
Analysing the WAP Class 2 Wireless

Transaction Protocol using Coloured Petri Nets

Steven Gordon and Jonathan Billington

Cooperative Research Centre for Satellite Systems,
University of South Australia,

Mawson Lakes SA 5095, Australia
fsgordon,jbg@spri.levels.unisa.edu.au

Abstract. Coloured Petri nets (CPNs) are used to specify and anal-
yse the Class 2 Wireless Transaction Protocol (WTP). The protocol

provides a reliable request/response service to the Session layer in the
Wireless Application Protocol (WAP) architecture. When only a single
transaction is considered occurrence graph and language analysis reveals

3 inconsistencies between the protocol and service speci�cation: (1) the
initiator user can receive two TR-Invoke.cnf primitives; (2) turning User
Acknowledgement on doesn't always provide the User Acknowledgement

service; and (3) a transaction can be aborted without the responder user
being noti�ed. Based on the modelling and analysis, changes to WTP
have been recommended to the WAP ForumSM.

1 Introduction

Petri nets are a proven technique for the design and veri�cation of communica-

tion protocols [4, 15]. They provide the ability to: model at di�erent levels of

abstraction; capture the concurrent behaviour inherent in communication proto-

cols; and formally analyse them. This can give a high degree of con�dence in the

protocol speci�cation and design, which is important given that protocols are

an integral part of the telecommunications and computing infrastructure. This

has become more important with the emergence of e-commerce applications.

In this paper we present an initial analysis of the Class 2 Wireless Transaction

Protocol (WTP) using Coloured Petri nets. To provide context, we introduce the

Wireless Application Protocol, which includes WTP as part of its architecture.

1.1 Wireless Application Protocol

The Wireless Application Protocol (WAP) [24] de�nes an architecture that aims

to support the provision of Internet and advanced information services to mo-

bile users via a wide range of predominantly hand-held devices. An example

application of WAP is to perform Web browsing on a mobile phone.

WAP is designed to take into account the limitations of the devices and the

wireless data networks they utilise. The architecture speci�cation is de�ned by



the WAP ForumSM, an industry consortium of wireless service providers, device

manufacturers, software companies and infrastructure and content providers.

WAP is based on the World Wide Web (WWW) programming model: re-

quests are made to a server, via a gateway, which generates an appropriate

response (e.g. the content of a Web page). This allows the experience and tools

used in Web applications to be carried over to WAP applications. The gateway,

which is not part of the WWW programming model, is used in WAP to perform

content encoding/decoding and protocol conversion between the WAP stack and

the Internet's transport protocol TCP/IP. Hence the gateway would be located

at a base station { it is the interface between the wireless network (WAP) and

the wired network (TCP/IP).

To provide a scalable and extensible architecture, WAP is designed in lay-

ers1 (Fig. 1). From the bottom, the transport layer operates over a wide range

of wireless bearer services. These include the GSM Short Message Service and

General Packet Radio Service, CDMA Circuit Switched Data, Cellular Digital

Packet Data (CDPD), and several proprietary protocols. There are three oth-

er protocol layers, security, transaction and session, and an application layer,

the Wireless Application Environment (WAE). WAE de�nes a Wireless Markup

Language (WML) and an accompanying scripting language (WMLScript) that

are optimised to suit the limited display sizes of the browsing devices and low

wireless link capacities.
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Fig. 1. WAP architecture

1.2 Previous Work

Formal methods can be applied to nearly all steps in the protocol engineering

methodology { from the high level architecture design to automatic implementa-

tion and conformance testing [3]. We are interested in the analysis of the service

and protocol speci�cations, and veri�cation of the protocol against the service.

The �rst phase, modelling and analysis of the Transaction service [11], included

generation of the service language, i.e. the sequences of primitive events at both

1 The speci�cations for each layer of the WAP architecture are available via

www.wapforum.org. Throughout this paper we refer to WAP Version 1.1. Howev-
er for WTP, Draft Version 11-June-1999 is the basis of the analysis. This has been
accepted as WTP Version 1.2.



service user interfaces. In this paper we focus on analysing the Transaction pro-

tocol and verifying its conformance to the service via a comparison of the service

languages.

