
1

A Coloured Petri Net Methodology and Library
for Security Analysis of Network Protocols

San Choosang and Steven Gordon
Sirindhorn International Institute of Technology

Thammasat University
Bangkadi, Thailand 12000

Email: schoosang@ict.siit.tu.ac.th, steve@siit.tu.ac.th

Abstract—Formal methods are often used to prove prop-
erties of network protocols, including required security
properties. However for a protocol modeller the techniques
available for security analysis often require expert knowl-
edge of the technique. Also the tight coupling of protocol
model and security attacks limit re-use of models. With
Coloured Petri nets as the selected formal method, this paper
proposes a methodology to support a modeller in performing
security analysis of a protocol. The methodology enhances
the re-usability, extendability and readability of protocol
and attack models, with the aim of simplifying the tasks
of the modeller. Key to the methodology is the decoupling
of the protocol and attack models by using the hierarchical
structure of Coloured Petri nets. Also a library of attack
modules is developed based on Dolev-Yao assumptions;
the modules can be composed to create complex attacks
and re-used across different protocols. To demonstrate the
methodology, a case study analysing the ZigBee RF4CE
pairing protocol is presented. The case study shows the ease
at which attacks can be integrated and how the methodology
addresses the state space explosion problem. The impact of
two attacks on the ZigBee protocol are analysed, showing
several scenarios which lead to a mismatch in state at the
ZigBee devices.

Index Terms—security analysis, formal methods, commu-
nication protocols, ZigBee RF4CE, Coloured Petri nets

I. INTRODUCTION

There has been a rapid growth in the development of
communication protocols to improve the capability and
the performance of networking technology. Significant
effort is directed to the design of new network protocols
by researchers, companies and standard development or-
ganisations. Their primary focus is on performance, anal-
ysed using mathematical and simulation models. However
security of protocols is also important.

There is a wide body of research addressing security
analysis of protocols [2]. The majority of this research
concentrates on building a model of a protocol and
proving security properties in a mathematical formalism.
Although able to produce proofs of security properties,
the two main limitations of these approach are:
• Difficult for protocol modellers to use: the tech-

niques require detailed knowledge of the mathemat-
ical methods to create a model.

Manuscript received April 4, 2012; revised June 13, 2013; accepted
July 8, 2013.

This work was supported by the National Research University Project
of Thailand, Office of Higher Education Commission.

• Lack of integration with other design steps: the
security method cannot be (even partially) re-used
for performance analysis, and is normally not in a
form to be used in a standard document.

To address these issues, one alternative is to use for-
mal models that offer graphical notations for modelling
protocols, thereby making it easier for protocol modellers
to analysis security properties without being experts in
the underlying mathematics. Coloured Petri nets (CPNs)
[1] are one such formal method. Recently researchers
have been applying CPNs to analyse the security of
network protocols [3], [4], [10], [15], [16], [17], [18].
Our research presents a new methodology that combines
ideas from recent research, as well as introduces new con-
cepts to prove security properties of network protocols.
Our proposed methodology separates the model of the
protocol from models of security attacks. We have also
developed a library of attack modules that can be re-used
in different protocols. We present the steps that a modeller
uses to incorporate attack modules from the library into
their protocol model. We also include mechanisms that
can help alleviate the state space explosion problem.
A significant difference between our methodology and
other approaches (e.g. [3], [17]) is that we require the
modeller to analyse attacks in an iterative manner. That
is, our approach encourages the modeller to analyse a
single attack at a time, where as [3] and [17] have
the advantage in that they allow analysis of multiple
different attacks, potentially detecting unknown attacks.
We believe the extra effort required by the modeller to
analyse single attacks at a time is a reasonably trade-
off for the benefits of re-usable, extendable and readable
models. We demonstrate our methodology with a small
but relevant case study that analyses multiple attacks on
the ZigBee RF4CE wireless networking protocol [5].

This paper is structured as follows. In Section II we
present the background on CPNs and protocol modelling.
Section III reviews the related work. Our methodology
is presented in Section IV, giving both an informal
description and formal definition of the steps to be taken
by the protocol modeller. Section V introduces the case
study, the ZigBee RF4CE pairing protocol. A CPN model
of the protocol with two example attacks incorporate is
presented, along with analysis results in Section VI and

JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014 243

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.2.243-256

2

Section VII, respectively. We close with conclusion and
future work in Section VIII.

II. BACKGROUND

A. Formal Modelling of Protocols

Formal methods can be used for the specification and
analysis of communication protocols to provide insights
into the system behaviour, early detection of errors in the
design process, remove ambiguities from specifications
and to prove correctness of the protocols [6]. Protocol
verification is one common use of formal methods, where
proofs are made that a protocol satisfies a set of require-
ments or desired properties (e.g. faithful refinement of a
service, absence of deadlocks). Although not as common,
formal methods can also be used to analyse the perfor-
mance and security of properties. It is more common
that performance analysis is undertaken with purpose-
built network simulators (e.g. OPNET, ns2), while various
mathematical techniques are used for security analysis.
Seldom is a single formal method used for the analysis
of functional, performance and security properties of a
protocol, making it difficult for a protocol modeller to
gain the expertise to perform all types of analysis.

Coloured Petri nets [1] are one formal method which
have the potential of supporting functional, performance
and security analysis of protocols. CPNs are well suited
to modelling protocols as they support concurrency and
non-determinism, and allow for modelling at different
levels of abstraction, such as a service and a protocol.
Importantly they have a graphical notation, simplifying
the development and validation of protocol models and
have strong computer tool support, CPN Tools [7]. There
are many case studies applying CPNs to protocol veri-
fication [8], [9], [10], [11], as well as for performance
analysis [12], [13], [14] and security analysis [4], [3].
Ideally a protocol modeller could create a single CPN
model of a protocol, from which they can automatically
prove functional and security properties of the protocol
and conduct a performance evaluation. One challenge in
achieving this is simplifying the effort needed by the
protocol modeller in incorporating security attacks into
an existing protocol model.

A common approach for security analysis of protocols
is to create a model of the protocol and then modify
that model to incorporate selected attacks. Using a formal
method such as CPNs to create the model then allows
analysis of the impact of attacks on the protocol, e.g. using
model checking or state space analysis. Incorporating
an attack into an existing model commonly involves
modifying the structure of the existing model [10], [15],
[16]. However this often makes the protocol model and
attack tightly coupled, limiting the chances of re-using or
extending the models and sometimes reduces readability
of the model. The focus of this paper is decoupling the
model of the protocol from the attack, so that a mod-
eller can perform security analysis while enhancing the
readability, re-usability and extendability of their models.

B. Coloured Petri Nets

CPNs are a directed graph with two types of nodes: a
set of places, P , and a set of transitions, T , represented by
ellipses and rectangles, respectively. Places and transitions
are connected by directed arcs: input arcs (place to
transition) and output arcs (transition to place). Places
are typed by a colour set and the values that marks on
the places are called tokens. Transitions and arcs can also
have inscriptions (expressions) to control the execution of
the model. The execution of a CPN consists of occurrence
of transitions. A transition can occur if and only if: for all
input places, sufficient tokens exist that satisfy the input
arc inscriptions, and the transition inscription evaluates to
true.

The formal definition of non-hierarchical CPNs follows
[1]. (Hierarchical CPNs, which are used in this paper,
extend this definition; in Section IV-C we will show the
extended definition for our models).

Definition 1. A non-hierarchical Coloured Petri Net is a
nine-tuple CPN = (P, T,A,Σ, V, C,G,E, I), where:

1) P is a finite set of places.
2) T is a finite set of transitions T such that P∩T = ∅.
3) A ⊆ P × T ∪ T × P is a set of directed arcs.
4) Σ is a finite set of non-empty colour sets.
5) V is a finite set of typed variables such that

Type[v] ∈ Σ for all variables ∀v ∈ V .
6) C : P → Σ is a colour set function that assigns a

colour set to each place.
7) G : T → EXPRV is a guard function that assigns

a guard to each transition t such that Type[G(t)] =
Boolean.

