
Formal Analysis of PANA Authentication and Authorisation Protocol

Steven Gordon
Sirindhorn International Institute of Technology

Thammasat University
131 Moo 5, Bangkadi Muang, Pathumthani 12000, Thailand

steve@siit.tu.ac.th

Abstract

The Extensible Authentication Protocol (EAP), which is
typically used over wireless LANs and point-to-point links,
allows a server to request authentication information from
a client. The Protocol for Carrying Authentication for Net-
work Access (PANA) is designed to transport EAP messages
over IP networks. This paper presents a formal Coloured
Petri net model and analysis of PANA, focusing on the ini-
tial Authentication and Authorisation phase. State space
analysis of selected configurations reveals a deadlock may
occur at the client when the server aborts a PANA authenti-
cation session. The analysis also derives a formal definition
of the service between PANA and EAP, which is important
for verifying that PANA correctly interfaces with EAP, and
can later be used for automated testing.

Keywords: formal methods, Petri nets, authentication, com-
munication protocols, verification

1. Introduction

The Extensible Authentication Protocol (EAP) [1] is a
framework for performing authentication in computer net-
works (Figure 1. A typical usage scenario, as illustrated in
Figure 2, involves a server (known as authenticator in EAP)
initiating an authentication request to a peer. The peer re-
sponds to this, and any subsequent requests, until the au-
thenticator determines the procedures to be a success (the
peer is authenticated for network access) or failure (the peer
is denied access to the network). In practice, a third entity,
the authentication server may be utilised for storage of cre-
dential information. EAP is designed to support different
authentication methods (e.g. MD5, TLS, IKE) and to oper-
ate over different (non-IP-based) network technologies. For
example, a laptop can authenticate with a wireless LAN ac-
cess point using IEEE 802.11i, or a home PC can authenti-
cate with a dial-in server using EAP over PPP.
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Figure 1. EAP framework

In order to allow EAP to be carried over IP networks,
PANA has been developed and released as an IETF RFC in
May 2008. The Protocol for Carrying Authentication for
Network Access [5] is a lower layer for EAP, and PANA it-
self uses UDP as a lower layer. In addition to the protocol
definition in [5], the PANA Working Group has maintained
a state-table model of PANA [4]. Although the state-table
model is for informative purposes, combined with the pro-
tocol definition, it provides a detailed explanation of the be-
haviour of PANA. However, as with many distributed proto-
cols, it is important that the PANA specification is accurate
and unambiguous. This is particularly important for an au-
thentication protocol, where small errors or an ambiguous
specification may lead to implementations with potentially
damaging security flaws.
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Most research on PANA has been applying it to wire-
less networks [12, 11, 3], especially performance analysis
of PANA re-authentication during handovers [2, 6]. Little
effort has been directed to the formal analysis of PANA, in-
cluding security analysis. The overall aim of our research is
to verify the design of PANA to ensure a complete and cor-
rect specification is available. This paper does not attempt
a formal security analysis (from a cryptographic viewpoint)
of PANA. In fact, such analysis depends largely on EAP
and other authentication methods, as PANA is only a proto-
col that carries EAP messages.

The contributions of this paper are:

1. A formal model of PANA using Coloured Petri nets
(CPNs) [9]. Although a state-table model of PANA
exists in [4], the CPN model is executable, allowing for
detailed study of PANA operations through simulation,
as well as verification of properties through state space
analysis.

2. Definition and analysis of the EAP/PANA interface.
This interface is partially and informally described in
[4, 13]. Through an iterative modelling and analysis
process, a formal definition of the EAP/PANA inter-
face has been derived. This is important for the verifi-
cation of certain properties of PANA, and can also be
used for implementation and conformance testing.

3. Verification of functional properties of the PANA Au-
thentication and Authorisation Phase. Selected parts
of PANA have been analysed using state space and
language analysis techniques, investigating deadlocks,
livelocks and correct interfacing with EAP. A potential
deadlock in PANA is identified from the analysis.