Transport protocols, such as TCP [20] and the OSI Transport Protocol [13],

have been formally analysed using various techniques (e.g. Petri nets [2, 8, 17],

Estelle [6], and systems of communicating machines [16]). However, formal anal-

ysis of transaction protocols (which can be thought of as reliable transport pro-

tocols, optimised for transactions) is limited. The only other work we are aware

of is the analysis of Transaction/TCP (T/TCP) [5], a protocol designed for pro-

viding an eÆcient transaction service as well as stream-oriented data transfer

(i.e. TCP) in the Internet. T/TCP has been speci�ed using timed and untimed

automaton models [22], and demonstrates that T/TCP doesn't provide the same

service as TCP. Follow on work [23] has shown the dependence of T/TCP on ac-

curate clocks for transaction protocols to provide eÆcient, reliable transactions.

Although some features are similar, there are substantial di�erences between

the service and protocols of WTP and T/TCP to warrant the formal veri�ca-

tion of WTP. We use Coloured Petri nets (CPNs) [14] to specify and analyse

the functional properties of WTP. Previous experience and tool support (i.e.

Design/CPN [18]) for modelling, simulation and (functional and performance)

analysis makes CPNs a suitable choice for this task. To obtain manageable oc-

currence graphs, the analysis is done under restricted conditions (most notably

only a single transaction is analysed). Three inconsistencies between the service

and protocol speci�cations are detected, identifying areas for improvement of

the WTP design.

1.3 Overview

The remainder of this paper is organised as follows: Section 2 introduces the

Transaction service and protocol. Section 3 presents the Transaction service

language. Section 4 describes the design of the protocol CPN and analysis results

are given and discussed in Section 5. Section 6 concludes with a summary and

areas of future work.

2 Wireless Transaction Protocol

The Wireless Transaction Protocol (WTP) [25] provides 3 classes of service:

{ Class 0: unreliable invoke message with no result message. This is the same

datagram service as provided by the Transport layer. It is included so a

datagram can be sent during a session. The User Datagram Protocol (UDP)

[19] or Wireless Datagram Protocol (WDP) are recommended to be used if

applications require a datagram service.
{ Class 1: reliable invoke message with no result message. This can be used

to provide push functionality in, for example, the Wireless Session Protocol

(WSP). Within the context of an existing session the server can push data

to the client, which the client then acknowledges.



{ Class 2: reliable invoke message with one reliable result message. This is the

basic transaction service.

This section briey describes the Class 2 Transaction service and protocol.

2.1 WTP Service

The WTP service primitives and the possible types are: TR-Invoke { req (re-

quest), ind (indication), res (response), cnf (con�rm); TR-Result { req, ind,

res, cnf; TR-Abort { req, ind. A transaction is started by a user issuing a TR-

Invoke.req primitive. This user becomes the initiator of the transaction and

the destination user becomes the responder. The responder must start with a

TR-Invoke.ind. Table 1 shows the primitives that may be immediately followed

by a given primitive at either end point. For example, at the initiator a TR-

Invoke.req can be followed by a TR-Invoke.cnf, TR-Result.ind, TR-Abort.req or

TR-Abort.ind. Further details on the service can be found in [25].

Table 1. Primitive sequences for WAP Transaction Service at each end point

TR-Invoke TR-Result TR-Abort

req ind res cnf req ind res cnf req ind

TR-Invoke.req
TR-Invoke.ind

TR-Invoke.res X
TR-Invoke.cnf X
TR-Result.req X* X

TR-Result.ind X* X
TR-Result.res X
TR-Result.cnf X

TR-Abort.req X X X X X X X
TR-Abort.ind X X X X X X X

Note: the primitive in each column may be immediately followed by
the primitives marked with an X. Those marked with an X* are not
possible if the User Acknowledgement option is used.

Each of the primitives has several mandatory and optional parameters. The

TR-Invoke request and indication must include both source and destination

addresses and port numbers. Other parameters are: User Data, Class Type,

Exit Info, Handle, Ack Type and Abort Code. Of special signi�cance is Ack

Type. This parameter is used to turn on or o� the User Acknowledgement (User

Ack) feature. When on, an explicit acknowledgement of the invoke is necessary

(i.e. TR-Invoke.res and TR-Invoke.cnf). Otherwise, the result may implicitly ac-

knowledge the invoke. Fig. 2 gives two example sequences of primitive exchanges

for a successful transaction. The sequence in Fig. 2(b) is not possible if User Ack

is on.
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(a) { Explicit acknowledgement

Initiator Provider Responder

TR-Invoke.req

TR-Invoke.ind

TR-Result.req

TR-Result.ind

TR-Result.res

TR-Result.cnf

(b) { Implicit acknowledgement

Fig. 2. MSC of service primitives for successful transaction

2.2 Protocol Features

Messages sent between peer protocol entities are called Protocol Data Units

(PDUs) [12]. There are four primary PDUs used in the Transaction protocol:

Invoke, Result, Ack and Abort. (There are 3 other PDUs available if the optional

segmentation and re-assembly feature is used { this is discussed later.) Each PDU

contains an integral number of octets and consists of a header, containing a �xed

and variable component, and the data, if present. The relevant header �elds of

PDUs are given when describing the CPN model (Section 4.6).

