# More on Symmetric Ciphers 

CSS 322 - Security and Cryptography

## Contents

- Multiple Encryption and Triple DES
- Block Cipher Modes of Operation
- Stream Ciphers


## Multiple Encryption and DES

- 56-bit key size of DES is a vulnerability to brute force attack
- AES is one alternative to DES
- Another alternative is to use multiple DES encryptions
- Advantage: make use of existing software/hardware/expertise in DES


## Double DES

- Encrypt with two different keys $\left(\mathrm{K}_{1}\right.$ and $\left.\mathrm{K}_{2}\right)$

- Effective key length: $2 \times 56$ bits $=112$ bits???
- Meet-in-the-middle attack
- $\mathrm{X}=\mathrm{E}\left(\mathrm{K}_{1}, \mathrm{P}\right)=\mathrm{D}\left(\mathrm{K}_{2}, \mathrm{P}\right)$
- Given known pair of (P,C), calculate $X$ for all possible $K_{1}$
- Decrypt C using all possible $\mathrm{K}_{2}$, and if matching $X$, check keys
- Result: Double DES can be cracked with almost same effort as single DES


## Triple DES



- Counters the meet-in-the-middle attack
- Some standards adopted 2 key triple DES (112 bit)
- Some Internet standards use 3 key triple DES (168 bits)
- Brute force is order of $2^{112}$; no known practical attacks
- 3 times slower than single DES


## Block Cipher Modes of Operation

- Block cipher operates on fixed sized block (e.g. DES 64 bits)
- Various "modes of operation" defined to apply block cipher algorithms to larger blocks or streams of data
- Can be applied to any block cipher, e.g. DES, AES


## Electronic Codebook (ECB)

- Break the message into 64-bit blocks and encrypt each block with same key
- Padding is used to expand last block to 64-bits
- Useful for encrypting short messages, such as keys

(a) Encryption



## Cipher Block Chaining (CBC)

- Aim: if same plaintext block is repeated, then different ciphertext block is produced
- Approach: XOR ciphertext from previous block with plaintext of current block before encryption
- Requires Initialisation Vector (IV) for first block
- Should keep IV secret (only known to sender and receiver)
- Good for most block cipher applications with large input blocks
- Can be used for authentication


## Cipher Block Chaining


(a) Encryption

(b) Decryption

## Cipher Feedback Mode (CFB)

- Used to make DES a stream cipher
- Stream cipher allows message to be transmitted immediately
- Operates on segments (usually 8 bits) instead of blocks
- Uses chaining (like CBC) so ciphertext is function of all previous plaintext
- Requires Initialisation Vector (IV)
- Variant: Output Feedback Mode (OFB)
- Output of encryption (instead of ciphertext) is fed into next stage
- Errors in transmission are not propagated through stages
- Useful for error-prone channels, such as satellite communications


## Cipher Feedback Mode


(a) Encryption

(b) Decryption


## Output Feedback Mode



(a) Encryption

(b) Decryption


## Counter Mode

- Input a counter (usually incremented by 1 for each stage) into encrypt; XOR result with plaintext
- No chaining between stages (input of one stage does not need output of previous stage)
- Used in ATM and IPsec
- Advantages
- Efficient hardware/software implementations - make use of parallel processing abilities of CPU
- Only requires implementation of encryption algorithm (for example AES encrypt - no need for AES decrypt)
- At least as secure as other modes


## Counter Mode


(a) Encryption

(b) Decryption

## Stream Ciphers

- Usually encrypt 1 byte at a time
- Much faster and easier to implement than block ciphers
- Basic encryption method:

1. Generate pseudo-random number, using key as input
2. XOR pseudo-random number with byte of plaintext


## Stream Cipher Design

- Randomness of input from PRNG hides the structure of plaintext
- Desired properties of stream cipher:
- Encryption sequence has long period, that is many different random numbers produced before repeating
- Same as with Vigenère cipher: long keyword makes it stronger
- The random numbers produced 'appear' random (see topic on random numbers)
- Input keys are long to prevent brute-force attacks
- 128 bits is sufficient currently
- Do not re-use same key with different plaintext
- Attacks are relatively easy if have two different ciphertexts produced with same key


## RC4 Stream Cipher

- Proprietary design invented by Ron Rivest in 1987
- Algorithm published anonymously on Internet in 1994
- Used in SSL/TLS (secure Internet sockets), WEP/WPA (wireless LAN)
- Very simple and efficient implementation
- Can use variable size key: 8 to 2048 bits
- Several theoretical limitations of RC4
- No known attacks if use 128-bit key and discard initial values of stream
- RC4 is used in WEP (shown to be weak security for wireless LANs) - problem with how keys are used, not RC4 algorithm


## RC4 Algorithm

- Initialise 256-byte state vector S:
$-S[0]=0, S[1]=1, S[2]=2, \ldots, S[255]=255$ for $i=0$ to 255 do \{ S[i] = i; T[i]=K[i mod keylen]; \}
- Initialise 256-byte temporary vector T to the key (or if key is less than 256-bytes, repeat the key)
- Perform initial permutation on S:
- Go through S, swapping bytes according to T

$$
\begin{aligned}
& \mathrm{j}=0 ; \\
& \text { for } \mathrm{i}=0 \text { to } 255 \text { do }\{ \\
& \quad \mathrm{j}=(\mathrm{j}+\mathrm{S}[\mathrm{i}]+\mathrm{T}[\mathrm{i}]) \bmod 256 ; \\
& \quad \text { Swap }(\mathrm{S}[\mathrm{i}], \mathrm{S}[\mathrm{j}]) ;\}
\end{aligned}
$$

## RC4 Algorithm

- Generate the stream
- Cycle through S, swapping S[i] with another byte, and repeat once have reached end of $S$

```
i, j = 0;
while (true) {
    i = (i + 1) mod 256;
    j = (j + S[i]) mod 256;
    Swap (S[i], S[j]);
    t = (S[i] + S[j]) mod 256;
    k = S[t]; }
```

- To encrypt, XOR $k$ with byte of plaintext
- To decrypt, XOR k with byte of ciphertext

