
Modelling the WAP Transaction Service using

Coloured Petri Nets

Steven Gordon and Jonathan Billington

Cooperative Research Centre for Satellite Systems

University of South Australia

Mawson Lakes SA 5095, Australia

fsgordon,jbg@spri.levels.unisa.edu.au

Abstract. The Wireless Application Protocol (WAP) is an architecture

designed to support the provision of wireless Internet services to mobile

users with hand-held devices. The Wireless Transaction Protocol is a

layer of WAP that provides a reliable request/response service suited for

Web applications. In this paper Coloured Petri nets are used to model

and generate the possible primitive sequences of the request/response

Transaction Service. From the results we conclude that the service spec-

i�cation lacks an adequate description of what constitutes the end of a

transaction. No other de�ciencies were found in the Transaction Service.

1 Introduction

As wireless technologies advance, e�cient access to Internet and advanced infor-

mation services is becoming an important requirement from the perspective of

mobile users. Currently, characteristics of wireless networks (e.g. low and vary-

ing bandwidths, drop-outs) and terminal devices (e.g. low power requirements,

small displays, various input devices) limit the quality of these services for the

mobile user. Therefore there is a need for existing protocols designed for use in

the �xed network to be re�ned, and when necessary new protocols created that

alleviate some of these limitations. The Wireless Application Protocol (WAP)

[5] de�nes a set of protocols that aim to do this. In particular, the Wireless

Transaction Protocol [6] provides a request/response service that is suited to

using Web applications from hand-held devices such as mobile phones.

As with any new communication protocol, it is important to ensure the cor-

rectness of the Wireless Transaction Protocol. In this paper, Coloured Petri nets

(CPNs) [8] are used to model the WAP Class 2 Transaction Service and gen-

erate it's language, the possible sequences of events between the users of the

service and the service provider [2]. This can help identify any de�ciencies in

the current service speci�cation. It is also the �rst step in the veri�cation of the

Wireless Transaction Protocol design. The use of formal methods is important

because ensuring the correctness of a complex protocol is seldom possible via

other design approaches. High-level Petri nets are a suitable formal method for

the design of communication protocols because of their ability to express concur-

rency, non-determinism and system concepts at di�erent levels of abstraction.

They have been used to analyse various protocols [3]. CPNs are a popular form

of high-level Petri nets that have extensive tool support [4, 9] for the design of

systems, including protocols.

2 Wireless Transaction Protocol

The Wireless Application Protocol (WAP) architecture comprises 5 layers: trans-

port, security, transaction, session and application. The Wireless Transaction

Protocol (WTP) [6] provides 3 classes of service to the session layer: Class 0

{ unreliable invoke message with no result message; Class 1 { reliable invoke

message with no result message; and Class 2 { reliable invoke message with

one reliable result message (this is the basic transaction service). This section

describes the Class 2 Transaction Service in more detail.

Layer-to-layer communication is de�ned using a set of service primitives [7].

For the Transaction Service, the primitives occur between the WTP user and the

WTP service provider . The sequences of primitives describe how WTP provides

the Transaction Service. The WTP service primitives and the possible types are:

TR-Invoke { req (request), ind (indication), res (response), cnf (con�rm); TR-

Result { req, ind, res, cnf; and TR-Abort { req, ind.

A transaction is started by a user issuing a TR-Invoke.req primitive. This user

becomes the initiator of the transaction and the destination user becomes the

responder. The responder must start with a TR-Invoke.ind. Table 1 shows the

primitives that may be immediately followed by given primitives at the initiator

and responder interfaces. For example, at the initiator a TR-Invoke.req can be

followed by a TR-Invoke.cnf, TR-Result.ind, TR-Abort.req or TR-Abort.ind.

There is no information given regarding the global behaviour of the service in

the WAP speci�cation [6].