The procedure for normal message transfer in a transaction involves 5 steps:

1. Upon receipt of a TR-Invoke.req from the user, the initiator transaction

protocol entity sends an Invoke PDU to the responder. The initiator starts

a retransmission timer and waits for a response.
2. Upon receipt of the Invoke PDU the responder sends a request to its user

(TR-Invoke.ind) and waits for a result. The PDU includes a Transaction

Identi�er (TID) which is used for the remaining PDUs in the transaction.

This allows several transactions to be processed concurrently. The protocol

provides a mechanism for dealing with the receipt of delayed PDUs, i.e. PDUs

that contain unexpected TIDs [25]. If the TID is expected, the responder can

notify the user (i.e. give a TR-Invoke.ind) and proceed with the transaction.

The receipt of a PDU with an unexpected TID initiates a handshake to verify

if the delayed PDU should be processed or not. This involves two steps:
(a) The responder sends an Ack PDU with a veri�cation ag set. This asks

the initiator if it has an outstanding transaction.
(b) The initiator sends an Ack PDU with the veri�cation ag set if the trans-

action is in progress, otherwise an Abort PDU is sent which indicates to

the responder that the TID can be ignored.

3. While waiting for the result (from the user), the responder may send a \hold

on" Ack PDU to the initiator if the responding user is taking too long to

acknowledge the Invoke PDU. Then the initiator knows not to retransmit

the Invoke PDU. In this case a TR-Invoke.cnf is generated at the initiator.
4. A TR-Result.req primitive from the user allows the responder to send the Re-

sult PDU. Upon receipt of the Result PDU by the initiator a TR-Invoke.cnf

(if not already sent) and TR-Result.ind are passed to the user.



5. The initiator acknowledges the result by sending an Ack PDU to the re-

sponder. The initiator must either wait for a timeout before removing any

transaction information or save the transaction history so it can handle a

retransmission if necessary.

Reliability in WTP is provided by retransmission of PDUs until acknowl-

edgements are received. A timer and retransmission counter are used so when

the number of timeouts (and retransmissions) reaches a maximum value, the

transaction is aborted. There is a maximum value for retransmitting any PDU

(RCR MAX) and for retransmitting acknowledgements (AEC MAX). For ex-

ample, assuming RCR MAX is 1, the initiator starts a timer after sending the

Invoke PDU and if no response has been received when the timer expires the

PDU is retransmitted and RCR is set to 1. If again no response is received before

the timeout, the initiator will abort the transaction (as RCR = RCR MAX).

Other features of WTP include: concatenation and separation of PDUs in-

to one service data unit, transmission of protocol parameters via transport in-

formation items (TPIs) and an optional protocol feature for segmenting and

re-assembling PDUs into multiple packets.

The protocol operation is described by a set of state tables in the WTP

Speci�cation [25]. The initiator and responder each have tables representing

states they can be in. Each table has an event, a condition, a set of actions and

the next state the entity enters. The actions have been assumed to be ordered

and sequential top to bottom. In Table 2, for example, while in the LISTEN

state, if the responder receives an Invoke PDU with a valid TID and User Ack

is not used (U/P==false), it will generate a TR-Invoke.ind to the user, then

start the timer for waiting for a response, and set the Uack variable to false. The

resulting state will be INVOKE RESP WAIT.

Table 2. State table entry for responder in LISTEN state

Responder LISTEN

Event Condition Action Next State

RcvInvoke Class == 2j1 Generate TR-Invoke.ind INVOKE RESP

Valid TID Start timer, A WAIT
U/P==False Uack = False

3 Transaction Service Speci�cation

The WAP Transaction Service has been modelled and analysed using Coloured

Petri nets [11]. The model allows us to locate de�ciencies in the service speci�-

cation and generate it's language, the possible sequences of primitives between

the service user (Session layer) and the service provider (Transaction layer). For

the purpose of comparison with the protocol (see Section 5.2), the Transaction

Service language from [11] is presented in Fig. 3.

