
Simple Introduction to using OpenSSL on
Command Line
By Steven Gordon on Wed, 31/07/2013 - 1:36pm

OpenSSL is a program and library that supports many different cryptographic operations,
including:

Symmetric key encryption
Public/private key pair generation
Public key encryption
Hash functions
Certificate creation
Digital signatures
Random number generation

Each of the operations supported by OpenSSL have a variety of options, such as input/output
files, algorithms, algorithm parameters and formats. This article aims to give a demonstration of
some simple and common operations.

To start learning the details of OpenSSL, read the man page, i.e. man openssl. You'll soon
learn that each of the operations (or commands) have their own man pages. For example, the
operation of symmetric key encryption is enc, which is described in man enc. Although it is
good to read the man pages, in my (and others) experience, the man pages of OpenSSL can be
very detailed, hard to follow, confusing and out of date. So hopefully this article will make life
easier for those getting started.

There are other [3] websites [4] that give an overview of OpenSSL operations, as well as
programming [5] with the API. I used some of them to write the following notes. Check them out
for more details.

1. Initial Steps
Lets first determine the current versions of Ubuntu, Linux and OpenSSL I am using:

$ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 12.04.2 LTS
Release: 12.04
Codename: precise
$ uname -a
Linux lime 3.2.0-51-generic #77-Ubuntu SMP Wed Jul 24 20:18:19 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux
$ openssl version
OpenSSL 1.0.1 14 Mar 2012

If you are using different versions, then it is still a very good chance that all the following
commands will work. In the past I have had problems [6] with different versions of OpenSSL but
for only for very specific operations.

Simple Introduction to using OpenSSL on Com... 1

http://sandilands.info/sgordon/simple-introduction-to-using-openssl-on-command-line

Update (2013-08-02): I just tested on a Apple iMac using OS X 10.8.4 and
OpenSSL version 0.9.8x 10 May 2012. Most operations worked. See my
additional comments at the end of this article if you are using a similar
version of OpenSSL.

As input plaintext I will copy some files on Ubuntu Linux into my home directory. You don't
need to do this if you already have some files to encrypt. It doesn't matter what files you use. I
have chosen the following three, and will rename them simply to plaintext1.in,
plaintext2.in, plaintext3.in:

/usr/share/dict/words - a large text file containing a list of words, i.e. a dictionary1.
/usr/bin/openssl - the binary for the program OpenSSL2.
/etc/legal - a short text file containing the Ubuntu legal notice3.

$ cp /usr/share/dict/words plaintext1.in
$ cp /usr/bin/openssl plaintext2.in
$ cp /etc/legal plaintext3.in
$ ls -l plaintext*
-rw-r--r-- 1 sgordon sgordon 938848 Jul 31 13:32 plaintext1.in
-rwxr-xr-x 1 sgordon sgordon 513208 Jul 31 13:32 plaintext2.in
-rw-r--r-- 1 sgordon sgordon 267 Jul 31 13:32 plaintext3.in

2. Symmetric Key Encryption
The most common cryptographic operation is encryption. Lets encrypt some files using selected
symmetric key (conventional) ciphers such as DES, 3DES and AES.

Symmetric key encryption is performed using the enc operation of OpenSSL. To encrypt we
need to choose a cipher. A list of supported ciphers can be found using:

$ openssl list-cipher-algorithms
AES-128-CBC
AES-128-CBC-HMAC-SHA1
AES-128-CFB
AES-128-CFB1
AES-128-CFB8
...
seed => SEED-CBC
SEED-CBC
SEED-CFB
SEED-ECB
SEED-OFB

The lowercase seed is an alias for the actual cipher SEED-CBC, i.e. SEED using CBC mode of
operation. You can use the cipher names in either lowercase or uppercase.