Table 1. Primitive sequences for WAP Transaction Service

TR-Invoke TR-Result TR-Abort

req ind res cnf req ind res cnf req ind

TR-Invoke.req

TR-Invoke.ind

TR-Invoke.res X

TR-Invoke.cnf X

TR-Result.req X* X

TR-Result.ind X* X

TR-Result.res X

TR-Result.cnf X

TR-Abort.req X X X X X X X

TR-Abort.ind X X X X X X X

Note: the primitive in each column may be immediately followed by

the primitives marked with an X. Those marked with an X* are not

possible if the User Acknowledgement option is used.

Each of the primitives has several parameters. The TR-Invoke request and

indication must include both source and destination addresses and port numbers.

Other parameters are: User Data, Class Type, Exit Info, Handle, Ack Type and

Abort Code. Of special signi�cance is Ack Type. This parameter is used to turn

on or o� the User Acknowledgement feature. When on, an explicit acknowl-

edgement of the invoke is necessary (i.e. TR-Invoke.res and TR-Invoke.cnf).

Otherwise, the result may implicitly acknowledge the invoke.

3 Coloured Petri Nets

CPNs are a class of high-level nets that extend the features of basic Petri nets.

The net consists of two types of nodes, places (ellipses) and transitions (rectan-

gles), and directional arcs between nodes. An input arc goes from a place to a

transition and an output arc vice versa. Places are typed by a colour set. For

example, in Fig. 1 place Initiator has the colour set State. Places may be marked

by a value from the colour set. These are known as tokens. The collection of

tokens on a place is called it's marking, and the marking of the CPN comprises

the markings of all places. Transitions and arcs can also have inscriptions which

are expressions that, along with the tokens in places, determine whether a tran-

sition is enabled. A transition is enabled if su�cient tokens exist in each of its

input places (as determined by the input arc inscriptions), and the transition

inscription, or guard, (given in square brackets) evaluates to true.

In Fig. 1, TR-Invoke.req is enabled because NULL (the initial marking given

to the right of the place) is in the only input place and it is also the arc inscrip-

tion, and there is no guard shown for the transition (which implies the guard

is always true). A subset of the enabled transitions can occur. The occurrence

of a transition destroys the necessary tokens in the input places and creates

new tokens in the output places, as given by the expressions on the arcs. The

occurrence of TR-Invoke.req replaces NULL with INVOKE WAIT in Initiator and

creates Invoke in place InitToResp. When variables are used in arc inscriptions or

guards, the values they are bound to on occurrence of a transition give, together

with the transition name, a binding element.

The CPNs in this paper were edited, simulated, and partly analysed using

Design/CPN [4]. Design/CPN allows the CPN to be drawn on separate pages to

increase the readability of the net. One technique used to combine the di�erent

pages is known as fusion places which are copies of a place. Design/CPN may be

used to interactively or automatically simulate the net, or to create an occurrence

graph. An occurrence graph (OG) is a graph with nodes and arcs representing

net markings and binding elements, respectively. A complete OG represents all

possible states the CPN can reach. In Design/CPN, queries can be made on

the OG to determine dynamic properties of the CPN (e.g. deadlocks, live-lock,

bounds on places). An OG can also be viewed as a �nite state automata (FSA)

which, with appropriate analysis techniques can be used to give the language

accepted by the CPN (where the binding elements are the alphabet), which in

our case is the Transaction Service language.

4 Transaction Service CPN

4.1 Modelling Assumptions

The aim of modelling the Transaction Service is to generate the service lan-

guage. That is, the possible sequences of service primitives between the user and

provider are of major interest. With this in mind, several assumptions can be

made to simplify the model.

The primitive parameters have no e�ect on the sequences of primitives.

Therefore each primitive is modelled as a message (e.g. Invoke) which represents

the primitive type and its parameters (e.g. InvokefSrcAdr, DestAdr, . . . g).
Only the general case when User Acknowledgement is o� is modelled. As the

possible primitives when User Ack is on is a subset of this general case (i.e. two

of the primitive sequences are not allowed), the language will be a subset of the

language generated from the model. This is straightforward to obtain.