8) E : A → EXPRV is an arc expression function
that assigns an arc expression to each arc a such
that Type[E(a)] = C(p)MS , where p is the place
connected to the arc a.

9) I : P → EXPR∅ is an initialisation function that
assigns an initialisation expression to each place p
such that Type[I(p)] = C(p)MS .

For the inscriptions (C,G,E, I) EXPR denotes the
set of expressions provided by the inscription language
CPN ML (an extension of Standard ML). The type of
an expression e is denoted by Type[e]. MS refers to a
multiset. Graphically, in this paper places are illustrated
as eclipses, transitions as rectangles, guards in square
brackets, and all other inscriptions located next to the
corresponding place/arc.

III. RELATED WORK

Various researchers have investigated the application
of formal methods to prove security properties, including
using CPNs. CPNs offer the advantage of being able to
automatically generate proofs of security properties (like
other mathematical approaches), while also providing a
graphical, simple-to-use notation making creation and
validation of models viable for protocol modellers. Here
we focus on recent advances in using CPNs in a general
methodology for modelling security protocols.

244 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

3

Xu and Xie [16] present a methodology for modelling
attacks in security protocols using CPNs, and apply it
to the Andrew Secure RPC protocol. The methodol-
ogy recommends separating the models of the attacks
from the original protocol model. However no details
are given as to how to do this for a specific set of
attacks. The modelling constructs and declarations to
be used are not presented by the authors. Xu and Xie
demonstrate the modelling of an attack on the Andrew
Secure RPC protocol. Using state space analysis they
show that the introduction of an attack in the protocol
exposes a weakness (which is well known for Andrew
Secure RPC). However this can be considered a ’toy-
example’ in terms of complexity. Many protocols will
be much more complex, and hence the state explosion
problem will arise. Xu and Xie give no techniques for
alleviating the state explosion problem.

Our research extends upon the work by Xu and Xie.
In a similar manner we keep the models of attacks
independent from the original protocol model. Further-
more, we also provide a library of models of different
attacks and design the methods for incorporating into
different protocols. In addition, we present techniques
for alleviating the state explosion problem when multiple
attacks are allowed (a case not considered by Xu and Xie).

Suriadi et al. [10] has applied CPNs to model privacy
enhancing protocols, in particular PIEMCP. They present
the concept of abstracting from the cryptographic opera-
tions (i.e. not implementing the encryption ciphers) so the
modelling can focus on the protocol exchange. To handle
multiple types of attacks in one model they introduce
conditional statements on selected arc inscriptions in
the CPNs. Temporal logic is applied on the state space
to prove security properties. While providing detailed
analysis of PIEMCP, the approach used by Suriadi et al.
is not directly applicable to other protocols. In particular,
they only model attacks from insiders (nodes participaing
in the protocol that behave maliciously), but not from
outsiders. Numerous attacks on protocols involve out-
siders (in many cases, insiders are assumed to be trusted).
The approach of modelling attacks as conditions on arc
inscriptions means the attack models cannot be easily
applied to different protocols.

Our research provides a different and more generic
methodology for modelling attacks than that proposed by
Suriadi et al., focussing on attacks by external nodes, not
insiders.

Al-Azzoni et al. [3] presents one of the first method-
ologies for verifying cryptographic protocols with CPNs.
Starting with an existing model of a protocol with no
intruder, they add a substitution transition on the top-
level page to represent the intruder. Changes to the
model include new declarations and an intruder page that
models the attacks on communication channels of the
normal entities in the protocol. The attacker model allows
for interception, modification and insertion of messages.
To reduce the state space, they introduce new places
to the existing entities so that unnecessary interleaving

between subprocesses of the entities are restricted. The
methodology is demonstrated for the TMN authenticated
key exchange protocol.

Permpoontanalarp and Changkhanal [17], [18] have
developed a modelling methodology that extends the work
of Al-Azzoni et al. [3] and is similar to Xu and Xie,
modelling the attacker as a independent entity between
initiator and responder in a protocol. The methodology
includes an approach for defining vulnerability events,
as well as obtaining a trace of events that lead to a
discovered attack. The methodology has been applied
to two examples: TMN authenticated key exchange and
Micali’s contract signing protocol.

The works of both Al-Azzoni et al. and Permpoon-
tanalarp and Changkhanal are similar in how attackers
are introduced. Our research extends upon their approach,
using a similar methodology. However a key difference
is the detail in which attacks are modelled. Their work
present models of attacks on specific protocols, namely
TMN. Their attack models are general, in that they allow
the attacker to intercept and modify any message. This has
the advantage that the resulting state space can be used
to identify different possible successful attacks, including
unknown attacks. The disadvantage is that the state space
size may increase rapidly.

To overcome the state space explosion, our methodol-
ogy allows the modeller to limit the types of messages
that can be intercepted, modified and inserted. But this
comes at the expense of more specific attack models,
i.e. the analysis identifies a only restricted set of possible
successful attacks. In order to overcome this limitation, a
modeller must model and analyse specific attacks sepa-
rately. Although extra effort is therefore required by the
modeller, we believe this will fit with the incremental
approach modellers often use, especially when supported
by the library of attack modules provided.

IV. SECURITY ANALYSIS METHODOLOGY

A. Methodology Overview

We propose a methodology for modelling and analysing
network protocols from a functional and security view-
point using Coloured Petri nets. The methodology sets out
the steps that a modeller should follow, defines specific
parts of the CPN protocol model and offers a library of
common attacks. The main steps are:

1) Create an original protocol model: The model of
the protocol must be created following the protocol
modelling approach described in Section IV-B.

2) Functional analysis of the protocols: analyse the
protocol model to investigate unexpected be-
haviours of the protocol by using state space anal-
ysis.

3) Attack integration: add the attack modules into the
communication channels of the original protocol
model.

4) Security analysis: analyse the updated protocol
model, investigating the behaviour when attacks are
present.

JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014 245

© 2014 ACADEMY PUBLISHER

4

The steps are designed with three primary features
in mind: re-usability, extendability and readability. Note
that the last two steps will in practice be performed
iteratively using different attacks, i.e. one attack model
per computation of the state space. For example, a sim-
ple, known attack may be modelled and analysed first.
Once completed, a more complex attack is modelled and
analysed, and so on until the modeller is confident of the
protocol strengths.

Developing a CPN model of a communications pro-
tocol requires significant time and effort. Typically CPN
models are created to support functional analysis of the
protocol, although performance analysis is also possible.
Our methodology requires the modeller to use defined
constructs for modelling the communication channel in
CPNs. Although this limits the modeller, the constructs
are sufficient to cover most common scenarios (e.g. or-
dered or unordered channels, lossy or lossless channels).
And importantly by using the defined constructs the mod-
eller can re-use the functional protocol model for security
analysis with few changes. Re-using the same protocol
model is a significant benefit of our methodology as
the modeller avoids challenges of managing two separate
models.

A key idea in our methodology is that the protocol
model should support analysis of multiple attacks. We
implement attacks using common attack modules that
can be composed to form more specific and complex
attacks. The attack modules are not specific to a protocol
and therefore are re-usable across different protocols.
With our methodology a modeller can concentrate on the
protocol modelling, re-using the library of attack modules
as needed.

The attack modules are designed so that they can be
composed together in different ways to create different
attacks. They can also be easily plugged in to the protocol
model. This offers extendability, in that many attacks can
be created using the common attack modules.

A key advantage of CPNs over other formal methods is
that their graphical notation allows modellers to visualise
the protocol operation. However it is still possible for
a modeller to make a CPN model difficult to read (e.g.
very long arc inscriptions, many crossing arcs, poorly
positioned places and transitions). In designing the attack
modules and separation from the protocol model in our
methodology, we focussed on maintaining the readability
of the CPN. Rather than modelling attacks as a set of
conditional statements in inscriptions on arcs within the
protocol model (e.g. [10]) we only require very minor
modifications to the existing protocol model so that it
maintains its readability.

These three features—re-usability, extendability and
readability—are further explained when describing the
individual steps in the remainder of this section. They are
demonstrated in the case study on RF4CE in Section VI.

