
iACK: Implicit Acknowledgements to Improve
Multicast Reliability in Wireless Sensor Networks

Kittithorn Tharatipayakul∗, Steven Gordon∗, Kamol Kaemarungsi†
∗School of Information, Computer and Communication Technology,

Sirindhorn International Institute of Technology, Thammasat University, Thailand
Email: kittithornarm@gmail.com, steve@siit.tu.ac.th

†National Electronics and Computer Technology Center (NECTEC)
National Science and Technology Development Agency (NSTDA), Thailand

Email: kamol.kaemarungsi@nectec.or.th

Abstract—Reliability in IP-multicast forwarding becomes use-
ful while operating in lossy environment of wireless sensor
networks. RPL is a protocol for forming a multicast tree in
sensor networks for multicast data forwarding. Trickle multicast
uses RPL to provide reliability, however it has a high overhead
and delay, especially when a radio duty cycle is used on the
sensors. Stateless Multicast Forwarding (SMRF) optimizes for
the radio duty cycle, reducing delay but also reducing reliability.
This paper proposes iACK, a retransmission scheme on top of
SMRF that uses implicit acknowledgements present in wireless
broadcast to determine which packets a node should retransmit.
We have implemented iACK in ContikiOS. Results show that
iACK delay is about 5 times less than Trickle (and close to
SMRF), and packet delivery ratio is about 80% (compared to
between 20% and 60% for Trickle and SMRF). With a slight
increase in memory requirements, iACK offers a valuable trade-
off compared to existing protocols.

Keyword: Reliable Multicast, Trickle, Contiki, Sensor Networks

I. INTRODUCTION

A characteristic of communication protocols in WSNs is
that they often have to support one-to-many communications
(e.g. a sink node distributes a command to many sensor nodes).
Unacknowledged (and/or unreliable) multicast delivery is usu-
ally a common mechanism for WSNs [1] [2] to support one-to-
many communications. However, there are some applications
that require reliable data delivery when using mutlicast in
WSNs. An example is a file distribution, such as over-the-air
(OTA) updating of firmware image, from a sink node to many
sensor nodes. This paper presents a technique for providing
reliable multicast data delivery in WSNs.

In communication network protocols, reliability is often
achieved with either automatic repeat request (ARQ) mech-
anism, i.e. retransmission, or with forward error correction
(FEC) mechanism, or a combination of the two mechanisms.
Reliability may be provided by one or more protocols in a
layered protocol stack. Link layer protocols, such as IEEE
802.15.4 [3], often use ARQ across a single wireless hop to
overcome packet loss due to received signal degradation (e.g.
fading effect and interference from other sources). However,
even with link layer retransmissions, end-to-end reliability
across multiple wireless hops is not guaranteed. Packets may
still be lost due to buffer overflow at intermediate and end
nodes or due to unacknowledged broadcasting both in link

and network layers. In WSNs, such packet losses can become
significant performance degradation when combined with the
contentions among nodes and the limited transmission op-
portunities of nodes due to sleeping cycle. Note that end-to-
end reliability is often provided by transport (or application)
protocols such as transport control protocol (TCP) but such
protocols are usually not deployed in WSNs.

End-to-end retransmission offered by TCP and/or other
protocols is not well-suited to multicast delivery because of
the storm of explicit acknowledgement (eACK) packets that
are returned from many nodes to a single node. Therefore
researchers have used the behavior of wireless broadcast to
act as implicit acknowledgement (iACK) [4]. Another alter-
native is FEC; however, it can add significant complexity on
already resource-limited sensor nodes. Therefore, researchers
are interested in developing specific mechanisms for WSNs
that work with network routing protocols to aid in multicast
data delivery. Two key efforts are Trickle [5] and SMRF [6].
Trickle is an algorithm used to schedule (re-)transmissions
on a hop-by-hop basis to increase reliability but can create
long communication delay when multicasting through a WSN.
SMRF takes the RPL built-in information and cross-layer
design approach to decrease congestion and makes packet
delivery ratio become higher. In this paper, we introduce
iACK, which builds on features of SMRF but adds an im-
plicit acknowledgement scheme to increase reliability while
maintaining a low overhead.