The remainder of this paper is organised as follows: Sec-
tion 2 describes PANA and EAP in further detail. Sec-
tion 3 presents the analysis methodology used. Section 4
overviews the CPN model of PANA. Results from the for-
mal analysis of the PANA Authentication and Authorisation
Phase are presented in Section 5. The conclusions and areas
of future work are summarised in Section 6.

2. EAP and PANA

2.1. EAP

EAP is a request/response protocol where only a sin-
gle packet is in-flight at once, i.e. the authenticator can-
not send a new request until the response from the previ-
ous request is received. The requests contain authentication
challenges to the client. EAP assumes the lower layer (in
our case, PANA) will provide in-order delivery of packets,
however it does not require the lower layer to be reliable,

provide security or remove duplicates. A typical scenario,
as illustrated in Figure 2, involves one or more EAP Re-
quest/Response exchanges (always initiated by the au-
thenticator) followed by a final EAP Success or EAP Fail-
ure message, depending on the authentication information
supplied by the client.

2.2. PANA

The role of PANA is to transport EAP messages between
peer (referred to as PANA Client or PaC) and authenticator
(PAA). PANA uses UDP as a transport layer, and hence the
service provided to PANA may have packet losses, duplica-
tion and re-ordering. An exchange of messages in PANA is
a session, which is divided into four phases:

Authentication and Authorisation At the start of a PANA
session this phase involves the exchange of EAP mes-
sages to perform authentication.

Access Once authentication of the peer is successful, net-
work access is provided. During this phase either PaC
or PAA may test for the liveness of the session (which
has a limited lifetime).

Re-authentication May be performed to maintain the ses-
sion liveness.

Termination Either PaC or PAA may terminate a session.
If a session isn’t terminated gracefully, then a timeout
on the PANA session will result in the termination.

PANA communications are implemented as a series of
request and answer messages. To explain the Authentica-
tion and Authorisation phase consider the example scenario
in Figure 3 (which is generated from our CPN model in Sec-
tion 4). It shows the communication between EAP entity
and corresponding PANA entity, as well as between PANA
entities across the network.

The PANA session can be initialised by either the PAA
or PaC. The methods for each entity learning about the pres-
ence of the other is out side of the scope of PANA (e.g. it
may be through DHCP). For a PAA-initiated-session, after
it discovers the presence of a PaC, it sends an AuthRequest
message to start the session (the ’S’ flag indicates this mes-
sage is to start the session). This initial AuthRequest is
used to force a restart of the EAP session at the Peer. The
PaC responds with a AuthAnswer, which results in the EAP
session at the Authenticator restarting.

The EAP Authenticator initiates the authentication with
an EAP Request. This triggers the PAA to send an Au-
thRequest carrying the EAP Request method. Upon re-
ceipt of the AuthRequest, the PaC passes the EAP Re-
quest method to the EAP Peer and replies with an Au-
thAnswer. The AuthAnswer messages are acknowledge-
ments to the AuthRequest messages.



The PaC sends the response to the challenge in an Au-
thRequest (which is also acknowledged by the PAA with
a AuthAnswer). This sequence of EAP requests and re-
sponses (and AuthRequest and AuthAnswer messages)
may repeat until the authentication is complete. Finally the
EAP Authenticator will send a Success or Failure method
indicating the result of authentication. The EAP Success
is shown in Figure 3, which is carried in an AuthRequest
with the Complete flag set. Once the AuthAnswer is re-
ceived by the PAA, both PAA and PaC have the PANA ses-
sion established and the Access phase is entered. Other rel-
evant details of PANA include (refer [5] for more informa-
tion):

• 32-bit sequence numbers are used to maintain order-
ing and perform error detection. The sequence num-
bers at PAA and PaC are independent. An outgoing
request message contains a sequence number, and the
corresponding answer message must have the same se-
quence number.

• Request messages are retransmitted if an answer is not
received within a specified time. The session is termi-
nated if too many retransmissions occur.

• PANA messages contain 16 bytes of fixed size header
(e.g. flags, message type, sequence number, session
identifier) as well as a variable number of Attribute-
Value Pairs (AVPs). AVPs include: the actual EAP
message; authentication data; session lifetime; and
other security related information.