B. Functional Protocol Model

The first step of this methodology is to create a CPN
model of the protocol under investigation. CPNs are often
used to analyse functional behaviour of protocols (e.g. ab-
sence of deadlocks, comparison to service specifications)
and hence we refer to the original model as the functional
protocol model.

There are various ways to model a protocol with CPNs
[1], [19], depending on the objectives of the protocol
modeller. Although we do not require any specific ap-
proach, in our methodology the modeller must model
the communicating entities independently such that they
only communicate via a communications channel model.
This imposes some limitations on what type of protocols
can be modelled. Our methodology therefore assumes the
protocol under investigation uses:
• Unicast communications with only two entities in-

volved. Currently multicast/broadcast and multi-
party protocols (e.g. client–server–database) cannot
be modelled.

• A full-duplex communications channel. This in-
cludes support for both ordered and unordered chan-
nels, as well as lossy and lossless channels. The
channels can represent a single link or an entire
communications network.

The required structure of the functional protocol model,
i.e. the top-level CPN page, is shown in Fig. 1.

EntityA

A

D

B

C

EntityB

Fig. 1. General Structure of Functional Protocol Model

Each protocol entity is modelled by a substitution
transition, EntityA and EntityB. Each substitution transition
is assigned a sub-module, a CPN page that models the
protocol entity in detail (e.g. packet transmission and
reception, timers, processing algorithms). This structure is
defined by a module hierarchy which is a directed graph
with a node for each module and a labelled arc for each
substitution transition. Fig. 2 is a graphical representation
of the module hierarchy for the functional protocol CPN
model. The top-level module must have two sub-modules,
EntityA and EntityB. Modules Xi and Yi represent a sub-
modules under EntityA and EntityB substitution transitions
which model the detail of each protocol entity. They are
not required—it is the choice of the modeller as to how
to model the protocol details.

The modeller is free to model the entities as they
choose. The only restriction is that the entities communi-
cate via the four channel interface places, A, B, C and D.
The modeller is free to model the channel as they choose,
so long as the four places use the same type. Examples of

246 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

5

EntityA EntityB

X1 Xn Y1
Yn

X
1

X
n

Y
1 Y

n

EntityA EntityB

Protocol

Fig. 2. Module Hierarchy of Functional Protocol Model

unordered and ordered delivery channel models are shown
in Fig. 3 and Fig. 4, respectively.

A BChannel
frame frame

Fig. 3. Example CPN Model of Unordered Channel

A Channel B
frame::queue1 queue2^^[frame]

queue1 queue2

Fig. 4. Example CPN Model of Ordered Channel

The rationale for this functional protocol model design
is to support re-usability and readability of the CPN.
Separating protocol entities by a communication channel
in the CPN corresponds to the implementation of a
protocol, i.e. entities are in a distributed system and can
only communicate via the channels. In Section IV-E we
will show the functional protocol model can easily be
re-used for security analysis by integrating attacks in
the communication channel. The detailed models of the
protocol entities require few or no changes. This also
maintains the readability of the CPN.

C. Formal Definition of Functional Protocol Model
A formal definition of the functional protocol model

required in our methodology is given in Definitions 2,
3 and 4. These definitions are based on the definition
of hierarchical CPNs in [1], which extend the non-
hierarchical CPN in Definition 1. However Definitions 2,
3 and 4 impose restrictions on substitution transitions and
the module hierarchy.

Definition 2. A Protocol Coloured Petri Net Module is a
four-tuple PCPNM = (CPN, Tsub, Pport, PT), where:

1) CPN = (P, T,A,Σ, V, C,G,E, I) is a non-
hierarchical Coloured Petri Net.

2) Tsub ⊆ T is a set of substitution transitions, where:
Tsub = {EntityA,EntityB}

3) Pport ⊆ P is a set of port places, where:
Pport = ∅

4) PT : Pport → {IN,OUT, I/O} is a port type
function that assigns a port type to each port place.

Definition 3. A hierarchical functional protocol Coloured
Petri Net is a four-tuple FCPNH = (S, SM,PS, FS),
where:

1) S is a finite set of modules. Each module
is a Coloured Petri Net Module s =
((P s, T s, As,Σs, V s, Cs, Gs, Es, Is), T s

sub, P
s
port, PT s).

It is required that (P s1 ∪ T s1) ∩ (P s2 ∪ T s2) = ∅
for all s1, s2 ∈ S such that s1 6= s2, where:
S = {Protocol, EntityA,EntityB,
X1, . . . , Xn, Y1, . . . , Yn}

2) SM : Tsub → S is a submodule function
that assigns a submodule to each substitution
transition. It is required that the module hierarchy
is acyclic, where:

SM :

EntityAProtocol 7→ EntityA
EntityBProtocol 7→ EntityB
XEntityA

i 7→ Xi

Y EntityB
i 7→ Yi

3) PS is a port-socket relation function that assigns
a port-socket relation PS(t) ⊆ Psock(t)× P

SM(t)
port

to each substitution transition t. It is required that
ST (p) = PT (p′), C(p) = C(p′), and I(p)〈〉 for all
(p, p′ ∈ PS(t) and all t ∈ Tsub, where:
• PS(EntityAProtocol) =
{(AProtocol, AEntityA), (DProtocol, DEntityA)}

• PS(EntityBProtocol) =
{(BProtocol, BEntityB), (CProtocol, CEntityB)}

• PS(XEntityA
i) =

{(∆EntityA
1 ,∆Xi

1), . . . , (∆EntityA
n ,∆Xi

n)}
• PS(Y EntityB

i) =
{(∆EntityB

1 ,∆Yi
1), . . . , (∆EntityB

n ,∆Yi
n)}

4) FS ⊆ 2P is a set of non-empty fusion set such
that C(p) = C(p′) and I(p)〈〉 = I(p′)〈〉 for all
p, p′ ∈ fs and all fs ∈ FS, where:
FS = {}

Definition 4. The module hierarchy for a hierar-
chical functional protocol model Coloured Petri Net
FCPNH = (S, SM,PS, FS) is a directed graph
MH = (NMH , AMH), where:

1) NMH = S is the set of nodes, where
NMH = {Protocol, EntityA,EntityB,
X1, . . . , Xn, Y1, . . . , Yn}

2) AMH = {(s1, t, s2) ∈ NMH × Tsub × NMH |t ∈
T s1
sub ∧ s2 = SM(t)} is the set of arcs, where

AMH = {
(Protocol, EntityA,EntityA),
(EntityA,X1, X1),
. . . ,
(EntityA,Xn, Xn),
(Protocol, EntityB,EntityB),
(EntityB, Y1, Y1),
. . . ,
(EntityB, Yn, Yn)}

D. Attack Modules Library
Many security attacks against protocols are specific

to the protocol. However attacks often comprise com-
mon operations by the attacker. The Dolev-Yao [20]

JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014 247

© 2014 ACADEMY PUBLISHER

6

assumptions establish a model of what an attacker can
do. According to Dolev-Yao an attacker has full control
over the communication channel and can carry out the
following actions:

1) Tapping and storage of all messages that pass
through the communication channel.

2) Forwarding or blocking of messages.
3) Generation of forged messages.
4) Decryption of cryptographic messages if the at-

tacker has a matching key.
5) The attacker can take part in the protocol, so

pretending to be any entity is possible.
We use the Dolev-Yao attacker model to create a set of

attack modules: partial CPNs that model the behaviour of
common attack operations. The attack modules are:
• Interception module (Fig. 5). This module allows the

attacker to intercept a frame that is begin transmitted
through the communication channel. A copy of the
frame is stored for future use.

• Modification module (Fig. 6). This module allows
the attacker to change the content of the target frame.

• Replay module (Fig. 7) This module allows the
attacker to re-send a frame that has previously been
intercepted by the attacker.

• Injection module (Fig. 8) This module allows the
attacker to create a new frame and send it to the
destination entity.

• Drop module (Fig. 9) This module allows the at-
tacker to discard a frame that is currently being
transmitted through the communication channel.

