Number Theory

Examples

Steven Gordon

1 Modular Arithmetic

The following examples are using modulus of 10 .

1.1 Calculating the remainder

$3 \bmod 10=3$
$13 \bmod 10=3$
since $0 \times 10+3=3$
$-7 \bmod 10=3$
since $1 \times 10+3=13$
since $-1 \times 10+3=-7$
$3 \equiv 13 \equiv-7(\bmod 10)$

1.2 Addition

$4+3=7$
$4+7=11=1$
$4+13=4+3=7$

1.3 Additive Inverse

$\mathrm{A}+\mathrm{B} \equiv \mathrm{C}(\bmod \mathrm{n})$
B is an additive inverse of A if $C=0$
1 is an additive inverse of 9 since $1+9 \equiv 0(\bmod 10)$
6 is an additive inverse of 4
Also, $-1 \equiv 9(\bmod 10)$ and $-4 \equiv 6(\bmod 10)$

1.4 Subtraction

$4-7=4+(-7)=4+3=7$
$8-9=8+(-9)=8+1=9$

1.5 Multiplication

$4 \times 7=28 \bmod 10=8$
$9 \times 12=108 \bmod 10=8$

1.6 Multiplicative Inverse

A $\times B \equiv C(\bmod n)$
B is a multiplicative inverse of A if $C=1$
1 is its own multiplicative inverse: $1 \times 1=1(\bmod 10)$
3 is the multiplicative inverse of $7: 3 \times 7=1(\bmod 10)$
9 is its own multiplicative inverse: $9 \times 9=1(\bmod 10)$

2 Prime Numbers

The divisors of 3 are 1 and 3 (itself), therefore prime.
The divisors of 4 are 1, 4 (itself) and 2, and therefore not prime (composite).

2.1 Greatest common divisor

The gcd of 24 and 18 is 6 .
The gcd of two prime numbers is 1 . E.g. gcd $(19,17)=1$
$\operatorname{Gcd}(24,-18)=6$

3 Fermat's Theorem

$\mathrm{p}=5, \mathrm{a}=3$
a $(\bmod p) \equiv 3$
$\mathrm{a}^{\mathrm{p}}=3^{5}=243$
$243 \equiv 3(\bmod 5)=\mathrm{a}(\bmod p)$
Or $243 \bmod 5=3$
$\mathrm{p}=5, \mathrm{a}=11$
a $(\bmod p) \equiv 1$
$a^{p}=11^{5}=161051$
$161501 \equiv 1(\bmod 5)=a(\bmod p)$

4 Eulers Totient Function

$\varnothing(37)$
Since 37 is prime, $\varnothing(37)=36$
\varnothing (35)
All integers less than 35 that are relatively prime to 35 :
$1,2,3,4,6,8,9,11,12,13,16,1718,1922,23,24,26,27,29,31,32,33,34$
(why? What can divide 35 ? $1,5,7$ and 35 . So all numbers less than 34 that can also be divided by 5 and 7 are not relatively prime, e.g. $5,7,10,14,15,20,21, \ldots$)
24 integers so $\varnothing(35)=24$

5 Euler's Theorem

$\mathrm{a}=3 ; \mathrm{n}=10 ; \varnothing(10)=4$
$a^{\varnothing(n)}=3^{4}=81$
$81 \bmod 10=1$ or $81 \equiv 1(\bmod n)$
$\mathrm{a}=2 ; \mathrm{n}=11, \varnothing(11)=10$
$a^{\varnothing(\text { n })}=2^{10}=1024$
$1024 \bmod 11=1$
$1024 \equiv 1(\bmod 11)=1(\bmod n)$