The rest of this paper is organized as follows. Section II ex-
plains the network protocol and routing mechanisms assumed
in our WSNs and gives more details about Trickle and SMRF.
Section III presents our proposed iACK. Section IV reports
on our simulation results comparing iACK with other existing
approaches. Section V concludes the paper.

II. BACKGROUND AND LITERATURE REVIEW

To interconnect WSNs with existing networks, IPv6 is
recommended as a common networking protocol. IPv6 over
Low power WPAN (6LoWPAN) [7] is an effort by Internet
Engineering Task Force (IETF) to support IPv6 on WSNs.
We assume routing in 6LowPAN is used in this paper. We

978-1-4799-2993-1/14/$31.00 ©2014 IEEE

assume that the IETF developed protocol IPv6 Routing Pro-
tocol for Low-Power and Lossy Networks (RPL) [1] is used.
Section II-A explains concepts of RPL, while Sections II-B
and II-C describes the special case of multicast routing, the
proposed improvements considered in this paper, SMRF and
Trickle.

A. Routing and Forwarding with RPL

Due to the low storage and processing resources of sensor
nodes, normal IP routing protocols are not recommended for
WSNs. RPL is suggested as a refined routing mechanism that
uses selective flooding in the network. It is designed for the
case when there is one source (e.g. gateway between WSN and
external network, called a LOWPAN Border Router (LBR))
and multiple destinations (sensors) and relies on building a
destination-oriented directed acyclic graph (DODAG).

RPL operates in four stages. The initial build stage in-
volves the LBR performing a network-wide broadcast (i.e. full
flooding) of a DODAG Information Object (DIO) message.
This message contains information about the LBR as well
as a rank for nodes. LBR has rank 0 while other nodes
have higher ranks. The default approach is that the rank
increments for each hop away from the LBR. Next stage,
called Purpose assignment, is a rule used to calculate rank
(i.e. lower rank than x, battery above y%). Nodes that can
meet these requirements set their rank to be low numbers.
When the next DIO message is sent, lowest rank nodes will
become parents. When new nodes join the network, an optional
stage, called reverse direction, is used. In this stage path
information is collected as Destination Advertisement Object
(DAO) messages travel from leaf (new nodes) to root (LBR).
This information may be stored in LBR (non-storing mode)
or parents (storing mode). Finally maintenance stage involves
updating the DODAG (multicast tree) on a regular basis in the
case that nodes move.

As an example, all pairs of nodes with lines between them
in Fig. 1 are within wireless range (thin lines) of each other
(i.e. have links). There is no link in the DODAG between
2 and 4 since node 4 chose node 3 as its parent (a node
has only 1 parent). To deliver data in RPL, full flooding
is used over the DODAG. Although there is no link in
the DODAG from 2 to 4, when node 2 transmits, node 4
also receives this transmission due to the broadcast nature
of wireless communications. Flooding in RPL causes many
duplicate packets being received, which leads to higher loss
of packets due to buffer overflow and collisions.

B. Reliabile Multicast with Trickle

Trickle Multicast (TM) adds control messages to reduce
duplicate messages of RPL; it also provides reliable for-
warding by using retransmissions. TM uses two mechanisms:
data transfer with retransmission and consistency check to
determine when to retransmit.

All nodes in the WSN continuously perform the Trickle
Consistency Check (TCC). This involves each node sending a
special ICMP packet to its 1-hop neighbors, who then respond.

1

2

3

4 5

Fig. 1: Bold lines: DODAG graph with preferred parent. Thin
lines: communication between node

The ICMP packets contain sequence numbers which allow a
node to check the consistency of its current sequence number
with its neighbors’ sequence numbers.