• Message generation module (Fig. 10) This module
allows the attacker to generate a new frame which
will be injected to the target entity.

1. Change the colour set of places
 to the protocol modeller design
 colour set
2. Change the arc expression variables
 to the protocol modeller design
 variables
3. Edit the guard at Intercept
 transition

ft

1`()

frameframe
Intercept

[#FrameType frame = ft]

Attacker
DB

Attacker DB
Frame

Filter

FrameType

Output

Out UNIT

Input

In FrameIn

Out

Attacker DB

Fig. 5. Interception Module

1. Change the colour set of places
 to the protocol modeller design
 colour set
2. Change the arc expression variables
 to the protocol modeller design
 variables
3. Edit the guard at Select transition
4. Edit the Modification Function

Function
Modification

ft

1`()
1`()

frameframeframe
ModifySelect

[#FrameType frame = ft]

Output

Out
UNIT

After

Attacker DB
Frame

To be
Modify

Frame

Input

In
UNIT

Filter

FrameType

Before

Attacker DB
Frame

Attacker DB

In

Attacker DB

Out

Fig. 6. Modification Module

The attack modules have several common design fea-
tures. Each attack module has an Input place and Output

1. Change the colour set of places
 to the protocol modeller design
 colour set
2. Change the arc expression variables
 to the protocol modeller design
 variables
3. Edit the guard at Select transition

frame

1`()
1`()

ft

frameframeframeframe
ReplaySelect

[#FrameType frame = ft]

Output

Out
UNIT

B

Out
Frame

To be
Replay

Frame

Filter

FrameType

Input

In
UNIT

Before

Attacker DB
Frame

Attacker DB

In

Out

Out

Fig. 7. Replay Module

1. Change the colour set of places
 to the protocol modeller design
 colour set
2. Change the arc expression variables
 to the protocol modeller design
 variables
3. Edit the guard at Select transition

ft

1`()1`()

frameframeframeframe
InjectSelect

[#FrameType frame = ft]

Output

Out
UNIT

B

Out
Frame

To be
Inject

Frame

Filter

FrameType

Input

In
UNIT

Before

Attacker DB
Frame

Attacker DB

In

Out

Out

Fig. 8. Injection Module

place. A token on the Input place enables the attack
to occur while a token in the output place signifies
the completion of the attack. When composing multiple
modules to create more complex attacks, the Output place
of one module is connected to the Input place of the next
module (SectionIV-E further describes how the modules
are integrated).

An attack often involves manipulating frames sent
between the protocol entities. The success of an attack
may depend on manipulating and storing multiple frames.
Therefore we use a single place to store the frames as they
are received and after they are modified. The place to store
the frames is the attackers database of information (the
model could be extended to store information other than
frames if needed). Although only one place is needed, to
enhance the readability of the CPN we use a fusion place,
Attacker DB, which has two subplaces Before and After.
These two subplaces are in fact the same place: a token
in Before also means that token exists in After.

1. Change the colour set of places
 to the protocol modeller design
 colour set
2. Change the arc expression variables
 to the protocol modeller design
 variables
3. Edit the guard at Select transition1`()1`()

ft

frameframeframe
DropSelect

[#FrameType frame = ft]

Output

Out
UNIT

To be
Drop

Frame

Input

In
UNIT

Filter

FrameType

Before

Attacker DB
Frame

Attacker DB

In Out

Fig. 9. Drop Module

1. Change the colour set of places
 to the protocol modeller design
 colour set
2. Change the arc expression variables
 to the protocol modeller design
 variables
3. Edit the guard at Generate Frame transition
4. Edit the Frame Generation Function

Function
Frame Generation

1`()

1`()

n-1 n

Generate
Frame

[n>0]

Limit

INT

Input

In
UNIT

Output

Out
UNIT

After

Attacker DB
Frame

Attacker DB

Out

In

Fig. 10. Message Generation Module

248 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

7

A common problem in using state space analysis in
CPNs (and other formal methods) is state explosion: the
number of states grow rapidly leading to exhaustion of
memory or reasonable time in calculating the state space.
In designing a CPN tradeoffs can be made that aim
to reduce the state space size often at the expense of
expressability and readability of the model. The design
of the attack modules allows every frame transmitted
to be processed by that module, leading to potentially
a large number of new states in the security protocol
model. Therefore we introduce a Filter place which the
modeller uses to select the frames to be processed by the
attack module. By limiting the attack module to process
only a selection of all possible frames the resulting state
space can be smaller. However this is at the expense
of limiting the analysis to attacks on only the selected
frames: analysis of the security protocol model will not
cover attacks on frames not selected by the modeller.
Selecting the frames to filter to minimise the state space,
while reducing the chance that attacks will not be covered,
currently depends on knowledge of the protocol under
analysis. A possible area of future work would be to
present guidelines for modellers on applying filtering to
assist this model design decision.

To illustrate how the Filter place can be used to control
the state space size, consider a protocol that allows three
different frame types to be sent. Without the Filter place
a replay attack would allow any of those three frames to
be re-sent at any time. Although this allows for any type
of replay attack but it can lead to a significant increase
in state space size (compared to the functional protocol
model). With knowledge of the protocol and potential
attacks, the modeller may decide that only one frame
type should be considered in a replay attack (assuming
the other two frame types will not lead to a successful
attack). The modeller would specify the frame type in
the Filter place. This will reduce the state space size,
but requires additional knowledge and assumptions about
likely attacks

The modeller selects the frames that can be processed
by an attack module by setting the initial marking, which
is a list of frames, of the Filter place.

Another approach to control the state space size is to
limit the number of occurrences of an attack module. The
Limit place contains an integer indicating the number of
times an attack can be repeated. For example in the Mes-
sage Generation module, if we do not limit the number
of generated frame the CPN would allow generation of
an infinite number of frames (possibly leading to infinite
state space size). The modeller can use the initial marking
of the Limit place to limit the number of frames generated.
For example if the initial marking of the Limit place is
set to three, that means three frames can be generated
by this module. Again this is a design tradeoff that
reduces the state space size but requires the modeller to
make additional assumptions about the protocol and attack
operation.

As an example of the module design, Fig. 6 shows
the modification attack module. In this module there are
6 places and 2 transitions. This attack can occur when
there is one token in the Input place. Then a frame will
be selected from Before place to be modified through the
Select transition filtered by the Filter place. After that a
selected frame will be modified by the Modify transition,
stored in the After place and produce one token in the
Output place.

E. Integrating Attack Modules

After the functional protocol model is created and
analysed the next step is to integrate an attack model into
the functional model. Attack modules from the library
are inserted into the communication channel. We refer
to the functional model with integrated attack model as
the security protocol model. Fig. 11 shows the module
hierarchy of a security protocol model. Compared to the
functional protocol hierarchy (Fig. 2), the communication
channel and attack in each direction is now modelled by
a separate substitution transition, with each sub-page con-
taining further substitution transitions for attack modules.
(For clarity, Fig. 11 only shows the Channel sub-module
for one direction of communications; there is another for
the opposite direction).

EntityB

Y1
Yn

Y
1 Y

n

Atk
1

Atk
n

EntityA

X1 Xn

X
1

X
n

Channel
EntityA EntityB

Atk1
Atk

n

Channel

Protocol

Fig. 11. Module Hierarchy of Security Protocol Model

To create an attack model, a sequence of attack modules
are combined. There are restrictions in how modules can
be combined. We classify the modules into three groups:

1) Start module (S): This is the first module in the
attack sequence. It must be able to accept a frame
as input, i.e. the Input place. The only attack module
in this group is Interception.

2) Intermediate module (I): Following one or more
start modules (and before an end module) can be
zero or more intermediate modules. Modules in this
group are: Modification, Message Generation and
Drop.

3) End module (E): This is the last module in the
attack sequence. It must deliver a frame to the
receiving channel place, i.e. B or D. In the attack
module this frame comes via place B. There can
be zero or one end module in the attack sequence.
Modules in this group are: Injection and Replay.