The channel between initiator and responder can be separated into two di-

rections of
ow. The channel does not guarantee ordering of messages, hence

each direction can be modelled as a single place. The modelling of the channel

has also been done with the analysis techniques in mind. The OG calculated can

be viewed as a FSA, which in turn can be minimised using a standard reduction

technique [1]. Knowing this, it is possible to allow the reduction technique to

handle functionality that would otherwise be necessary in the model. This is

explained in detail in Sect. 5.1 after the model is presented.

4.2 CPN Model

The CPN model of the WAP Transaction Service has four separate pages (Fig.

1 to 4), representing an invocation, result, user abort and provider abort. Each

page has the same structure:

{ Two fusion places called Initiator and Responder representing the states of the

initiator and responder, respectively. These places are typed by the colour

set State:

color State = with NULL j INVOKE WAIT j INVOKE READY j WAIT USER

j RESULT WAIT j RESULT READY j FINISHED j ABORTED;
{ Two fusion places called InitToResp and RespToInit representing the commu-

nication channels from initiator to responder, and from responder to initia-

tor, respectively. These places are typed by the colour set Message:

color Message = with Invoke j Ack j Result j Abort;
{ Transitions that represent the sending and receiving of the di�erent primitive

types by the user. Note that each transition has a boxed 'C' underneath. This

indicates a code segment is used. Code segments are CPN ML code that are

executed by Design/CPN when the associated transition occurs [10]. This

allows, for example, auxiliary graphics to be drawn as the net is simulated.

For the Transaction Service CPN code segments are used to draw message

sequence charts (MSC) (e.g. Fig. 5(a)).

Initiator

State

NULL

FG Responder

State

NULL

FG

InitToResp

Message
FG

RespToInit

Message
FG

TR-Invoke.req
C

TR-Invoke.cnf
C

TR-Invoke.res
C

TR-Invoke.ind
C

HoldOn

NULL Invoke INVOKE_READY

INVOKE_READYAckAckRESULT_WAIT

INVOKE_WAIT
NULL

RESULT_READYINVOKE_WAIT

Invoke

INVOKE_READY

Ack
WAIT_USER

Fig. 1. TR-Invoke primitive sequence CPN

Initiator

State

NULL

FG Responder

State

NULL

FG

InitToResp

Message
FG

RespToInit

Message
FG

TR-Result.res
C

TR-Result.ind

[x=INVOKE_WAIT
orelse x=RESULT_WAIT]

C

TR-Result.req
[x=INVOKE_READY orelse
x=RESULT_READY orelse
x=WAIT_USER]

C

TR-Result.cnf
C

Timeout

RESULT_READY Ack FINISHED

x

if x=INVOKE_READY then
1‘Ack+1‘Result else 1‘Result

ResultRESULT_READY

FINISHED RESULT_WAIT

RESULT_WAITx

Ack

RESULT_READY
Ack

FINISHED

Fig. 2. TR-Result primitive sequence CPN

Initiator

State

NULL

FG Responder

State

NULL

FG

InitToResp

Message
FG

RespToInit

Message
FG

TR-Abort.req

 [x<>NULL
andalso x<>ABORTED]

C

TR-Abort.ind
 [x<>NULL
andalso x<>ABORTED]

C

TR-Abort.req
[x<>NULL andalso x<>ABORTED
andalso x<>FINISHED]

C

TR-Abort.ind
 [x<>NULL andalso
x<>ABORTED
andalso
x<>FINISHED]

Cx

Abort ABORTED

x

AbortAbortABORTED

ABORTED x

ABORTEDx

Abort

Fig. 3. User TR-Abort primitive sequence CPN

Initiator

State

NULL

FG

Responder

State

NULL

FG

InitToResp

Message

FG

RespToInit

Message

FG

TR-Abort.ind

[x<>ABORTED
andalso x<>NULL]

