
Transforming State Tables to Coloured Petri Nets
for Automatic Verification of Internet Protocols

San Choosang and Steven Gordon
Sirindhorn International Institute of Technology

Thammasat University
Bangkadi, Thailand 12000

Email: schoosang@ict.siit.tu.ac.th, steve@siit.tu.ac.th

Abstract— Rapid developments in networking technologies
is resulting in an increasing number of new communication
protocols being created, but formal methods are seldom used
to verify their design. This paper presents a set of rules for
transforming state tables, a common format of protocol speci-
fications in standards, into a formal model based on Coloured
Petri nets. This reduces time for developing and debugging CPN
models, which can then be used for protocol verification. Formal
definitions of subsets of state tables and CPNs are presented,
as well as the transformation algorithm. To demonstrate the
transformation an example of Stop-and-Wait protocol is used
as a case study.

Index Terms—protocol verification, Coloured Petri nets, XML,
Stop-and-Wait protocol

I. INTRODUCTION

Nowadays many new communication protocols have been
created to improve the capability and the performance of
networking technologies. It is important that the design of
the protocol is proved to be free of significant errors to
ensure that the protocol operates correctly without undesired
or unsafe behavior. Formal methods are well-suited to protocol
design activities [1]; they can increase confidence that the
design is free of errors that would be expensive to fix once
a protocol is deployed into the network. However due to
the cost of applying formal methods (steep learning curve
and time consuming), no upcoming standards apply them for
protocol verification. This research aims to bridge this gap by
automating the task of producing an executable formal model
of common protocols.

State (transition) tables are a common method used in
standards to specify a protocol [2], [3], [4]. However they
have limitations, in particular they lack tools and techniques
that allow automatic proof of properties relevant to a protocol
(e.g. absence of deadlocks and livelocks). Coloured Petri nets
(CPNs) [5], a formal modelling language with a graphical
notation, do have such support via model checking techniques
[6]. However developing and debugging CPN models of pro-
tocols is a time consuming process, taking days to weeks for
experienced users. The motivation of our research is to reduce
the development time, so a protocol designer can integrate
formal methods such as CPNs into their workflow. Therefore
this paper contributes a novel approach for automatically
converting a state table protocol specification into a CPN
model.

As far as we know, although several researchers have
developed CPNs manually based on state tables [7], no at-
tempts have been made to automatically convert state tables to
CPNs. Section II presents other work that has applied similar
transformations. Our research assumes protocols of a specific
type. To support the transformation, in Section III we describe
the assumptions and contribute a new definition of both state
tables and CPNs that fits the assumptions. In Section IV we
present our proposed transformation algorithm, taking a state
table as input and producing a CPN as output. We also describe
our XML/XSLT-based implementation of the transformation.
To demonstrate the transformation we apply it to an example
Stop-and-Wait protocol, with results presented in Section V.
Concluding remarks are given in Section VI.

II. RELATED WORK

A simple way to present the behavior of the protocol in
the specification is using a graphical notation, an informal
language i.e. UML, which is not designed for the protocol
verification purpose. [8] proposes an approach to transform an
UML statechart and collaboration diagram to CPN model by
using graph grammars and graph transformation techniques,
while [9] implements an automated tool that can transform
a Live Sequence Chart (LSC) to CPN models. This tool
reads the LSC model as an input and transform the system’s
behavior into a unified CPN model. The motivation of these
two research works is similar to ours; reducing the CPN
model development time. However they do not handle state
tables as input, which are common in protocol specifications
[2], [3], [4]. Our transformation approach is inspired by the
work in [10], [11], which transforms descriptions of railway
interlocking tables into CPNs using XML and XSLT.

III. STATE TABLES AND CPNS

State tables are a common format for designers to specify
protocols in standards. In Section III-A we give a brief
description of state tables. Although state tables can be treated
as a finite state automata (FSA) and are subject for formal
analysis, in practice they are developed in an informal manner
with various different formats. Benefits of converting state
tables to CPNs include utilising the various Petri net theory
and software for simulation and formal analysis. Section III-B
describes CPNs, while Section III-C explains a common

approach for modelling protocols with CPNs. To illustrate
concepts, an example Stop-and-Wait protocol is used in this
paper.