The restrictions on how the modules can be combined
are summarised as:

Intercept+ (Modify|Generate|Drop)* (Inject|Replay)?

JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014 249

© 2014 ACADEMY PUBLISHER

8

For example, a typical modification attack where the
attacker modifies a single frame involves an Interception
module followed by a Modification module.

To illustrate how the attack modules are integrated
into the functional protocol model, assume a simple
unordered communication channel (Fig. 3). An attack
sequence as shown in Fig. 12 is created as follows. A
Start module must be connected to the transmitting place
of the channel, i.e. the output arc of place A is connected
to the substitution transition of the attack module; place A
and place Input on the attack module page are connected
by port-socket relation functions. Intermediate modules
can then be added using further substitution transitions,
connecting Output place of one module to the Input place
of the next. Finally an End module may be added, with
B place in the attack module page connected by a port-
socket relation function to B place in the channel.

In Fig. 12, the integrated model provides two possible
ways to transmit a token, representing a frame, from
place A to B. The first way is send it directly to place
B through the channel transition. If a token takes this
path, then it models the normal situation when an attack
does not occur. The alternative is that the token passes
through the sequence of attack modules. This models the
situation of an attack occurring. The direction that the
token takes—via the normal channel or via the attacker—
is non-deterministic, but the token may take one path or
the other, not both (the transitions are in conflict). Note
that when the modeller selects specific frames to intercept,
then those frames may take the attack path or normal path,
while all other frames will take the normal path.

The reason for modelling the attack like this—allowing
the frame token to take the normal path or the attack
path—is to clearly separate the attacker operations from
the normal operations in the CPN. An alternative approach
could be to remove the channel transition forcing all
tokens through the attack modules. For readability and re-
usability, our goal was to minimize the number of changes
a modeller would need to make to the original protocol
model in order to introduce an attack. Hence we leave
the channel transition in the model. The outcome of this
is that the state space of the protocol with an attack is
a superset of the state space of the protocol without an
attack, i.e. our design choice sacrifices state space size
for improved readability and re-usability of the model.

Atk
1 x1 Atk

2
x2 Atk

n

BChannel

Intermediate
Module

A

Module

Start

Module
End

Fig. 12. Example of Attack Integrated Model

In summary, the steps taken by the modeller in CPN
Tools are:

1) Add a sequence of substitution transitions compris-
ing a transition for each desired attack module.

2) Connect the substitution transitions via arcs to form
a serial chain from channel transmitter place (A or
C) to channel receiver place (B or D).

3) Edit inscriptions on the attack module pages to
suit the specific protocol (e.g. frame types). For
convenience to the modeller, the parts to edit are
given in comments on each attack module page.

This methodology allows the same attack module to be
connected repeatedly, since the attack modules in the Start
and Intermediate group can be used (connected) more
than one time. For example, if we want to modify three
different fields in one frame, two options are available.
The first option is using three Modification modules,
one module for each field. This provides readability to
the model but at the expense of increased state space
size. Alternatively, the second option is using a single
Modification module to modify three fields at the same
time by using more complex arc inscriptions. This comes
at the expense of readability but does not increase the state
space size as much. Our methodology allows the modeller
to choose the best suited approach for their needs.

V. ZIGBEE RF4CE
The ZigBee Radio Frequency for Customer Electronics

(RF4CE) standard [5] allows wireless connectivity in
applications in the Customer Electronics domain. Target
products are remote controls, input devices, and 3D
glasses. Instead of using infrared as a medium, ZigBee
RF4CE uses radio frequency that provides benefits such as
more reliable, longer distance, two ways communication
and non line-of-sight. The Physical and MAC layer of
ZigBee RF4CE are based on IEEE 802.15.4 standard,
whereas the Network layer protocols are newly defined.
The ZigBee RF4CE stack architecture is shown in Fig. 13.

End User Application

Application Profiles

IEEE 802.15.4

Network Layer

Data Entity

Network Layer

Entity

Management

Fig. 13. ZigBee RF4CE Stack Architecture

Applications use one of the pre-defined profiles to
access one of two network layer services. A data transfer
service is offered by the Network Layer Data Entity
(NLDE), allowing transmission and reception of network
protocol data units (NPDUs). A management service
is offered by the Network Layer Management Entity
(NLME) allowing:
• Service discovery: Find other suitable nodes to pair

to
• Pairing: Create a link between a pair of nodes to

allow data transfer
• Unpairing: Remove a pairing link

250 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

9

• Node initialization: Allow a node to configure its
own stack as a controller node or target node, and
start a network

• NIB attribute manipulation: Manage the Network
Information Base (NIB) attribute from the NLME

This case study, and subsequent description, focuses
on the pairing mechanism in the NLME. Only features
relevant to the modelling/analysis tasks are described; for
a full treatment of ZigBee RF4CE see [5].

A. Pairing

Before nodes can communicate with each other a
pairing link must exist between the two nodes, originator
and recipient. A pairing request is one of the services
permitted by NLME to create a pairing link between
nodes. The recipient node can choose whether to accept
or reject the pair and confirms the pairing request back
to the originator node.

Frames can be sent by a number of transmission
options: acknowledged or unacknowledged; unicast or
broadcast; single or multiple channel. In this case study
we assume acknowledged unicast across a single channel.

To communicate between layers of an entity, ZigBee
RF4CE use the concept of service primitives which have
four types; Request, Indication, Response, and Confirm.
These primitives are used in many other protocols (e.g.
see [21]).

Different command frame types are used in ZigBee
RF4CE. A pair request command frame allows a de-
vice to request to pair with another device, while a
pair response command frame allows a device to re-
spond to a pair request and pass information relevant to
the pairing link back to the originator. If the security
is required, the key seed command frame is used to
exchange security key seed values with a remote device
in order to generate a security link key. A ping request
command frame allows a device to send a ping command
frame to another device and get a response. Similarly,
a ping response command frame allows a device to
respond to a ping request command frame from another
device.

An example successful pairing attempt with security
support, referred to as secure mode, is illustrated in
Fig. 14. We use this example to explain the typical
operation of pairing. In this message sequence chart,
primitives are shown in normal style while over the air
command frames are labeled in italic text.

From Fig. 14, the application at the originator issues
a PAIR.request primitive triggering a pair request frame
to be sent to the receiver. Upon reception, the NLME
informs the application on the recipient of the request,
which then issues a PAIR.response primitive containing
its decision whether to accept or reject the pair. The re-
sponse is conveyed to the originator in the pair response
frame with a status field that indicates its decision. If
rejected (not shown in Fig. 14) a status field is set
to NOT PERMITTED and the pairing is terminated. If
accepted the status field is set to SUCCESS and as

Application

Originator

(APL−ORG)

Network

Originator

(NWK−ORG) (NWK−REC)

Network

Recipient

(APL−REC)

Application

Recipient

PAIR.request

PAIR.confirm

PAIR.indication

PAIR.response

COMM−STATUS.indication

key_seed(n)

pair_request

key_seed(0)

key_seed(1)

ping_request

ping_response

pair_response

Fig. 14. Message Sequence Chart for Pairing

security is required for pairing (secured mode is in use),
the recipient will send a number of key seed frames.
Once the originator receives all of the key seed frames,
it will generate the security link key and transmit the
ping request frame encrypted with that key. On receipt of
the ping request frame, the recipient verifies that frame
and sends a ping response frame back to the origi-
nator. The originator verifies the ping response frame.
PAIR.confirm and COMM.indication primitives are sent
to application layer of each side to indicate the status of
pairing. Another alternative configuration of pairing is un-
secured mode, where security is not required for pairing,
and the process of sending key seed, ping request and
ping response frames are omitted.

If the pairing was successful, both sides store the entry
of the paired side in their respective pairing tables. Each
entry in the pairing table contains all the information
necessary for the network layer to transmit a frame to
the another side (The format of pairing table is given in
Table 49 of [5]).

If a frame is unsuccessfully sent to another side (i.e.
timeout occurs or frame errors), the pairing process is
stopped and the entry in the pairing table is removed.