The Transaction Service language has 21 nodes and 74 arcs. There are four

halt states in the language: nodes 6, 16, 17 and 19 (shown in bold). Node 6



represents the case when the initiator's TR-Invoke.req is immediately followed

by an abort. Node 16 represents the case when the initiator has �nished and the

responder has also �nished or aborted. Nodes 17 and 19 represent the cases when

the transaction is aborted. The primitives between the following nodes are not

possible when User Ack is turned on: (2,3), (2,7), (2,13), (12,14), (8,17), (3,20).

In addition, the primitives that were between 2 and 13 are now between 2 and

9.
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Fig. 3. Transaction Service language

4 Transaction Protocol Speci�cation

To verify the operation of WTP, a CPN model of the protocol speci�cation has

been developed [9]. It consists of 12 pages, 55 transitions, 9 places and 21 colour



sets. The necessary components for protocol veri�cation, as shown in Fig. 4, are

modelled (some at an abstract level). This enables us to gain further insight into

the protocol operation, verify general properties, and compare it with the service

speci�cation. This Section describes the design decisions and assumptions made

in the modelling process, using selected parts of the CPN for explanation. A

complete CPN model [9] of the protocol is too large to include in this paper.

The aim is to present the main ideas behind the model and to present the analysis

results.

WTP
Responder

WTS
User A User B

WTS

Initiator
WTP

Transport Layer Service
(Security Layer Service)

Fig. 4. Block diagram for protocol veri�cation

4.1 Net Structure

The WTP Speci�cation [25] de�nes the procedures of the protocol using state

tables (as described in Section 2.2). We chose to model each table as a separate

CPN page. The advantages of this approach are: it's relatively easy to transfer

the table information into a CPN (see Section 4.2); the direct relationship be-

tween our CPN and WTP simpli�es validation of the model by us and others;

and the repetitive structure allows a manageable graphical layout of the net. A

disadvantage is a lack of hierarchy in the model, and, hence, the ability to view

the protocol operation from a higher level of abstraction. We feel the use of non-

CPN graphics with the model (i.e. message sequences charts in Design/CPN)

can compensate for this.

There are 11 top-level pages in the model as shown in Fig. 5. All pages are

connected via fusion places. The �rst letter of the page name indicates whether

it is the Initiator or Responder, while the remainder indicates the state the

page represents. The twelfth page, I RESULT WAIT RcvResult, a sub-page of

I RESULT WAIT, is explained in Section 4.7.

4.2 Page Structure

Each CPN page is based on the following structure (see Fig. 6 for an example):

{ Two fusion places, InitToResp and RespToInit, to represent the medium for

transporting messages between the initiator and responder, and vice versa,

respectively. The medium is further described in Section 4.5.

{ A fusion place that stores the current state of a protocol entity (i.e. the

initiator or responder), and the context associated with that state for each
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I_RESULT_WAIT_RcvResult

R_LISTEN
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I_WAIT_TIMEOUT

R_INVOKE_RESP_WAIT
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Fig. 5. Protocol CPN hierarchy page
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Fig. 6. Initiator in RESULT WAIT state



transaction. The initiator therefore has a place Initiator and the responder a

place Responder. The representation of the state (and transaction context)

is explained in Section 4.3.

{ Transitions that represent events and actions from the state tables. For all

top-level pages (except I NULL { see Section 4.4), every transition has an

input arc from the state place. This restricts transitions on a page to only

be enabled when the entity is in the state represented by that page. Along

with guards, input arcs from other places (e.g. InitToResp) can be thought

of as conditions of the events. The output arcs represent an action occurring

and/or state changing.

{ Some pages have additional places to keep track of counter values etc. For

example, in Fig. 6 place TIDs stores all transaction identi�ers not in use.

The WTS users (Fig. 4) are modelled at an abstract level via the primitive

events. Actions in the protocol entities that represent a submit (or deliver) of

a primitive from (or to) a user are indicated by the primitives as labels on the

relevant transitions. For example, in Fig. 6 there are six transitions (the top two

and the bottom four) that indicate communication with User A via primitives.

