $K_1 = 11: X = 1010$ 

Decrypting 1101 with a key K<sub>2</sub>, will produce one of four possible values:

$$K_2 = 00: X = 0001$$
$$K_2 = 01: X = 0111$$
$$K_2 = 10: X = 0001$$
$$K_2 = 11: X = 1000$$

Since X = 0111 matches in both encryption and decryption then the key is:  $K_1 = 10$ ,  $K_2 = 01$ , therefore K = 1001.

## b)

With the meet-in-the-middle attack, the plaintext is encrypted with every possible key to produce  $2^k$  values of *X*, each *n*-bits in length. Each value of *X* needs to be stored in memory for the next phase (decrypting the ciphertext and comparing against the values of *X*). For Double-DES this requires approximately 576,000 Terabytes of memory:

 $2^{56}$  values of *X*, where *X* is 64 bits (or 8 bytes) = 576460752303423488 bytes (approx 5.8 x  $10^{17}$ )