When new data arrives at a node, that node increases its
sequence number causing an inconsistency with its neighbors.
An inconsistency means that the node must forward the data
to the neighbors. If the data is received by the neighbors,
they increase their sequence numbers thus returning to a
consistent state. If however the data was lost (did not arrive at
a neighbor), the node will learn of this via the regular TCC,
i.e. sequence numbers are still inconsistent. This triggers the
node to re-transmit the data to its neighbors, and assuming
that it was received, returning to a consistent state.

The interval between TCC’s is an important Trickle pa-
rameter. The interval is increased after a node has performed
multiple successful checks. The interval is decreased if there
are inconsistencies.

Trickle provides a mechanism to allow loss recovery, i.e.
retransmissions when sequence numbers are inconsistent. One
disadvantage of Trickle is that it may cause a large overhead,
as original data packets, retransmitted data packets and TCC
packets are sent. If the MAC protocol uses a radio duty cycle
(e.g. ContikiMAC [8]), then there is an increased chance that
packets will be lost. Another problem is that in a very high
density network, radio collisions result in increased back-off
at the MAC layer, which could especially increase the delay
for TCC packets. Another problem with Trickle is that the
delay from when an original data packet is sent and lost until
when the retransmission occurs may be large. This is because
a node only retransmits after a TCC. If the interval between
TCC is large, the delay until retransmission is large.

C. SMRF

Stateless Multicast Forwarding with RPL in 6LowPAN
Sensor Networks (SMRF) [6] was introduced to reduce the
overhead of flooding in RPL. SMRF uses RPL storing mode,
i.e. each node stores information about its DODAG parent.
SMRF introduces two flooding optimizations: if a node re-
ceives a packet and that node has no DODAG children, then
that node does not forward the packet to neighbors; and if a
node receives a packet from a non-parent node, then again,
that node does not forward the packet to neighbors. These
selective flooding optimizations, illustrated in Fig. 3, aim to
reduce the congestion in the network.

Another feature of SMRF is to take advantage of the radio-
duty cycle used by WSN MAC protocols. To save power, a

1

2

3

4 5 1

2

3

4 5

2

1

3

4 5 1

2

3

4 5

2

1

3

4 5 1

2

3

4 5

2

1

3

4 5 1

2

3

4 5

1 2

3 4

5 6

7 8

Fig. 2: Behavior of TM while disseminating a message. Left:
TCC exchange Right: data dissemination after TCC Dash
arrow lines: unwanted transmission

1

2

3

4 5 1

2

3

4 5

2

1

3

4 5 1

2

3

4 5

1 2

3 4

Fig. 3: Behavior of SMRF while disseminating a message.
Solid lines: DODAG, Dash arrow line: unwanted transmis-
sion, Arrow lines: represent flow of forwarding by SMRF

node periodically switches its radio on and off. Packets can
only be transmitted/received while the radio is on. A problem
with this is that a destination node may have its radio off
while the source node is transmitting a packet, causing packet
loss. Therefore SMRF introduces the feature of informing the
source node MAC to transmit a single packet multiple times.
The MAC repeats the packet transmission while the radio is
on, which increases the chance that the destination MAC will
receive at least one copy of the packet.

[6] reports significant reduction in delay when using SMRF
compared to TM, and higher packet delivery ratio in low
density networks. However the transmission scheme of TM
works better than SMRF (higher packet delivery ratio) in
higher density networks.

III. IACK WITH RPL FORWARDING

We have designed a new mechanism called iACK with the
aims of increasing reliability compared to SMRF and reducing

delay compared to Trickle while keeping the overhead min-
imal. iACK is based upon and uses similar mechanisms of
SMRF. We introduce a retransmission mechanism in iACK.
Section III-A explains the concept and the motivation of
iACK’s design. Then, the protocol operations are described
in Sections III-B and III-C

A. iACK Concept

Typically, a wireless node in a IEEE 802.15.4 network
transmits data through a broadcast medium (air) and a receiver
will rebroadcast, and so on, until the data reaches every
node in the network. Receiving a rebroadcasted packet (i.e. a
packet that the node has already broadcast) acts as an implicit
acknowledgement. Implicit acknowledgments appear in [9]
and [10] as a reliability confirmation while a packet travels
from sink to root node. They are also used in [11] and [12]
in a Stop-And-Wait ARQ mechanism. Referring to Fig. 3 as
an example, the dashed lines are implicit acknowledgments.