4.3 State of Protocol Entities

WTP supports multiple, asynchronous transactions. In the CPN, this is modelled

by storing the state and context of each transaction in progress at the initiator

and the responder (in places Initiator and Responder, respectively). The trans-

actions are di�erentiated by their TIDs. The state of a transaction corresponds

with a state table in WTP:

color States = with WAIT TIMEOUT j RESULT WAIT j RESULT RESP WAIT j
LISTEN j TIDOK WAIT j INVOKE RESP WAIT;

The initiator has 4 states (its initial state (see Section 4.4) and the �rst 3

colours) and the responder has 5 states (the last 5 colours).

The context (TransData record) stores variables associated with each trans-

action. The variable t (in Figs. 6 and 8) is of this type.

color TransData = record

SendTID:Uint16 * (* TID to send { 0..TID MAX *)

RcvTID:Uint16 * (* TID expected to receive { 0..TID MAX *)

HoldOn:Flag * (* True if HoldOn ack received { 0/1 *)

Uack:Flag * (* True if User Ack requested { 0/1 *)

AckSent:Flag * (* True if Ack(TIDok/TIDve) sent { 0/1 *)

RCR:RCR c * (* Retransmission Counter { 0..RCR MAX *)

AEC:AEC c * (* Ack Expiration Counter { 0..AEC MAX *)

Data:Counter * (* Data { int *)

Timer:Flag; (* True if Timer on { 0/1 *)



The �rst �ve entries correspond to variables used by WTP at both the ini-

tiator and responder. RCR and AEC are counters used by WTP. Data is used to

give each transaction a unique identi�er in case of errors (see Section 4.4). As

there is no time in the model, Timer has been introduced to indicate whether

the timer is on (and hence a timeout can occur) or o�.

We have assumed the counters can never be greater than their maximum

value. This may seem obvious but an action of one entry in the Initiator RESULT

WAIT state table increments RCR, but there is no condition stating RCR <

RCR MAX. We have introduced this condition, as shown in Table 3 (the change

is italicised).

Table 3. State table action with new condition limiting RCR

Initiator RESULT WAIT

Event Condition Action Next State

RcvAck TIDve Send Ack(TIDok) RESP WAIT
Class=2j1 Increment RCR
RCR<RCR MAX Start timer, R [RCR]

The places Initiator and Responder are typed as follows:

color InitState = product States * TransData;

color RespState = product States * TransData;

Therefore, if there were two transactions in progress for example, the marking

of Initiator may be:

1`(WAIT TIMEOUT, fSendTID=0, RcvTID=2, . . . g) +
1`(RESULT WAIT, fSendTID=1, RcvTID=3, . . . g)

4.4 Initialisation

The page I NULL (Fig. 7) represents the state of the initiator before a transaction

has begun. The state is modelled implicitly i.e. there is no colour NULL in the

colour set States. Instead, the user can issue a TR-Invoke.req as many times as

there are initial tokens in User. These tokens are parameters for each transaction.

In Fig. 7 only 1 transaction can be initiated. Neither the continue (CON) option

(used to identify TPIs) nor the User Ack are used.

Place TIDs stores all TIDs that are not outstanding at the initiator. This is

necessary in the model to detect when old PDUs (i.e. those with a TID that

is not outstanding) are received by the initiator. Place Data maintains an in-

teger counter. This is used to generate the next TID (which is maintained as

the variable GenTID in WTP), and also generate a unique data value for each

transaction. Because the TID values wrap (i.e. in erroneous conditions, two trans-

actions may have the same TID), the data value will be necessary to di�erentiate

transactions when analysing the e�ect of errors on the protocol.
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RCR=0,AEC=0,Timer=1,AckSent=0})
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Fig. 7. Initiator in NULL state

The occurrence of TR-Invoke.req sends an InvokePDU to InitToResp and places

the initiator into the RESULT WAIT state.

Fig. 8 is the CPN page for the responder in the LISTEN state (i.e. it is waiting

to receive invocations from the initiator). The three common fusion places are

present (InitToResp, RespToInit and Responder), with Responder initialised to

AllListen. This is a constant that says the responder can accept n asynchronous

invocations, where n is double the window size at the responder. Place LastTID

keeps track of the TID of the last Invoke PDU received (to store only one TID

is an assumption of our current model { in practice an array of TIDs may be

stored to allow Invoke PDUs to be received out-of-order). Note for the model we

have set TID MAX to 3, and for a successful receipt of an Invoke PDU, LastTID

is initialised as 1. The LastTID, along with the TID of the current Invoke PDU

received, is used by the windowing mechanism (implemented by TIDTest() in

the guards of the two RcvInvoke transitions) to determine if Invokes are received

as expected. The occurrence of the top RcvInvoke indicates the TID is expected

and the transaction can proceed. The bottom RcvInvoke indicates an Invoke has

been received out-of-order and a veri�cation must occur with the initiator.