• Optional piggybacking of messages allows either PaC
or PAA to send a single PANA message that represents
both an answer and a request. For example in Figure 3
without piggybacking, PaC sends an AuthAnswer(8)
followed by AuthRequest(3). With piggybacking
turned on, the PaC could send a single message, Au-
thRequest(3) which acts as the acknowledgement for
AuthRequest(8) received from PAA.

2.3. EAP/PANA Interface

In order to verify if the PANA protocol correctly inter-
acts with EAP, it is necessary to understand the interface
between the two layers. The EAP state-machines [13] spec-
ify the variables used for communication between EAP and
a lower layer. We have summarised this information in Fig-
ure 4. As an example, when the EAP Authenticator sends
an EAP Request, the eapReq flag will be set to true and
the Request method will be included in eapReqData.

In addition to the EAP-defined interface, the PANA
state-tables [4] describes its own set of variables and pro-
cedures used for communication between PANA and EAP.

Through our analysis we have defined a set of service prim-
itives that attempt to unify the interface between EAP and
PANA. Table 1 lists the EAP-defined variables, the PANA-
defined variables, as well as our service primitives.

Table 1. EAP/PANA interface messages and
service primitives

No. Entity EAP PANA Primitive
1 Peer/PaC - AUTH USER CAuthUser
2 Peer/PaC eapRestart EAP RESTART CRestart
3 Peer/PaC eapReq EAP REQUEST CRequest
4 Peer/PaC eapResp EAP RESPONSE CResponse
5 Peer/PaC eapSuccess EAP SUCCESS CSuccess
6 Peer/PaC eapFail EAP FAILURE CFailure
7 Peer/PaC - - CTimeout
8 Peer/PaC - ABORT CAbort
9 Auth/PAA - PAC FOUND APacFound

10 Auth/PAA eapRestart EAP RESTART ARestart
11 Auth/PAA eapReq EAP REQUEST ARequest
12 Auth/PAA - - AResponse
13 Auth/PAA eapSuccess EAP SUCCESS ASuccess
14 Auth/PAA eapFail EAP FAILURE AFailure
15 Auth/PAA - EAP TIMEOUT ATimeout
16 Auth/PAA - ABORT AAbort

3. Analysis Methodology

Formal modelling and analysis of distributed protocols
is important to reduce the chance of erroneous behaviour in
implementations. The steps applied in our research are:

1. Formal modelling of the protocol specification. The
PANA standard and state-tables specify the protocol in an
informal manner. Creating a formal model, in our case us-
ing Coloured Petri nets [9], is a first step in identifying pos-
sible problems in the protocol design, as well as gaining an
in-depth understanding of the protocol behaviour.

2. Simulation of the protocol model. An executable
formal model allows for investigation of specific scenar-
ios in the protocol operation. Developing the CPN model
with CPNTools [10] and BRITNeY [14] allows sequences
of events to be stepped through, and automatic generation
of message sequence charts (e.g. Figure 3). This graphi-
cal output is useful for analysing expected and unexpected
scenarios in depth.

3. Functional property verification from state space
analysis. By generating all possible states of the PANA
CPN model, properties such as absence of deadlocks, live-
locks and redundant events/actions can verified. CPNTools
provides software support for generating the state space
from the CPN model, and querying the properties.

4. Verification of the protocol against service defini-
tion using language analysis. The PANA protocol should
interface with EAP correctly—that is, the service provided
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by PANA to the higher layer must be a faithful refinement
of the service EAP assumes of the lower layer. The ser-
vice definition (or language) is the set of methods/primitives
for interfacing between layers, and the possible ordering of
primitives. As illustrated in Section 2.3, both EAP and
PANA separately define a set of interface messages, al-
though not the expected ordering. As a service definition is
not immediately available for PANA, we have used our CPN
model of PANA to generate a definition. We have defined
a unifying set of service primitives (Table 1) and obtained
possible orderings from the state space. This is done by
treating the state space of PANA as a finite-state automata.
The labelled transitions of the FSA are those arcs in the state
space that correspond to a service primitive being issued (to
or by PANA); all other arcs correspond to epsilon transitions
in the FSA. Language analysis is then used to generate the
PaC service language, the PAA service language, as well
as the entire PANA service language. Currently visual in-
spection is used to validate the language. The sequence’s of
primitives as seen by the PaC are generated and manually
checked for correctness. Similarly for the primitives seen
by the PAA. In the future, comparison of the entire PANA
service language with the EAP standard and subsequently
verification of PANA against the service definition will be
carried out.