VI. CPN MODEL OF PAIRING IN ZIGBEE RF4CE
To demonstrate our proposed methodology, a CPN

model of ZigBee RF4CE pairing has been created. This
section outlines the design of the functional protocol
model and the integration of two example attacks to form
the security protocol model. Section VII presents analysis
results. All modelling and analysis is performed using
CPN Tools.

A. Model Structure

ZigBee RF4CE is modelled as a hierarchical CPN. The
Protocol page (RF4CE) contains substitution transitions,

JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014 251

© 2014 ACADEMY PUBLISHER

10

which in fact represent a CPN on a sub-page. The
hierarchy is shown in Fig. 15. Two entities of the protocol,
ORG (originator) and REC (recipient), are separated in
the second level. Four sub-pages of each entity model
detail of: passing the primitives between application layer
and network layer; managing the network layer process
such as generating frames and handling timeouts; transmit
frames to another entity; and receive frames from another
entity. In total there are 16 places and 56 transitions.
Important declarations used in the model are shown in
Fig. 16. NWK State and Enumerations are enumerate
colour set used to keep network’s state name and all
enumerations (list in Table 45 of [5]), respectively. Colour
sets in group SERVICE PRIMITIVES are typed record
and used to record the semantics of primitives listing in
Section 3 of [5]. Field, also typed record, is used to record
field’s values of the command frame showing in Section
3.2.2.2 of [5]. The details of key pages are described in
Section VI-B.

REC

RF4CE

ORG

ORG_NLME_SAP

ORG_NWK_Process

ORG_Tx_Frame

ORG_Rx_Frame

REC_NLME_SAP

REC_Tx_Frame

REC_NWK_Process

REC_Rx_Frame

Fig. 15. Module Heirarchy of ZigBee RF4CE CPN Model

B. Model Description

Fig. 17 shows the Protocol page of the model, which
illustrates the frame flow between protocol entities. The
model comprises three main parts: the ORG, the REC and
a bidirectional communication medium, Ch1 and Ch2, in
the middle.

a) ORG: The ORG page, shown in Fig. 18, consists
of five places, four substitution transitions and their in-
terconnecting arcs. APL ORG and NWK ORG Primitive
places are typed by PRIMITIVE colour set and used to
store the service primitives in the application layer and

(*PROTOCOL STATE*)
colset NWK State = with idle | pair req sent | pair req sent success | ...

(*ENUMERATIONS*)
colset Enumerations = with SUCCESS | NO RESPONSE | ...

(*SERVICE PRIMITIVES*)
colset PAIR REQ = record LogicalCh : UNIT ∗ DstIEEEAddr : UNIT ∗ ...
colset PAIR IND = record Status : status ∗ SrcPANId : UNIT ∗ ...
colset PAIR RES = record Status : status ∗ DstPANId : UNIT ∗ ...
colset PAIR CON = record Status : status ∗ PairingRef : INT ∗ ...
colset COMM IND = record PairingRef : INT ∗ DstPANId : UNIT ∗ ...

(*NWK CMD FIELD*)
colset Field = record ft : FrameType ∗ fc : FrameCounter ∗ ...

(*FRAMES*)
colset Entity = with A | B;
colset SignKey = STRING;
colset EncryptKey = STRING;
colset Frame = record sender : Entity ∗ receiver : Entity ∗ field : Field ∗ ...
colset Frames = list Frame;

Fig. 16. Selected ZigBee RF4CE Declarations

nwkQ4

nwkQ4^^[f]

nwkQ3

f::nwkQ3

nwkQ2

nwkQ2^^[f]

nwkQ1

f::nwkQ1

RECREC
ORGORG

Ch2

Ch1

D

1`[]

Frames

C

1`[]

Frames

B

1`[]

Frames

A

1`[]

Frames

ORG
REC

Fig. 17. Protocol page of ZigBee RF4CE CPN Model

the network layer, respectively. The APL ORG place has
an initial marking of one PAIR REQ token, indicating that
the originator is ready to start the pairing request service.
The NWK ORG Frame place stores command frames,
which is either the frames to be sent to the recipient
through place A or the frames to be received from the
recipient through place C. These places are typed by
Frames colour set and has an initial marking of an empty
list (1‘[]).

ORG NLME SAP substitution transition models the
transmission and reception of service primitives between
application layer and network layer. ORG NWK Process
substitution transition models the internal mechanism of
the network layer, i.e. checking the capacity of pairing
table, generating network command frames, and handling
timeouts. ORG Tx Frame and ORG Rx Frame substi-
tution transitions model the transmission and reception
of the network command frames to/from the recipient
entity. In the ORG NWK Process, ORG Tx Frame, and
ORG Rx Frame substitution transitions, there are two
additional places: NWK ORG PT represents the state
of pairing table; and NWK ORG STATE represents the
current state of the protocol.

C

I/O
Frames

1`[]

Frames

PRIMITIVE

1`PAIR_REQ(Gen_PAIR_REQ())

PRIMITIVE

A

I/O
Frames

I/OI/O

ORG_Rx_Frame

ORG Rx FrameORG Rx Frame

ORG_Tx_Frame

ORG Tx FrameORG Tx Frame

NWK_ORG_Frame

ORG_NWK_Process

ORG NWK ProcessORG NWK Process

NWK_ORG_Primitive

ORG_NLME_SAP

ORG NLME SAPORG NLME SAP

APL_ORG

Fig. 18. ORG Page of ZigBee RF4CE CPN Model

252 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

11

b) REC: For the recipient side, the mechanism of
places and substitution transitions are similar to the orig-
inator side but changes the label from ORG to REC.

c) Communication Medium: The underlying com-
munication medium is modelled as a bidirectional channel
with FIFO queue consisting of four places: A; B; C; and
D, and two transitions: Ch1 and Ch2. The communication
channels allow frames to be lost. The loss behaviour
can correspond to either loss in the network (due to the
congestion in the network), or to discarding the frames
due to the checksum failure.

C. Model with Attacks

After a protocol model is created, the protocol modeller
can choose the attack modules from library and integrate
them into communication channel in both directions. We
illustrate two example attacks in this section.

1) One Way Attack: The first example illustrates an
attack that occurs in one direction (recipient to originator).
Between the pairing process an attacker tries to intercept a
pair response frame from a recipient and then modify the
status field from SUCCESS to NOT PERMITTED (this
status field is sent when the recipient does not want to
accept the pair). Thereby the originator believes that the
recipient does not accept the pairing request and then both
sides are not synchronized at the end of pairing process.

This example one way attack is implemented using
three attack modules: Interception, Modification, and In-
jection. These modules are integrated into the ZigBee
RF4CE functional protocol model at the communication
channel (Ch2 part) as shown in Fig. 19.

nwkQ4

nwkQ4^^[f] f::nwkQ3

nwkQ3

InjectInjection ModifyModification InterceptInterception

Ch2

y

UNIT

x

UNIT

C

I/O

1`[]

Frames

D

I/O

1`[]

Frames
I/OI/O

Injection InterceptionModification

Fig. 19. One Way Attack

The modeller must perform three steps to integrate the
attack modules:

1) Connect the modules together via their Input and
Output places, as well as to the communication
channel places. For example, in Modification, the
Input and Output places of this module are con-
nected with x and y places of the communication
channel (Ch2) subpage by a port-socket relation
function, respectively.

2) Change arc inscriptions of the modules to suit the
specific protocol following the given instructions in
the attack module page.

3) Optionally, specify the initial marking of the Filter
place in each module to apply the module on only
selected frames. For example, in the Modification
module the initial marking is set to 1‘Pair response
as only modification of pair response frames are
considered in this attack.

These three attack modules are applied to model the
attack that describe above. As an example, the detail
of Modification module which integrated in Fig. 19 is
shown in Fig. 20. The Input place and Output place
of this attack module are linked with x and y places,
respectively. The Filter place has colour set of type Com-
mandIdentifier since the attacker wants to modify only the
pair response frame, so this place has an initial marking
of 1‘Pair response and it will be filtered by a guard at
Select transition. After frame selection only the selected
frame, pair response, will modify at the Modify transition,
with the modified frame stored in the After place.