4.5 Transport Medium

From Fig. 4 the security service is provided to WTP. However, this is an optional

layer, and does not alter the service (in terms of primitives) of the underlying

Transport layer. Therefore, the CPN model of the transport medium must reect

the properties of the Transport layer protocols, namely WDP or UDP [19]. These

datagram protocols cannot guarantee in-order delivery, removal of duplicates or

loss-free delivery of messages.

Initially, the transport medium has been modelled as a single place for each

direction of communication (InitToResp and RespToInit). This models the un-

ordered characteristics of the medium. The capacity of the medium is assumed

in�nite. Errors in the transport medium (loss of PDUs, duplicates) have not

been modelled. This is an area of future work.
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Fig. 8. Responder in LISTEN state

4.6 Protocol Data Units

PDUs are modelled as records, with entries corresponding to header �elds de�ned

in WTP. Only �elds that may a�ect the protocol operation are included (e.g.

the version �eld is excluded). The Invoke PDU de�nition is:

color InvokePDU c = record

CON:Flag * (* Continue { 0/1 *)

GTR:Flag * (* Group Trailer { 0/1 *)

TTR:Flag * (* Transmission Trailer { 0/1 *)

PSN:PSN c * (* Packet Sequence Number { 0..255 *)

RID:Flag * (* Retransmission Indicator { 0/1 *)

TID:Uint16 * (* Transaction Identi�er { 0..TID MAX *)

Data:Counter * (* Data { int *)

TIDnew:Flag * (* Indicates wrapping of TID { 0/1 *)

UP:Flag; (* True if User Ack on { 0/1 *)

The �rst �eld (CON) is used in identifying TPIs and the next three are

concerned with segmentation and re-assembly of PDUs. Although these protocol

features (along with concatenation and separation) are not modelled, the �elds

are included for future use. The �rst 7 �elds are common to all PDUs. The

Result PDU has no more �elds. The �elds of the other PDUs are:

color AckPDU c = record

. . .

TveTok:Flag; (* TID veri�cation/TID Ok { 0/1 *)

color AbortPDU c = record

. . .

AbortType:AbortType c * (* Provider/User *)



AbortReason:AbortReason c; (* UNKNOWN, PROTOERR, . . . *)

The colour set of the transport medium places is:

color PDU = union InvokePDU:InvokePDU c + ResultPDU:ResultPDU c +

AckPDU:AckPDU c + AbortPDU:AbortPDU c;

4.7 Correspondence to Primitives

The actions speci�ed in the WTP state tables have been modelled as atomic

events. That is, for example, the generation of TR-Invoke.ind, then starting the

timer and then setting Uack to False in Table 2 is modelled as the occurrence of

transition RcvInvoke (TR-Invoke.ind) in Fig. 8. This allows each primitive event

to be directly associated with an individual transition, and hence an arc in

the OG. This is important when performing analysis because to compare the

protocol and service speci�cations it is necessary to select arcs in the OG that

correspond to primitive events (see Section 5.2). There is one exception to this

case, when an action in the initiator RESULT WAIT state table generates two

primitives (Table 4). If this was modelled as a single transition, we wouldn't

be able to di�erentiate between the two primitives when selecting arcs in the

OG. Therefore, this action is decomposed into a sub-page (denoted by HS in

the transition RcvResult in Fig. 6) that contains a transition for each primitive

(Fig. 9).

Table 4. State table action that generates two primitives

Initiator RESULT WAIT

Event Condition Action Next State

RcvResult Class == 2 Stop timer RESULT RESP WAIT
HoldOn==False Generate TR-Invoke.cnf

Generate TR-Result.ind

Start timer, A

Initiator

InitState

P I/O

RespToInit

PDU

P In

TR-Invoke.cnf

[#RcvTID(t)=#TID(result)
andalso #HoldOn(t)=0]

C

TR-Result.ind
C

TempState TransData

(RESULT_WAIT,t) ResultPDU result
t

t

(RESULT_RESP_WAIT,t)

Fig. 9. Initiator in RESULT WAIT state - sub-page for primitives



5 WTP Analysis

Occurrence graph analysis has been used to locate any undesired behaviour in

the protocol speci�cation. The OG has been reduced to a language of possible

primitive events in a similar manner as the Transaction Service language [11].