C

TR-Abort.ind

 [x<>ABORTED
andalso x<>NULL
andalso
x<>FINISHED]

C

ABORTED

ABORTED

x

x

Fig. 4. Provider TR-Abort primitive sequence CPN

In addition, the Invoke and Result pages have transitions (HoldOn and Time-

out, respectively) that indicate an interaction by the service provider which is not

seen by the user (and therefore no primitive occurs). The occurrence of HoldOn,

for example, indicates a timer has expired at the responder because the user is

taking too long to generate the result. A message is sent to the initiator so that

it will hold on until the responder user has generated the result. Finally, there

is also a variable that can take any value from State:

var x:State;

Fig. 1 models the sequence of TR-Invoke primitives. The initial marking of

both Initiator and Responder is NULL. In this marking the �rst and only transition

that can occur is TR-Invoke.req. It follows that a possible transition occurrence

sequence is the four TR-Invoke primitive types in order (i.e. request, indication,

response then con�rm). This would put the initiator into state RESULT WAIT

and the responder into RESULT READY. From the TR-Result page (Fig. 2),

again the TR-Result primitive transitions could occur in order. Both the ini-

tiator and responder would be in the FINISHED state. This sequence represents

a successful transaction with explicit acknowledgement. The message sequence

chart is shown in Fig. 5(a).

Initiator Provider Responder

TR-Invoke.req

TR-Invoke.ind

TR-Invoke.res

TR-Invoke.cnf

TR-Result.req

TR-Result.ind

TR-Result.res

TR-Result.cnf

(a) { Explicit acknowledgement

Initiator Provider Responder

TR-Invoke.req

TR-Invoke.ind

TR-Result.req

TR-Result.ind

TR-Result.res

TR-Result.cnf

(b) { Implicit acknowledgement

Fig. 5. MSC of service primitives for successful transaction

The Transaction Service does not require explicit acknowledgement of the

TR-Invoke.req primitive by the responder (recall User Acknowledgement is as-

sumed to be o�). Instead by sending a TR-Result.req after receiving a TR-

Invoke.ind, the responder can implicitly acknowledge the invocation. In Fig. 1

when the initiator is in the INVOKE WAIT state and responder in INVOKE READY

both TR-Invoke.res and TR-Result.req are enabled. If TR-Result.req occurs (x is

bound to INVOKE READY) the Result message is sent to, and can be acknowl-

edged by the initiator. The MSC for this sequence is shown in Fig. 5(b).

The previous two sequences of transitions were examples of successful trans-

actions. However, as shown in Table 1, a TR-Abort.req or TR-Abort.ind from

the initiator or responder can follow any primitive except themselves and, in the

case of the responder, TR-Result.cnf (because the responder has successfully

completed the transaction). Transaction aborts are modelled on two separate

pages: one for user initiated abort (Fig. 3) and the other for provider initiated

abort (Fig. 4). The aborts are symmetric { they can come from either initiator

or responder. A separate page is used for the provider abort because the TR-

Abort.ind does not require a message from either user. The channel places are

shown to be consistent with the other pages { they are not necessary.

5 Analysis

The OG generated by Design/CPN for the Transaction Service CPN contains 85

nodes and 206 arcs. There were 28 di�erent terminal states. The graph can be

viewed as a FSA with the binding elements (essentially the service primitives) as

the input language. Using a standard reduction technique [1], the minimised FSA

gives a compact description of the possible sequences of primitives, or service

language. This section explains how the minimisation of the OG can remove

complexity from the model and presents the Transaction Service language.