1`()

fff

cmd

ModifySelect
Frame

UNITUNIT

To be
Modify

Frame

1`Pair_response

CommandIdentifier

Frame

[#cmd_id (#field f) = cmd]

Before

Attacker DBAttacker DB

After

Attacker DBAttacker DB

Filter

1`()

Input

InIn

Output

OutOut
Frame.set_field f {
ft=(#ft (#field f)),
fc=(#fc (#field f)),
cmd_id=(#cmd_id (#field f)),
status=NOT_PERMITTED,
key=(#key (#field f)),
mic=(#mic (#field f))}

Fig. 20. Modification Module in One Way Attack

2) Two Ways Attack: The second example illustrates an
attack that occurs in both directions of the communication
channel. In this attack the attacker wants the originator to
remove the recipient’s entry in a pairing table due to the
pair response frame being lost (dropped by the attacker).
Meanwhile the attacker also wants the recipient to believe
that the pair response frame arrives at the originator side
perfectly. By doing this at the end of pairing process the
originator and the recipient are not synchronized.

There are two steps for this attack, as shown in
Fig. 21 and Fig. 22. The attacker can achieve the goal
by intercepting and dropping a pair response frame from
the recipient entity. This attack sequence is shown in
Fig. 22. After that the attacker will intercept a new
pair request frame from the originator entity, generate
a bogus acknowledgement frame and inject it to the
recipient side. This is shown in Fig. 21.

To control the state space size (not to lead to infinite
size of state space), the number of a generated bogus
acknowledgement frame will be limited from the Limit
place in Generation module by putting the initial marking
of one in the Limit place.

nwkQ2

nwkQ2^^[f]f::nwkQ1

nwkQ1

InjectionInjectionMSG GenerationMSG Generation

Ch1

yy

UNIT

xx

UNIT

B

I/O

1`[]

Frames

A

I/O

1`[]

Frames
I/O I/O

InjectionMSG GenerationInterceptionInterceptionInterception

Fig. 21. Two Ways Attack (Ch1 Subpage)

VII. ANALYSIS OF ZIGBEE RF4CE

Calculating the state space of a CPN model allows
for proof of properties of the model. In this section we
show results from applying state space analysis of first the

JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014 253

© 2014 ACADEMY PUBLISHER

12

nwkQ4^^[f] f::nwkQ3
Ch2

UNIT

C

I/O

1`[]

Frames

D

I/O

1`[]

Frames
I/OI/O

nwkQ3nwkQ4

InterceptInterceptionInterceptionxDropDropDrop

Fig. 22. Two Ways Attack (Ch2 Subpage)

functional model and then two instances of the security
model (for the two example attacks).

A. ZigBee RF4CE Functional Analysis

The aim of applying state space analysis on the func-
tional model is to prove the absence of unexpected dead
(or terminal) markings in the model. For pairing in ZigBee
RF4CE the final state of this procedure must end up
with both entities, originator and recipient, having an
entry in the pairing table that contains information of the
paired entity. Therefore we define an unexpected dead
marking as any terminal marking in which the entities
have different pairing tables.

State space analysis has been applied on the func-
tional model in two different configurations: secured and
unsecured mode. The size of each state space and the
number of all and unexpected dead markings are given in
Table VII-A.

TABLE I
FUNCTIONAL ANALYSIS RESULTS

Mode Nodes Arcs All Dead Unexpected
Markings Dead Markings

Unsecured 452 1041 9 1
Secured 826 1872 21 1

Both unexpected dead markings in the two configura-
tions are due to the loss of the final acknowledgement.
Fig. 23 illustrates the scenario. The recipient sends the
final ACK and therefore assumes the pairing is complete.
However the ACK is lost and the originator deletes the
pairing entry (after a timeout) assuming the pairing is
unsuccessful.

pair request

ack

pair response

ack

ping request

ack

ack

ping response

pair request

loss

loss

Unsecured Mode Secured Mode

Fig. 23. Example scenario of unexpected behaviour of pairing

B. ZigBee RF4CE Security Analysis

The aim of applying state space analysis on the security
model is to prove that an attack is unsuccessful. For both
example attacks considered in this case study success is
measured by the pairing table entries in the two entities

to differ. As for the functional model, we aim to prove
absence of unexpected dead markings. The state space
results for both attacks in both secured and unsecured
configurations are shown in Table II.

TABLE II
SECURITY ANALYSIS RESULTS

All Dead Normal Additional

Mode Nodes Arcs Markings Unexpected Unexpected

Dead Markings Dead Markings

One Way
Attack 770 1905 14 1 1

Unsecured
One Way

Attack 1174 2797 27 2 0
Secured

Two Ways
Attack 3303 10457 20 1 2

Unsecured
Two Ways

Attack 5985 18311 39 2 0
Secured

The unexpected dead markings are divided into two
groups depending on whether or not they are the same as
the unexpected dead markings identified in the functional
analysis.

When the one-way attack is applied there is one addi-
tional unexpected dead markings in unsecured mode. The
recipient accepts the pairing request from the originator
and responds back via the pair response frame with status
field SUCCESS. However this pair response frame is
intercepted and modified by the attacker, changing the
status field to NOT PERMITTED. When the originator
receives the pair response frame, it will remove the
pairing table from its memory while the pairing table
at the recipient side, which is already created, is not
removed. As a result the two entities finish with different
pairing tables.

In secured mode this attack is not successful because
the subsequent key seed is ignored by the originator
(which believes the session to be over because of the fake
NOT PERMITTED received) and eventually the recipient
times out waiting for a response and removes the pairing
table entry. Therefore both entities have an empty pairing
table.

When the two-way attack is applied there are two
additional unexpected dead markings in unsecured mode.
The cause is similar to the one way attack. Fig. 24
illustrates an example scenario that leads to the unex-
pected dead marking. Although an Ack frame is received
by the originator, it is still waiting for a pair response.
The attacker drops the pair response, but injects a fake
Ack from the originator causing the recipient to believe
the pairing is successful. However the originator does
not receive the pair response frame, and assumes the
pairing is unsuccessful. Therefore both entities terminate
with different pairing tables. The second unexpected dead
marking is caused by a similar scenario (although the Ack

254 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

13

frame is received by the originator after a timeout).

pair request

ack

pair response
drop

fake ack
timeout

Fig. 24. Example scenario of unexpected behaviour in Two Ways
Attack

In secured mode this attack is not successful because,
as with the one-way attack, the key seed is ignored by the
originator. Hence the recipient will not receive a response,
and eventually remove the pairing table entry.

C. Discussion

This case study has shown how to apply our method-
ology to incorporate attacks into a functional protocol
model. Although the case study focusses on a small part
of a ZigBee RF4CE it demonstrates attacks can be easily
integrated and functional and security analysis conducted
on the model state space.

The results obtained from the functional analysis in
Section VII-A illustrate that problems occur in ZigBee if
the final acknowledgement frame is lost. This problem is
not unique to ZigBee it can occur in many protocols,
and is related to the Byzantine General’s problem. In
ZigBee it is likely that the error will be detected in phases
subsequent to pairing. For example, if one entity belives
the pairing is successful, while the other does not, then
communications in subsequent phases will result in an
error, and the pairing should be cancelled.

For the result in Section VII-B, which come from the
security analysis of protocol, at this time there are no
known papers or discussion related in ZigBee RF4CE that
mention this weakness of the protocols when two entities
are not synchronized at the end of the pairing process
which caused from the attacker. Hence we believe this is
a valuable result from our analysis.