Although TM and SMRF use rebroadcasting, i.e. implicit
acknowledgments, they do not exploit this information. Our
contribution, which we call iACK, uses the implicit acknowl-
edgments to improve the reliability of multicast communica-
tion in WSN. iACK consists of two components, flow propa-
gation and retransmission protocol, described in the following
sections. iACK relies on the following assumptions:

• Only one DODAG is used in the WSN at a time. Using
two or more DODAGs at the same time will likely in-
crease the congestion in the network, making the benefits
of iACK minimal. Other approaches may be needed if
multiple DODAGs are required.

• Nodes have enough memory to store previous packets.
(In this paper, we restrict the number of previous packets
to 8. Future work is needed to consider optimal values).

• Nodes are either static or have low mobility such that the
DODAG does not change too often. E.g. a DODAG is
fixed for duration that is much longer than the neighbor
propagation period presented in Section III-B.

B. iACK Retransmission mechanism

The retransmission scheme in iACK consists of four pro-
cesses described as follows.

Neighbor propagation. A node may receive rebroadcasts
from multiple neighbors. In iACK, only neighbors which are
its DODAG children will treat these rebroadcasts as implicit
acknowledgments. Normally a node does not store the ad-
dresses of its DODAG children. Therefore a node needs to
learn which nodes are its children. The procedure that iACK
uses is: for each packet received, record the address of the
sending node if the sending node:

1) is in the multicast group (DODAG), and
2) is not the preferred parent, and
3) has already sent at least min_neigh_msgs messages.
Each node therefore builds a list of children which is used in

the next processes. This list can be updated, including entries
deleted if communication is lost for some duration. The reason
for updating the list of children is to recover if a node is

moving away and/or a new node joins the DODAG; updates
will allow iACK to work with the up-to-date DODAG.

Retransmission list management. A node that has built a
list of children will maintain a buffer of packets to retransmit.
The information about these packets is stored in a separate
retransmission list. Fig. 4 shows how iACK manages the buffer
and retransmission list. Packets received from the parent,
which are to be forwarded to children, are added to the buffer.
When the buffer is full (denoted by max_pkt_slot packets),
a new packet overwrites the oldest packet.

For each packet in the buffer, and for each child that
packet has been sent to, the retranamission list stores the
count of retransmissions of that packet. When an implicit
acknowledgement is received, the packet that it acknowledges
is deleted from the retransmission list. In addition, if a packet
is removed from the buffer or has been retransmitted the
maximum allowed times (max_reTx), then the entry for that
packet is deleted from the retransmission list.

Retrasmission. iACK periodically checks, every reTx_int
seconds, whether a retransmission is needed (i.e. there is an
entry in the retransmission list). The oldest packet in the
retransmission list (i.e. the packet with the lowest sequence
number) is scheduled for retransmission. There is a small
delay of reTx_delay seconds before the retransmit. The
reason for scheduling a retransmit in the future (as opposed to
immediately retransmitting) is to allow the scheduler to find
a time to transmit when the node is not transmitting/receiving
other packets.

Receive
data packet

Is iACK
packet?

remove from
retransmission list

Drop packetSMRF
accpect?

cache packet for
retransmission

add packet to
retransmission list

stop

no

yes

yes

no

Fig. 4: Process while node receive data packet

C. iACK Flow Propagation

As data is generated at the LBR it is sent along the first hop
of the DODAG. As iACK (and both SMRF and TM) limit the
sending rate of new data packets, if the data generated at the

LBR is high, then many packets may be dropped across the
first hop. To alleviate this effect, we used both explicit and
implicit acknowledgements across this first hop. The LBR
must cache extra packets for retransmission, increasing its
memory requirements. However this should be acceptable in
most cases as the LBR is often a powered device.