5.1 Analysis Assumptions

The design of the model took into account the analysis techniques that would

be applied (i.e. the FSA minimisation). In particular, it was expected that mul-

tiple terminal markings would be generated that were only di�erentiated by the

markings of the places connecting the initiator to responder (InitToResp and

RespToInit). Extra transitions could have been used in the model to remove all

tokens from the these places once the initiator and responder had FINISHED

or ABORTED. This would ensure only a single terminal marking was generated

for these cases. However it was decided to let the FSA minimisation handle the

extra terminal markings (it e�ectively merges all terminal markings into one) so

the models could remain free of any \cleanup" transitions.

By treating the OG as a FSA, the introduction of halt states (states that

indicate a possible end of a primitive sequence) was also possible. A halt state

may or may not lead to other states. As well as all terminal markings being halt

states, nodes were de�ned as halt states if they satis�ed either of the following

conditions:

{ The marking of Initiator is ABORTED and the marking of InitToResp is In-

voke. This represents the special case when a TR-Invoke.req is followed by

a TR-Abort.req (by the user) or TR-Abort.ind (by the provider). This is a

feasible halt state because the provider may not be able to notify the re-

sponder due to, for example, network failure. In this case the sequence of

primitives is complete.
{ The marking of Initiator is FINISHED and the marking of Responder is FIN-

ISHED or ABORTED. Although there is no mention of this in the service

speci�cation [6], we have assumed that when the initiator has acknowledged

the result by issuing a TR-Result.res primitive (and the responder has �n-

ished or aborted) the transaction may be complete. However, aborts at the

initiator are still possible.

5.2 Transaction Service Language

Fig. 6 shows the Transaction Service language obtained from the minimisation of

the OG. There are 21 nodes and 74 arcs. For clarity, abbreviations of the service

primitives are given for the arc labels. The �rst letter of each label represents

the service primitive (Invoke, Result, Abort). The following three letters rep-

resent the primitive type (request, ind ication, response, conf irm). In addition

the initiator primitives are given in uppercase and the responder primitives in

lowercase. Multiple arcs between two nodes are drawn as one with labels sepa-

rated by commas. The combinations of TR-Abort.req and TR-Abort.ind from

the initiator and responder are drawn as dashed and dotted lines, respectively.

7

6

20

10

5

4

3

2

1

0

11

17

12 13

9

18

15

14

8

19

AREQ,AIND

areq,aind

16

IREQ

iind

ires

ICNF

rreq

ICNF

ICNF
rreq

RIND

RRES

iind

rreq

rreq

ires ICNF

rreq

ICNF

RIND

RIND

rcnf

RIND

rcnf,
areq,
aind

RRES

rcnf,
areq,
aind

Fig. 6. Transaction Service language

There are four halt states in the language: nodes 6, 16, 17 and 19 (shown

in bold). Node 6 represents the case when the initiator's TR-Invoke.req is im-

mediately followed by an abort. Node 16 represents the case when the initiator

has �nished and the responder has also �nished or aborted. Nodes 17 and 19

represent the cases when the transaction is aborted.

Further analysis reveals there are 450 possible sequences of primitives. The

shortest sequences are 2 primitives (TR-Invoke.req followed by TR-Abort.req or

TR-Abort.ind at the initiator) and the longest sequences are 9 primitives (e.g.

a successful transaction (shown as bold arcs { this corresponds to the sequence

shown in Fig. 5(a)) followed by a TR-Abort.req from the initiator).

The primitives between the following nodes are not possible when User Ac-

knowledgement is turned on: (2,3), (2,7), (2, 13), (12,14), (8, 17), (3,20). In

addition, the primitives that were between 2 and 13 are now between 2 and 9.

From the service language it is unclear why the initiator would issue a TR-

Abort.req (e.g. node 16 to node 19 in Fig. 6) after it had acknowledged the

result with a TR-Result.res primitive (e.g. node 20 to node 11). However, an

examination of the protocol speci�cation provides an explanation. Transaction

information is saved after the initiator has sent the last acknowledgement in case

retransmissions are necessary. By issuing a TR-Abort.req after a TR-Result.res,

the transaction state information is released. Otherwise, a timeout will release

the information.