Note the size of the state space without attacks is up to
826 nodes (secured mode), while introducing the attacks
increases the state space to 5985 nodes (secured mode,
two-way attack). Although the number of nodes is small
in both cases (CPN Tools may handle a million nodes)
there is still a seven-fold increase from introducing an
attack. To investigate the impact of our proposed Filter
place to limit the state space increase, we have calculated
the state space for the case when they are not used (the
Limit place is set to one, cannot be removed since it
will generate infinite size of state space). The number
of nodes is 13789 nodes. By using the Filter and Limit
places the state space is reduced by a factor of 2.3.
Although they require the modeller to make assumptions
about the attack, the implementation of Filter and Limit
in our methodology delivers a valuable reduction in the
state space size. Restricting some kinds of frames leads to

smaller state space size, at the expense of fewer security
attacks analysed. The value of restricting frames depends
on the protocol under consideration and the goal of the
modeller. There is no one answer in the end the modeller
must decide. Our methodology includes the mechanisms
to allow the modeller to easily choose one (more attacks
or smaller state space). However it should be noted that
more many non-trivial protocols, state space size often is
a limiting factor of formal analysis, especially with CPNs.

Further demonstrations of the methodology are needed
to evaluate the benefits to the modeller. Although not
reported in this paper, we have applied the methodology
on the Andrew RPC protocol, which was also used as
an example in the methodology developed in [16]. Our
analysis produced the same results as reported in [16]
(and originally in [22]). Further case studies are planned
in the future.

VIII. CONCLUSION

The purpose of this research is to overcome the limita-
tions of the traditional security analysis techniques, in par-
ticular making it possible to protocol designers/modellers
to perform security analysis without expert knowledge in
the analysis techniques. We achieve this by presenting a
novel methodology using Coloured Petri nets that offers
a graphical modelling language, a library of common
security attack modules and automatic property verifi-
cation (through state space analysis). The methodology
is developed so that models of communication proto-
cols and attacks are re-usable, extendable and readable.
The library of attack modules developed can be easily
composed to form more complex attacks specific to a
protocol. Although a modeller using our methodology
requires knowledge of security techniques to create an
attack model, by using our library of modules they can
reduce the time to develop the model. To demonstrate
the methodology we apply it to a part of the ZigBee
RF4CE protocol (i.e. pairing). Analysis in the presence
of two separate attacks reveals unexpected dead markings
are caused by the attacks.

In addition to further case studies there are several
areas to extend our research. Currently the attack modules
are designed for readability, but lead to increased state
space sizes. We will consider alternative, more compact
models and compare how much they impact on state
space size. Then we will extend our methodology to cover
more general protocols, in particular multi-party protocols
(e.g. routing protocols; key distribution with trusted-third
parties).

IX. ACKNOWLEDGEMENT

The authors are grateful to the anonymous referees for
their valuable comments and suggestions to improve the
presentation of this paper.

REFERENCES

[1] K. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling
and Validation of Concurrent Systems. Springer, 2009.

JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014 255

© 2014 ACADEMY PUBLISHER

14

[2] C. Meadows, “Formal methods for cryptographic protocol analy-
sis: Emerging issues and trends,” IEEE Journal on Selected Areas
in Communications, vol. 21, no. 1, pp. 44–54, January 2003.

[3] I. Al-Azzoni, Douglas G. Down and R. Khedri, “Modeling and
verification of cryptographic protocols using Coloured Petri nets
and design/cpn,” Nordic Journal of Computing, vol. 12, no. 3, pp.
201–228, June 2005.

[4] S. Long, “Analysis of concurrent security protocols using Colored
Petri nets,” in Proceedings of International Conference on Net-
working and Digital Society, 2009, pp. 227–230.

[5] ZigBee RF4CE Specification Version 1.00, ZigBee Alliance, March
2009.

[6] F. Babich and L. Deotto, “Formal methods for specification
and analysis of communication protocols,” IEEE Communications
Surveys & Tutorials, vol. 4, no. 1, pp. 2–20, First quarter 2002.

[7] Department of Computer Science, University of Aarhus, “CPN
Tools,” Web site: http://wiki.daimi.au.dk/cpntools/.

[8] S. Gordon, L. M. Kristensen and J. Billington, “Verification on a
revised WAP wireless transaction protocol,” in Proceedings of the
International Conference on Application and Theory of Petri Nets,
Adelaide, Australia, June 2002, pp. 182–202.

[9] L. Liu and J. Billington, “Verification of the capability exchange
signalling protocol,” International Journal on Software Tools for
Technology Transfer, vol. 9, no. 3-4, pp. 305–326, June 2007.

[10] S. Suriadi, C. Ouyang, J. Smith and E. Foo, “Modeling and
verification of privacy enhancing protocols,” in Proceedings of the
11th International Conference of Formal Engineering Methods:
Formal Methods and Software Engineering, 2009, pp. 127–146.

[11] S. Gordon and S. Choosang, “Verification of the FlexRay transport
protocol for autosar in-vehicle communications,” International
Journal of Vehicular Technology, vol. 2010, 2010.

[12] F. Erbas, K. Kyamakya and K. Jobmann, “Modelling and per-
formance analysis of a novel position-based reliable unicast and
multicast routing method using Coloured Petri nets,” in Proceed-
ings of the 58th IEEE Vehicular Technology Conference, October
2003, pp. 3099–3104.

[13] L. zhang Zhu and H. Zhang, “Queuing network models analysis
based on CPN,” in Proceedings of the 2nd International Confer-
ence on Information and Computing Science, May 2009, pp. 269–
272.

[14] S. Korecko, B. Sobota and C. Szabo, “Performance analysis of
processes by automated simulation of Coloured Petri nets,” in
Proceedings of the 10th International Conference on Intelligent
Systems Design and Applications, November 2010, pp. 176–181.

[15] L. Liu, “Uncovering SIP vulnerabilities to DoS attacks using
Coloured Petri nets,” in Proceedings of the 10th IEEE International
Conference on Trust, Security and Privacy in Computing and
Communications, 2011, pp. 29–36.

[16] Y. Xu and X. Xie, “Modeling and analysis of security protocols
using Coloured Petri nets,” Journal of Computers, vol. 6, no. 1,
pp. 19–27, January 2011.

[17] Y. Permpoontanalarp, “On-the-fly trace generation and textual
trace analysis and their applications to the analysis of crypto-
graphic protocols,” in Proceedings of the 30th Formal Techniques
for Networked and Distributed Systems, Amsterdam, June 2010.

[18] Y. Permpoontanalarp and P. Sornkhom, “A new Coloured Petri net
methodology for the security analysis of cryptographic protocols,”
in Proceedings of the 10th Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark,
October 2009.

[19] J. Billington, G. E. Gallasch, and B. Han, “A Coloured Petri net
approach to protocol verification,” in Lectures on Concurrency and
Petri Nets, Advances in Petri Nets. Springer-Verlag, 2004, pp.
210–290.

[20] D. Dolev and A. Yao, “On the security of public key protocols,”
IEEE Transactions on Information Theory, vol. 29, no. 2, pp. 198–
208, March 1983.

[21] David E. Carlson, “ANSI/IEEE 802.2, 1998 edition.”
[22] G. Lowe, “Some new attacks upon security protocols,” in Proceed-

ings of the 9th IEEE Workshop Computer Security Foundations,
1996, pp. 162–169.

San Choosang received a B.Sc. in computer
science from Sirindhorn International Institute
of Technology, Thammasat University, 2010,
Thailand. He has been a Certified Cisco Sys-
tem Instructor at the Network Training Cen-
ter Co.,Ltd., Thailand. He is currently a M.S
student in Sirindhorn International Institute
of Technology, Thammasat University, Thai-
land. His research interests include: computer
networking; formal analysis of protocols and
Internet security protocols.

Steven Gordon obtained a Ph.D. in Telecom-
munications from the University of South Aus-
tralia in 2001. He worked as a senior re-
searcher at the Institute for Telecommunica-
tions Research, UniSA, up until 2006. He
has since been with Thammasat University,
Thailand, currently as an Associate Profes-
sor within Sirindhorn International Institute of
Technology. His research interests includes:
formal analysis of protocols; integration of IP-
based mobile networks with ad hoc networks;

design of wireless networks for QoS guarantees; Internet and mobile
peer-to-peer protocols; and Internet security protocols. He serves on
the editorial board and TPC of various international journals and
conferences. He is a member of IEEE, ACM and IEICE.

256 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