Now lets encrypt using DES and ECB, creating an output file ciphertext1.bin. Enter a
password when prompted - OpenSSL will automatically convert it to a key appropriate for
DES:

Simple Introduction to using OpenSSL on Com... 2

http://sandilands.info/sgordon/simple-introduction-to-using-openssl-on-command-line

$ openssl enc -des-ecb -in plaintext1.in -out ciphertext1.bin
enter des-ecb encryption password: password
Verifying - enter des-ecb encryption password: password
$ ls -l plaintext1.in ciphertext1.bin
-rw-rw-r-- 1 sgordon sgordon 938872 Jul 31 14:15 ciphertext1.bin
-rw-r--r-- 1 sgordon sgordon 938848 Jul 31 13:32 plaintext1.in

To decrypt, include the -d option:

$ openssl enc -d -des-ecb -in ciphertext1.bin -out plaintext1.out
enter des-ecb decryption password: password
$ ls -l plaintext1.in plaintext1.out
-rw-r--r-- 1 sgordon sgordon 938848 Jul 31 13:32 plaintext1.in
-rw-rw-r-- 1 sgordon sgordon 938848 Jul 31 14:18 plaintext1.out
$ diff plaintext1.in plaintext1.out
$ xxd -l 96 ciphertext1.bin
0000000: 5361 6c74 6564 5f5f f253 8361 b87d 1a3e Salted__.S.a.}.>
0000010: 30ed be95 5b38 ebf9 a013 ca64 bbf4 03ea 0...[8.....d....
0000020: 3ebb cdf8 483d 5a12 acd8 bc75 140c 920b >...H=Z....u....
0000030: da41 7376 edc3 b9bd 59c4 a5ce 0a67 408a .Asv....Y....g@.
0000040: d23e 10ee 7ac3 f5b6 4f09 4aaf 88e4 1f96 .>..z...O.J.....
0000050: 3171 7277 91a7 100c ac04 7871 dd39 cf4c 1qrw......xq.9.L

The lack of output from the diff indicates the files plaintext1.in and plaintext1.out are
identical. We've retrieved the original plaintext.

xxd was used to view the first 96 bytes, in hexadecimal, of the ciphertext. The first 8 bytes
contain the special string Salted__ meaning the DES key was generated using a password and a
salt. The salt is stored in the next 8 bytes of ciphertext, i.e. the value f2538361b87d1a3e in
hexadecimal. So when decrypting, the user supplies the password and OpenSSL combines with
the salt to determine the DES 64 bit key.

Lets try an example where we select a key. I will use AES with a 128 bit key and Counter
(CTR) mode of operation. In addition to the key, an initialisation vector (IV) is needed.

$ openssl enc -aes-128-ctr -in plaintext2.in -out ciphertext2.bin -K 0123456789abcdef01
$ openssl enc -d -aes-128-ctr -in ciphertext2.bin -out plaintext2.out -K 0123456789abcd
$ ls -l *2*
-rw-rw-r-- 1 sgordon sgordon 513208 Jul 31 14:29 ciphertext2.bin
-rwxr-xr-x 1 sgordon sgordon 513208 Jul 31 13:32 plaintext2.in
-rw-rw-r-- 1 sgordon sgordon 513208 Jul 31 14:30 plaintext2.out
$ diff plaintext2.in plaintext2.out
$ xxd -l 96 ciphertext2.bin
0000000: 06ee 8984 3a69 ac84 d388 ce61 110a 6274 :i.....a..bt
0000010: c1ed f9ed f193 f2d2 bf8d 29e2 1577 5d32 )..w]2
0000020: 1e25 cc36 bb37 baa7 eb65 402b a8ef 421b .%.6.7...e@+..B.
0000030: a6f7 073c a08a e698 747d 5153 8df1 ed88 ...<....t}QS....
0000040: 1131 f4e0 2014 1392 ee36 2b54 27eb ca72 .1..6+T'..r
0000050: 4b88 e623 ed28 2da7 87cd 0c1a 5441 5d7c K..#.(-.....TA]|

Both the Key (not uppercase -K) and IV were specified on the command line as a hexadecimal
string. With AES-128, they must be 32 hex digits (128 bits). You may choose any value you
wish.