A comparison of the two languages reveals errors in the protocol speci�cation.

This Section reports on these analysis results and suggests how the errors may

be eliminated.

5.1 Protocol Occurrence Graph Analysis

The protocol CPN has been analysed using a single transaction. Also the maxi-

mum counter values (RCR MAX and AEC MAX) have been set to 1 or 2. This

allows us to verify the basic operation of the protocol, as we can obtain a rea-

sonable sized OG. The OG results with and without user acknowledgement are

shown in Table 5.

Table 5. Protocol speci�cation OG results

OGNo: RCR Max AEC Max LastTID UserAck Nodes Arcs T ime(s) TS DTI

1 1 1 1 O� 1634 6472 34 1 10
2 1 1 1 On 2321 9454 56 1 8

3 1 2 1 O� 1634 6472 33 1 10
4 1 2 1 On 3350 14255 104 1 4
5 2 1 1 On 31290 165257 5950 1 4
6 2 2 1 O� 19083 96356 5680 1 6

7 2 2 1 On 50491 278591 17156 1 4
8 1 1 0 On 542 2028 7 1 8

Note: TS = Terminal States, DTI = Dead Transition Instances.

The protocol terminated correctly in all cases (i.e. the single terminal state

was desired). There were dead transition instances present, but they were ex-

pected. They were caused by features being modelled but not exercised, due

to initial conditions. The transitions were related to the following features: Us-

er Ack; TID veri�cation; and receiving incorrect PDUs. When User Ack is o�,

AEC is not used. Hence, as they only di�er by the maximum AEC counter, OG

number 1 and OG number 3 are identical.

OG No. 8 is the result of analysing the case of TID veri�cation occurring.

With the receipt of an Invoke PDU with TID=0 the initial value of LastT ID

(0) forces a veri�cation. The OG is smaller than the other cases (i.e. OG No. 2)

because the receipt of the Ack PDU for veri�cation by the initiator, implicitly

acknowledges the Invoke PDU, disallowing further re-transmissions (note that

essentially this means sequences leading to two TR-Invoke.cnf primitives, as

discussed in the following Section, are not possible).

It should be noted that using a single transaction does not test several im-

portant features of the protocol (e.g. the windowing mechanism with sequence

numbers). Analysing multiple transactions is an area for future work.



5.2 Comparison of Service and Protocol Languages

To generate the protocol language the OG is treated as a �nite state automata

(FSA). The sequence of primitives is of interest, so all binding elements that

do not correspond to primitive events are treated as empty transitions in the

FSA. A common FSA reduction technique [1] is applied to obtain the minimised

deterministic FSA, or the Transaction Protocol language.

The languages have been obtained for OG No. 1, 2, 3, 4 and 8. The other

OGs are too large to minimise using our current tools [7, 21]. In the following

we concentrate on the languages obtained from OG No. 1 and 2 (User Ack o�

and on, respectively). The statistics of these languages (and for comparative

purposes, the service languages from [11]) are given in Table 6.

Table 6. Transaction service and protocol FSA results

UserAck Nodes Arcs Halts Sequences Longest Shortest

Service O� 21 74 4 450 9 2

Protocol O� 39 119 5 527 10 2
Service On 21 69 4 194 9 2
Protocol On 45 133 7 334 10 2

There are sequences possible in the protocol language, but not de�ned in

the service. These identify errors in the protocol speci�cation. For both User

Ack cases, an error occurs when a second TR-Invoke.cnf can be generated at

the initiator. More speci�cally, in relation to Fig. 3, TR-Invoke.cnf primitives

can follow nodes 5, 7, 9 and 10. By tracing the sequences back to the OG, we

have identi�ed all possible sequences of protocol actions that result in this error

(there are 174). A scenario showing the error is given in Fig. 10.
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Invoke{RID=0}

Fig. 10. Error scenario: Two TR-Invoke.cnf primitives

Closer investigation of some of the error sequences in the protocol CPN

indicates the retransmission of an Ack PDU by the responder when it receives



a retransmitted Invoke PDU while in the RESULT WAIT state results in the

second TR-Invoke.cnf primitive. The Ack PDU is retransmitted by the responder

to cope with the situation when the �rst Ack PDU is lost. In that case the �rst

TR-Invoke.cnf would not be generated, and everything would proceed correctly.