6 Conclusions

We have described, modelled and analysed the WAP Class 2 Transaction Service

in a �rst step towards verifying the Wireless Transaction Protocol. WTP utilises

the datagram service (Transport layer) in the WAP architecture and provides a

reliable request/response service to the upper layers.

Coloured Petri nets were used to model the Transaction Service and generate

the occurrence graph. The knowledge of the analysis techniques used allowed

several assumptions to be made that simpli�ed the model. Halt states were

introduced and the OG was treated as a �nite state automata and reduced to

obtain the service language.

The Transaction Service language generated provides a complete set of service

primitive sequences, when taking both ends of the transaction into account (i.e.

both initiator and responder). This global behaviour is not described in the WAP

speci�cation. From the modelling and analysis, two questions not fully answered

in the service speci�cation arose:

1. What constitutes the end of a transaction?

2. Why is a TR-Abort.req primitive possible after a TR-Result.res from the

initiator user?

Answers were obtained from examining the operation of the protocol in more

detail. A transaction may be considered complete if either:

1. both initiator and responder have aborted,

2. a TR-Invoke.req at the initiator is followed immediately by an abort, and

the provider hasn't noti�ed the responder (e.g. due to network failure),
3. the initiator has acknowledged the result and the responder has either re-

ceived the acknowledgement or aborted.

In the �nal case, it is still possible for the initiator to issue a TR-Abort.req

to clear transaction state information. The need to understand the protocol

operation is a shortcoming of the speci�cation { the service should be described

independently of the protocol. No other de�ciencies have been found in the

service speci�cation.

The Transaction Service language can be used as a basis for verifying that

the Wireless Transaction Protocol conforms to the service speci�cation. The next

step to achieve this is to model the operation of the protocol in detail. This work

is in progress. An incremental approach is being used so di�erent features can be

modelled and analysed. The desired results are to generate an OG from which

properties of the protocol can be derived (e.g. presence of deadlocks). Then the

protocol language can be generated and compared to the service language.

Acknowledgements

This work was carried out with �nancial support from the Commonwealth of

Australia through the Cooperative Research Centres Program.

References

[1] W. A. Barret and J. D. Couch. Compiler Construction: Theory and Practice.

Science Research Associates, 1979.
[2] J. Billington. Abstract speci�cation of the ISO Transport service de�nition using

labelled Numerical Petri nets. In H. Rudin and C. H. West, editors, Protocol

Speci�cation, Testing, and Veri�cation, III, pages 173{185. Elsevier Science Pub-

lishers, Amsterdam, New York, Oxford, 1983.
[3] J. Billington, M. Diaz, and G. Rozenberg, editors. Application of Petri Nets to

Communication Networks: Advances in Petri Nets. LNCS 1605. Springer-Verlag,

Berlin Heidelberg New York, 1999.
[4] Meta Software. Design/CPN Reference Manual, Version 2.0. 1993.
[5] WAP Forum. Wireless application protocol architecture speci�cation. Available

via: http://www.wapforum.org/, Apr. 1998.
[6] WAP Forum. Wireless application protocol wireless transaction protocol speci�-

cation. Available via: http://www.wapforum.org/, Apr. 1998.
[7] ISO/IEC. Information Technology - Open Systems Interconnection - Basic Ref-

erence Model - Conventions for the De�nition of OSI Services. 10731. 1994.
[8] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical

Use, Vol. 1-3. Springer-Verlag, Berlin, 1997.
[9] K. Jensen, S. Christensen, and L. M. Kristensen. Design/CPN Occurrence Graph

Manual, Version 3.0. Department of Computer Science, Aarhus University,

Aarhus, Denmark, 1996.
[10] L. M. Kristensen, S. Christensen, and K. Jensen. The practitioner's guide to

Coloured Petri nets. Int J Software Tools for Technology Transfer, 2(2):98{132,

1998.