Simple Introduction to using OpenSSL on Com... 3

http://sandilands.info/sgordon/simple-introduction-to-using-openssl-on-command-line

3. Public Key Encryption, Certificates and Digital Signatures
I have written several guides that introduce topics related to public key cryptography, including:

Setting up a Certificate Authority and generating RSA certificates [7]

Generating RSA key pairs and using for encryption and digital signatures [8]

Performing a secret key exchange using Diffie-Hellman [9]

4. Hash Functions
Hash functions (like MD5 and SHA) as well as MAC functions (e.g. using HMAC) are
available via the message digest (dgst) operating of OpenSSL. To list the available algorithms:

$ openssl list-message-digest-algorithms
DSA
DSA-SHA
DSA-SHA1 => DSA
DSA-SHA1-old => DSA-SHA1
DSS1 => DSA-SHA1
MD4
MD5
...
ssl3-md5 => MD5
ssl3-sha1 => SHA1
whirlpool

Calculate the MD5 hash of a file:

$ openssl dgst -md5 plaintext3.in
MD5(plaintext3.in)= 0110925f6e068836ef2e09356e3651d9

Now create a new file, slightly different from the previous and see that the MD5 hash is
significantly different:

$ cat plaintext3.in

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

$ sed 's/U/X/g' plaintext3.in > plaintext4.in
$ cat plaintext4.in

The programs included with the Xbuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Xbuntu comes with ABSOLXTELY NO WARRANTY, to the extent permitted by
applicable law.

Simple Introduction to using OpenSSL on Com... 4

http://sandilands.info/sgordon/simple-introduction-to-using-openssl-on-command-line

$ openssl dgst -md5 plaintext4.in
MD5(plaintext4.in)= 0b4974e95714c429e40cfad510286827

Use SHA-256, first outputing to the terminal and then in binary to a file:

$ openssl dgst -sha256 plaintext3.in
SHA256(plaintext3.in)= 9fa4ad4d7c2a346540c64c4c3619e389db894116f99a0fbbcc75a58bf2851262
$ openssl dgst -sha256 -binary -out dgst3.bin plaintext3.in
$ xxd dgst3.bin
0000000: 9fa4 ad4d 7c2a 3465 40c6 4c4c 3619 e389 ...M|*4e@.LL6...
0000010: db89 4116 f99a 0fbb cc75 a58b f285 1262 ..A......u.....b

Create a MAC using HMAC and MD5. First generate a random 128 bit key (see Random
Number below for further explanation), then pass the key as an option when using HMAC:

$ openssl rand 32 -hex
36463a4eb02b5ab9776aa8ed51f4e8a34f4bd785597fd74d4277652fd9f743d5
$ openssl dgst -md5 -mac hmac -macopt hexkey:36463a4eb02b5ab9776aa8ed51f4e8a34f4bd78559
HMAC-MD5(plaintext3.in)= 85e0bbf0a14559699c4b8e04bd1c1665

A much simpler alternative to calculate hash values is to use the Linux programs md5sum and
sha1sum (and its variants sha224sum, sha256sum and so on). For example:

$ sha256sum plaintext3.in
9fa4ad4d7c2a346540c64c4c3619e389db894116f99a0fbbcc75a58bf2851262 plaintext3.in

5. Random Numbers
The rand operation of OpenSSL can be used to produce random numbers, either printed on the
screen or stored in a file. Some quick examples:

Write 8 random bytes to a file (then view that file with xxd in both hexadecimal and binary):

$ openssl rand 8 -out rand1.bin
$ ls -l rand1.bin
-rw-rw-r-- 1 sgordon sgordon 8 Jul 31 15:14 rand1.bin
$ xxd rand1.bin
0000000: 7d12 162f 1a18 c331 }../...1
$ xxd -b -g 8 -c 8 rand1.bin | cut -d " " -f 2
0111110100010010000101100010111100011010000110001100001100110001