IV. PERFORMANCE EVALUATION

We implemented iACK in Contiki OS [13]. The modified
code is based on the multicast branch provided by Geroge
Oikonomou [14]. Then we simulated iACK, as well as Trickle
and SMRF, in Cooja simulator [15] with instant-contiki 2.6.
The parameters used in our simulations are listed in Table I.
A straight line (chain) topology is used to investigate the
impact of network size (hop length) on the algorithms. Traffic
is generated at a constant rate (1 packet per second) but
with varying loss rates as we are interested comparing the
recovery features of the algorithms. in Future work will
consider more realistic topologies and other parameter values.
Unless otherwise stated, parameters for Trickle and SMRF are
the default values used in [14]. Each simulation was repeated
with 15 random seeds, and averaged results for the following
metrics are recorded: data receive ratio, packet delay (both
end-to-end and hop-to-hop) and packet receive count. Results
and discussion are presented in the following sections.

TABLE I: Simulation set up parameter
Nodes 20 TMote Sky (1 source, 19 sinks)

Topology Straight line
MAC Layer IEEE 802.15.4

Duty Cycling ContikiMAC
Seed 15 per each parameter permutation

Duration 1000 packets (20-30 min. real time)
Traffic Pattern 1 packet/sec, CBR

Data Flow Unidirectional
Message Size 4 bytes at application layer

Transmit range 50 m
Interfere range 50 m

Distance Each Hop 46±4 m
min_neigh_msgs 5 times

max_reTx 4 times
max_pkt_slot 8 packets

reTx_int 0.5, 1 sec.
reTx_delay uniform random(32,64) ms

Loss rate 0-50% (5% per increments)

A. Data Receive Ratio

Fig. 5 shows the data receive ratio at different nodes in
the network when the loss rate is 0. The data receive ratio
at a particular node is calculated as the percentage of packets
received by that node relative to all 1000 packets transmitted
by the source. Fig. 6 shows the data receive ratio averaged
across all nodes for different loss rates.

We observe from Fig. 5 that TM has a rapid drop in
data receive ratio after node 2. That is, packets are delivered

0 2 4 6 8 10 12 14 16 18 20
0

10
20
30
40
50
60
70
80
90

100

Node Number

D
at

a
R

ec
ei

ve
R

at
io

[%
]

iACK reTx_int=1
iACK reTx_int=0.5
SMRF
TM

Fig. 5: Data Receive Ratio while hop increase

0 5 10 15 20 25 30 35 40 45 50
0

10
20
30
40
50
60
70
80
90

100

Loss rate[%]

D
at

a
R

ec
ei

ve
R

at
io

[%
]

iACK reTx_int=1
iACK reTx_int=0.5
SMRF
TM

Fig. 6: Data Receive Ratio while loss rate increase

from root to node 1 successfully, but there are many dropped
packets across subsequent hops. This is because the arrival
rate of packets into the networks is greater than the rate that
TM can transmits [6]. This is the motivation of the iACK
flow propagation mechanism. Note that due to the TCC when
the loss rate increases, the average data receive ratio only
decreases slightly. The robustness of TM compared to SMRF,
which has a rapid drop in data receive ratio in Fig. 6, is clear.

iACKs flow propagation and retransmission scheme lead to
very high data receive ratio. Even with a loss rate of 50%,
iACK achieves around 80% data receive ratio (while TM is
around 40% and SMRF at 20%). The data receive ratio, as
illustrated in Fig. 5 and Fig. 6, is a key strength of iACK
compared to TM and SMRF.

B. End-to-End delay

Fig. 7 shows the delay from source to different nodes in
the network when the loss rate is 0. Fig. 8 shows the average
delay across all nodes for different loss rates.

We observe from Fig. 7 a rapid increase in delay when using
TM. This is due to nodes having to wait for the TCC. With
loss rate greater than 0 (Fig. 8), this is even worse as some
TCC messages may be lost, causing nodes to wait longer.