Therefore to remedy the error, on receipt of the second Ack PDU (i.e. after a

TR-Invoke.cnf has been issued) WTP should not re-issue a TR-Invoke.cnf and

can discard (and log) the Ack PDU.

When User Ack is used there are two other inconsistencies with the service

speci�cation:

1. A TR-Result.req may immediately follow a TR-Invoke.ind at the responder.

That is, the arcs between nodes 2 and 3, and 12 and 14 are present in the

protocol language however, as stated in Section 3 and easily seen in Table

1, they are not present in the service language (Fig. 3) when User Ack is

on. By restricting a TR-Result.req to only be issued when User Ack is o�,

as shown in Table 7, the error can be removed. With this change made to

the protocol CPN, the language obtained from the OG disallows the extra

TR-Result.req primitives, as required.

Table 7. State table entry with new condition restricting TR-Result.req

Responder INVOKE RESP WAIT

Event Condition Action Next State

TR-Result.req Uack==False Reset RCR RESULT RESP WAIT
Start timer R[RCR]

Send Result PDU

2. There are inconsistent halt states in the protocol language. In relation to

Fig. 3, node 12 would be a halt state. For example, Fig. 11 shows a sequence

that constitutes a transaction. After the number of timeouts at the responder

reaches the maximum, the transaction is aborted. The retransmitted Invoke

PDU initiates a TID veri�cation which fails. At the end of the sequence

the initiator is in the NULL state and the responder in the LISTEN state,

indicating that both entities have discarded any state information for that

transaction. However, the responder user has been issued a TR-Invoke.ind

but no other primitive to indicate the end of the transaction. A solution is

to issue a TR-Abort.ind primitive to the responder user when a transaction

is aborted due to a timeout (and the responder goes back to the LISTEN

state).

6 Conclusions

Initial Coloured Petri net analysis of the WAP Class 2 Wireless Transaction

Protocol has revealed discrepancies between the service speci�cation and the
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Fig. 11. Error scenario: Invalid halt state

protocol speci�cation. This can be used for improving the speci�cation and de-

sign of WTP.

WTP provides three classes of service, the most commonly used (Class 2)

being a reliable request/response service. The service speci�cation has been mod-

elled using Coloured Petri nets and the Transaction Service language presented

in [11]. The focus of this paper has been outlining the protocol speci�cation CPN

model and presenting the initial analysis results. In summary, we have:

{ Presented a CPN model of the protocol, which was developed based on the

WTP state tables. The model was developed to be able to analyse protocol

features using a modular approach. Not all features are currently modelled.

{ Using occurrence graph analysis, shown that, when a single transaction is

possible and under restricted conditions on the counter limits, no deadlocks

occur in the protocol and the dead transitions are as expected.

{ Generated the protocol language, and compared it to the Transaction Service

language. This identi�ed the following discrepancies between the two:

1. Two TR-Invoke.cnf primitives could be generated at the initiator.

2. The User Ack service is not always provided when user acknowledgement

is on (i.e. a TR-Request.req can follow a TR-Invoke.ind).

3. When User Ack is on a transaction can �nish without the responder user

being noti�ed.

{ Proposed the following changes to WTP:

1. For all actions when the initiator increments RCR, a condition should

restrict RCR < RCR MAX. The speci�c change to the state tables is

given in Table 3.

2. To disallow two TR-Invoke.cnf primitives, the initiator should discard a

second Ack PDU after already issuing a TR-Invoke.cnf, and not issue

the second primitive.

3. Introduce a condition on the responder user issuing a TR-Result.req,

as given in Table 7, to disallow the primitive following a TR-Invoke.ind

when User Ack is on.



4. Generate a TR-Abort.ind when the the Responder aborts due to a time-

out in the INVOKE RESP WAIT state so the user is noti�ed of the end

of the transaction.

These changes have been submitted to the WAP Forum [10].

Further analysis is required to be con�dent of WTPs correctness and per-

formance. Firstly, the operation of the protocol under more complex conditions

(multiple transactions, errors) needs to be veri�ed. This work is in progress, and

it is likely other analysis techniques (e.g. state space reduction) will be required.

This analysis will also allow us to further evaluate the implications of the errors

found and their proposed solutions. Finally, it will be necessary to analyse the

performance of the protocol, either using the existing CPNs, or some other tools

and techniques (e.g. OPNET).
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