Generate a 128 bit (16 byte) random value, shown in hexadecimal:

$ openssl rand 16 -hex
04d6b077d60e323711b37813b3a68a71

Another way to generate random values on Linux (without using OpenSSL) is using urandom:

$ cat /dev/urandom | xxd -l 32

Simple Introduction to using OpenSSL on Com... 5

http://sandilands.info/sgordon/simple-introduction-to-using-openssl-on-command-line

Interest: Ubuntu Linux [10]

/dev/urandom [11]

cut [12]

lsb_release [13]

OpenSSL [14]

sed [15]

uname [16]

xxd [17]

Topic: Security [18]

Content: Howto [19]

0000000: 4b69 76ca f6ee 4663 e467 f767 d560 07cd Kiv...Fc.g.g.`..
0000010: dac6 5020 62ac 02db ea2e 6f0a 60ba 5031 ..P b.....o.`.P1

Read man rand and man urandom for further details.

6. OpenSSL 0.9.8x on Mac OS X
Running the above commands on Mac OS X 10.8.4 which uses OpenSSL 0.9.8x produces
correct results, except for the following:

The OpenSSL list- operations do not work, e.g. list-cipher-algorithms and
list-message-digest-algorithms. But its not a problem because in fact if you give an
invalid option with OpenSSL it prints an error followed by the algorithms that are
supported.
Counter (CTR) mode is not supported. So I replaced aes-128-ctr with aes-128-cfb (or
you can choose from any of the supported modes of operation).
The command line options for performing a HMAC are different. Instead of -mac hmac
-macopt hexkey:KEY use -hmac KEY.
Although not an issue with OpenSSL, the Linux programs md5sum and sha256sum are not
supported on Mac OS X. Instead you can use md5 and shasum -a.

If you have an older version of OpenSSL (pre 1.0) - no matter what operating system - then you
may try the above commands instead.

Source URL: http://sandilands.info/sgordon/simple-introduction-to-using-openssl-on-command-line

Links:
[1] http://sandilands.info/sgordon/simple-introduction-to-using-openssl-on-command-line
[2] http://sandilands.info/sgordon/user/2
[3] http://www.madboa.com/geek/openssl/
[4] https://help.ubuntu.com/community/OpenSSL
[5] http://www.ibm.com/developerworks/linux/library/l-openssl/index.html
[6] http://sandilands.info/sgordon/upgrade-latest-version-openssl-on-ubuntu
[7] http://sandilands.info/sgordon/key-generation-and-encryption-examples-using-openssl
[8] http://sandilands.info/sgordon/public-key-encryption-and-digital-signatures-using-openssl
[9] http://sandilands.info/sgordon/diffie-hellman-secret-key-exchange-with-openssl
[10] http://sandilands.info/sgordon/taxonomy/term/302
[11] http://sandilands.info/sgordon/taxonomy/term/359
[12] http://sandilands.info/sgordon/taxonomy/term/355
[13] http://sandilands.info/sgordon/taxonomy/term/357
[14] http://sandilands.info/sgordon/taxonomy/term/338
[15] http://sandilands.info/sgordon/taxonomy/term/360

Simple Introduction to using OpenSSL on Com... 6

http://sandilands.info/sgordon/simple-introduction-to-using-openssl-on-command-line

[16] http://sandilands.info/sgordon/taxonomy/term/358
[17] http://sandilands.info/sgordon/taxonomy/term/356
[18] http://sandilands.info/sgordon/taxonomy/term/116
[19] http://sandilands.info/sgordon/taxonomy/term/212

Simple Introduction to using OpenSSL on Com... 7

http://sandilands.info/sgordon/simple-introduction-to-using-openssl-on-command-line