SMRF has the smallest delay of the three schemes. There is

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

Node Number

D
el

ay
[s

]

iACK reTx_int=1
iACK reTx_int=0.5
SMRF
TM

Fig. 7: Delay trend while hop increase

0 5 10 15 20 25 30 35 40 45 50
0
2
4
6
8

10
12
14
16
18
20

Loss rate[%]

D
el

ay
[s

]

iACK reTx_int=1
iACK reTx_int=0.5
SMRF
TM

Fig. 8: Delay trend while loss rate increase

only a small delay from when SMRF receives a packet until
it is rebroadcast. And when packets are lost, although data
receive ratio drops, there is no retransmission delay in SMRF.

iACK adds a retransmission scheme to SMRF. With no
packet loss, it is almost equivalent to SMRF. However with
packet loss, an increasing delay is observed, due to:

1) interval between checking (reTx_int),
2) scheduled delay for each retransmission (reTx_delay),
3) rate at which implicit acknowledgements are received.
Feedback receive rate in a network becomes a problem when

a sender cannot receive iACKs. This may be due to iACKs
being lost or because nodes do not generate iACKs (e.g. the
leaf node in the DODAG). The lack of iACKs triggers the
sender to not delete that particular packet from retransmission
list, causing the sender to retransmit useless packets. The
results show however that decreasing reTx_int can reduce
iACK delay. Further analysis is needed to determine the
optimal value of reTx_int and the impact of reTx_delay.

C. Packet receive counts

Fig. 9 shows the Packet Receive Count for different loss
rates. This is the number of packets received by all nodes
during the simulation. We group packets into three types:

• control: topology maintenance, e.g. DIO, DAO

SM
R

F
T

M
iA

C
K

SM
R

F
T

M
iA

C
K

SM
R

F
T

M
iA

C
K

SM
R

F
T

M
iA

C
K

SM
R

F
T

M
iA

C
K

SM
R

F
T

M
iA

C
K

SM
R

F
T

M
iA

C
K

SM
R

F
T

M
iA

C
K

SM
R

F
T

M
iA

C
K

SM
R

F
T

M
iA

C
K

SM
R

F
T

M
iA

C
K

0

0.5

1

·105

0 5 10 15 20 25 30 35 40 45 50Loss%

Data Control Manage

Fig. 9: Packet Receive Count categorize by forwarding method

• manage: protocol operation, e.g. custom ICMP, TCC
• data: a data packets
We observe that iACK has a high packet receive count,

which indicates congestion. But note that the majority of the
packets received are data, which gives a high data receive ratio.
Compare this with TM, which also has a high packet receive
count, however about half of the packets are management
packets, i.e. TCC packets. TM wastes time transmitting TCC,
while iACK is more efficient in sending data.

Both TM and iACK may cause congestion in the network.
In the case that multiple DODAGs are to be supported, this
can have a significant negative impact on data delivery ratio.
SMRF may be better if multiple DODAGs are needed.

D. Memory

A drawback of iACK is that it requires buffer space to store
multiple packets. This increases memory usage on each node
when compared to both TM and SMRF.

The amount of buffer memory used is max_pkt_slot mul-
tiplied by the size of a packet (upto 127 bytes per packet). In
many cases we believe this will be acceptable. However it may
cause a problem when a network has multiple DODAGs or a
high density if nodes. [6] has analyzed the memory usage of
SMRF and TM. Further analysis is needed to compare iACK
memory usage with SMRF and TM, especially considering
different values of max_pkt_slot.

V. CONCLUSION

Reliable multicast is important for WSNs. Two current
approaches are Trickle Multicast, which uses a retransmission
scheme that leads to high delivery ratio but high delay and
congestion, and SMRF, which is fast but does not offer high
reliability. We have contributed a new mechanism for retrans-
missions, called iACK, that is a middle-point between TM and
SMRF in performance. iACK takes advantage of rebroadcasts
by children nodes, treating them as implicit acknowledge-
ments. We designed a retransmission scheme that uses the
implicit acknowledgements to determine which packets to

retransmit. Simulation results show iACK has considerably
higher data delivery ratio compared to both SMRF and TM,
and lower delay than TM (and only slightly larger than
SMRF). A key design point of iACK is that parameters can be
adjusted to select an appropriate tradeoff between delay and
delivery ratio depending on the scenario. A drawback of iACK
is that it requires more memory in each node. Further analysis
is needed to evaluate the memory usage and the performance
of iACK in different topologies.