4. Coloured Petri Net Model of PANA

A CPN model of PANA has been created based on the
state tables in [4]. The model consists of 23 pages, 63 tran-
sitions and 7 places. The model focuses on the components
of the protocol important for functional verification, i.e. the
ordering of exchange of messages. Where possible, abstrac-
tion is used so that details of message contents and formats
can be omitted. This makes analysis easier, but at the ex-
pense of a complete protocol specification. The model is
too large to present in its entirety in this paper, and hence
only key assumptions, limitations and design decisions are
presented. Further details about creating CPN models based
on state-tables can be found in [8].

The PANA CPN is hierarchical, with the PaC and PAA
modelled on separate pages, and then each state of the
PaC/PAA modelled on separate pages. This is achieved us-
ing substitution transitions and fusion places. At the high-
est level (Figure 5(a)) there are two transitions (PaC and
PAA) and two places modelling the communication chan-
nel between PaC and PAA (and vice versa). Both the PaC
and PAA transitions contain detailed models on respective
sub-pages. These sub-pages (see Figure 5(b) for the PAA
sub-page) contain transitions that model the events at each
state, a place to model the current state (and related state
information) and other auxiliary places. Each transition on
these sub-pages is further decomposed to individual pages

which model the events, conditions, actions and next states
as presented in the state-tables. In summary, the top level
page is a system model, the two medium level pages model
the PaC and PAA, and the lowest level pages model the in-
dividual entries of the state-tables. This net structure has
the advantage of clarity by presenting the model at different
levels of abstraction, as well as the ability to validate the
CPN against the state-tables in [4].

For a given state, the state-tables in [4] specify: an exit
condition, i.e. the conditions that must occur; exit actions,
i.e. the actions that will be executed upon the conditions
being met; and the exit state, i.e. the next state of the entity.
Each entry in a state table is modelled by a single transition
in the CPN. Each transition has or may have (the bottom
transition in Figure 5(c) is used as an example):

• An input arc from a place containing the current state,
and related state information, e.g. sequence numbers,
flags. (The example transition is only enabled when
PAA is in the A INITIAL state).

• An input arc from the communication places
(Client2Auth, Auth2Client) if the event involves re-
ceiving a message. (The example transition is only en-
abled when a AuthAnswer has been sent by the PaC).

• A guard for the conditions related to the event. (The
AuthAnswer must have the Start flag set, not con-
tain EAPPayload, and PAA must be using Optimize-
dInit).

• An output arc to the communication places if the action
involves sending a message. (No message is sent for
the example transition).

• An output arc to the place containing state informa-
tion, where the next state is stored. (The new state is
A WAIT PAN OR PAA for the example transition).

5. Analysis Results

This paper reports results from formal analysis of se-
lected scenarios of PANA Authentication and Authorisation
phase. Specifically, the analysis assumes only a single EAP
Request is sent by the Authenticator and the retransmis-
sion of request messages is not allowed, i.e. the maximum
number of retransmissions allowed before a termination (or
abort) is 0. For simplicity, four-bit sequence numbers are
used (instead of 32-bit), and the initial sequence numbers
are randomly set at 3 and 8 for PaC and PAA, respectively.
The option of optimising the initiation procedure at the PAA
is not analysed.
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5.1. State Space Analysis

The state space size for two configurations of the PANA
CPN model (piggybacking off and on) is shown in Table 2.
Closer inspection of the terminal states is needed to deter-
mine whether any are unexpected, i.e. deadlocks. Using
CPNTools we classified the terminal states by the state the
PaC and PAA finished in. The five classes of terminal states
are:

1. C OPEN and A OPEN (7 terminal states with pig-
gybacking off; 4 with piggybacking on): both entities
have opened a PANA session, i.e. authentication was
successful.

2. C CLOSED and A CLOSED (396/101): both entities
have closed a PANA session, e.g. after failed authen-
tication attempt or abort due to too many retransmis-
sions.

3. C OPEN and A CLOSED (20/11): PaC successfully
opens a session, however the PAA aborts before open-
ing the session thereby leaving it in the A CLOSED
state. This terminal state is valid: the PaC will en-
ter the Access phase and eventually the PANA session
will timeout (and close) after receiving no responses
from the PAA.

4. C CLOSED and A OPEN (24/7): PAA successfully
opens a session, however the PaC aborts (same reason-
ing as above).

5. C WAIT PAA and A CLOSED (9/30): After the PaC
responds to the initial AuthRequest (with Start bit
set), it enters the C WAIT PAA state. If the PAA
aborts before receiving the AuthAnswer from PaC,
then PAA enters A CLOSED. This is an invalid ter-
minal state, as the PaC should terminate with either a
OPEN or CLOSED session. As the PANA session has
not yet been created, there will be no session timeout.

The state space analysis reveals a problem with how
aborted sessions are handled in PANA. If one entity aborts
the Authentication and Authorisation phase (e.g. due to too
many retransmissions), as there are no explicit abort mes-
sages sent to the other entity, only a timeout will allow the
other entity to proceed. In most cases the timeout occurs,
however as illustrated in case 5 above, the PaC may wait
indefinitely in the C WAIT PAA state. A straightforward

Table 2. State Space Analysis of PANA CPN
Piggyback States Arcs Terminal States

Off 1108 2184 456
On 397 742 153

method of solving this problem is to introduce an additional
timer in the C WAIT PAA state. The details and implica-
tions of this modification will be considered in future work.

5.2. Language Analysis

The PANA state space generated in CPNTools was out-
put to a file and the tools FSM, Lextools and Graphviz used
to perform the language analysis (further details of these
steps are given in [7]). As stated in Section 3, the languages
for the PAA and PaC are generated separately (as well as a
combined language). Statistics of these languages are given
in Table 3, and the PaC language with piggybacking off is
shown in Figure 6.

Visual inspection of the PaC language (e.g. Figure 6) and
the PAA language (not shown) revealed no obvious errors.
For example, the ordering of Requests then Responses is as
expected; there are no Requests or Responses after a Suc-
cess, Failure or Abort; and the PAA only sends a single Re-
quest. The sequence of primitives as seen by the PaC shown
in Figure 3 are captured in the sequence from states 1, 2, 4,
6, 8 and 7 in Figure 6.

The PaC language and PAA language have approxi-
mately 20 sequences of primitives each. Manual inspec-
tion is a feasible method to check for errors. However, the
combined PANA language is too large for inspection (200
sequences). Methods for analysing the PANA language are
considered in future work.

6. Conclusions

PANA is designed to carry authentication information
(in the form of EAP messages) over IP networks. Formal
analysis of PANA is important to ensure the protocol con-
tains no errors or ambiguities, as they may lead to oper-
ational failures, performance bottlenecks or even security
flaws during real-world usage. This paper presented the first
known formal, executable model of PANA, developed us-
ing Coloured Petri nets. The model is useful for testing and
validating common scenarios in PANA. State space analy-
sis is performed using the model which allowed properties
of PANA such as absence of deadlocks and livelocks to be
investigated. Our analysis of the possible terminal states re-
vealed that a deadlock may occur at the PaC if the PAA
aborts before receiving the initial AuthAnswer message
from the PaC. In addition, the service language (sequence
of primitives) between PANA and EAP was derived from
the state space. Visual inspection of the interface reveals
no obvious errors, however automatic analysis is needed for
more rigorous analysis. Additional future work includes ex-
tending the CPN analysis to cover the four PANA phases,
and detailed analysis of EAP to ensure the PANA service
language correctly interfaces with EAP.



Table 3. Language Analysis of PANA CPN
Language Piggyback States Arcs Final States Sequences
PANA (PaC and PAA) Off 39 109 4 200
PaC Only Off 10 20 4 21
PAA Only Off 6 15 2 15
PANA (PaC and PAA) On 37 103 4 170
PaC Only On 10 20 4 17
PAA Only On 6 16 2 16
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