ACKNOWLEDGMENT

This research is financially supported by Thailand Advanced
Institute of Science and Technology, National Science and
Technology Development Agency, Tokyo Institute of Tech-
nology and Sirindhorn International Institute of Techcnology,
Thammasat University and the National Research University
Project, Thailand Office of Higher Education Commission.
We thank George Oikonomou for providing Contiki code for
Trickle and SMRF. We also thank Yamaoka Katsunori for
continuous feedback on this research.

REFERENCES

[1] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks.” RFC 6550 (Proposed Standard),
Mar. 2012.

[2] J. Tripathi and J. De Oliveira, “Proactive versus reactive revisited: Ipv6
routing for low power lossy networks,” in Information Sciences and
Systems (CISS), 2013 47th Annual Conference on, pp. 1–6, 2013.

[3] “Ieee standard for local and metropolitan area networks–part 15.4: Low-
rate wireless personal area networks (lr-wpans),” IEEE Std 802.15.4-
2011 (Revision of IEEE Std 802.15.4-2006), pp. 1–314, 2011.

[4] M. A. Mahmood and W. Seah, “Reliability in wireless sensor networks:
Survey and challenges ahead,” in Preprint submitted to Elsevier, pp. 1–
41, 02 2012.

[5] R. K. J. Hui, “Multicast protocol for low power and lossy networks
(mpl),” 08 2013.

[6] G. Oikonomou, I. Phillips, and T. Tryfonas, “Ipv6 multicast forwarding
in rpl-based wireless sensor networks,” Wireless Personal Communica-
tions, vol. 73, no. 3, pp. 1089–1116, 2013.

[7] C. S. N. Kushalnagar, G. Montenegro, “Ipv6 over low-power wireless
personal area networks (6lowpans): Overview, assumptions, problem
statement, and goals,” 08 2007. RFC 4919.

[8] A. Dunkels, “The contikimac radio duty cycling protocol,” Tech. Rep.
T2011:13, Swedish Institute of Computer Science, Dec. 2011.

[9] M. Mahmood and W.-G. Seah, “Event reliability in wireless sensor
networks,” in Intelligent Sensors, Sensor Networks and Information Pro-
cessing (ISSNIP), 2011 Seventh International Conference on, pp. 377–
382, 2011.

[10] K. Priya and S. Terence, “Retp: Reliable event transmission protocol
in a wireless sensor network,” in Emerging Trends in Computing,
Communication and Nanotechnology (ICE-CCN), 2013 International
Conference on, pp. 181–188, 2013.

[11] M. Maróti, “Directed flood-routing framework for wireless sensor net-
works,” in Proceedings of the 5th ACM/IFIP/USENIX International
Conference on Middleware, Middleware ’04, (New York, NY, USA),
pp. 99–114, Springer-Verlag New York, Inc., 2004.

[12] L. Tuan, W. Hu, P. Corke, and S. Jha, “Ertp : Energy-efficient and reli-
able transport protocol for data streaming in wireless sensor networks,”
Computer Communications, vol. 32, pp. 1154–1171, May 2009.

[13] G. Oikonomou, “contiki-sensinode: mcast-forward.” https://github.com/
g-oikonomou/contiki-sensinode/tree/mcast-forward, 2012. [Lasted ver-
sion: d10c64d Mar 13, 2012].

[14] A. Dunkels, “Contiki OS.” http://www.contiki-os.org/, 2013. [Lasted
version: Contiki 2.7 (15 November 2013)].

[15] F. Österlind and S. I. of Computer Science, A Sensor Network Simulator
for the Contiki OS. SICS technical report, Swedish institute of computer
science, 2006.