A. State Tables

A state table contains a set of states, events, conditions, and
actions. In state s if event e occurs and conditions c1, c2, . . . cn
are true, then actions a1, a2, . . .am are taken and the next
state is entered. If we specifically consider a communication
protocol with two entities (sender and receiver), each entity has
state tables for a particular state of that entity. In a protocol
the set of events can be classified as those relating to receiving
packets from lower layer, receiving packets from higher layer,
or timeouts occurring. Similarly, actions maybe: transmit a
packet, change the value of a timer, increment/decrement a
counter, or set the value of a variable. We have expressed
these classifications in a formal definition of a protocol state
table in Figure 1. As an example, Figure 2 shows the state
tables for a Stop-and-Wait protocol. Consider the sender in
the IDLE state. The event rxHL Msg is in the set ErxHL.
There is one action in the set Atx (tx Data) and one in Atimer

(timer toRTx start).

1) S = {s | s is a state in protocol specification} is a finite set of states.
2) E = {ERxLL, ERxHL, ETo} is a finite set of events, where:

• ERxLL is an event relating to receiving packets from lower layer.
• ERxHL is an event relating to receiving packets from high layer.
• ETo is an event relating to timeout occurring.

3) C = is a finite set of expression such that Type[C] = Bool and is called
conditions.

4) A = {Atx, Atimer, Aincrement, Adecrement, Asetvalue} is a
finite set of actions, where:
• Atx is an action that transmits a packet to a communication

channel.
• Atimer is an action that changes the value of a timer variable.
• Aincrement is an action that increases the value of a counter

variable by one.
• Adecrement is an action that decreases the value of a counter

variable by one.
• Asetvalue is an action that sets the value of a variable.

5) ∆ : (S × E × C) → A is an action function that assigns a set of
(A) to each combination of (s× e× c) such that s ∈ S, e ∈ E, and
c ∈ P (C).

6) NS : (S ×E ×C)→ S is an next state function that assign a next
stage to each combination of (s× e× c) such that s ∈ S, e ∈ E, and
c ∈ P (C).

Figure 1. Formal Definition of Protocol State Table

B. CPNs

CPNs are a directed graph with two types of nodes: a
set of places, P , and a set of transitions, T , represented by
ellipses and rectangles, respectively. Places and transitions are
connected by directed arcs: input arcs (place to transition) and
output arcs (transition to place). Places are typed by a colour
set and the values that marks on the places are called tokens.
Transitions and arcs can also have inscriptions (expressions)
to control the execution of the model. The execution of a CPN
consists of occurrence of transitions. A transition can occur if
and only if: for all input places, sufficient tokens exist that
satisfy the input arc inscriptions, and the transition inscription

rxHL_Msg Finish = false tx_Data WAIT
timer_toRTx_start

rxLL_Nack − − IDLE

rxLL_Ack − tx_Data IDLE

rxLL_CorrectData − WAITtx_Ack

rxLL_Nack tx_Data WAITRetry < MR
timer_toRTx_restart

ct_Retry_inc

rxLL_Nack timer_toRTx_stop IDLERetry >= MR
set_Finish_false

to_RTx Retry >= MR timer_toRTx_stop IDLE
set_Finish_false

SENDER SIDE

State : IDLE

Event Condition Action Next State

State : WAIT

rxLL_!CorrectData − tx_Nack WAIT

Event Condition Action Next State

RECEIVER SIDE

set_Finish_false

set_Finish_true

State : WAIT

− timer_toRTx_stop IDLErxLL_Ack

Action Next StateConditionEvent

set_Finish_true

to_RTx Retry < MR tx_Data WAIT
timer_toRTx_restart

ct_Retry_inc

Figure 2. State Tables of Stop-and-Wait Protocol

evaluates to true. A formal definition of CPNs is presented in
[5].

C. Modelling Protocol with CPNs

There are many ways to model a protocol with CPNs [5],
[6], depending on the objectives of the modeller. In our work
we consider the objectives of producing a CPN model that is
structured similar to the state table description (for validation),
and that is amenable to state space analysis (for verification).
Hence a state-based approach for modelling is used [7]. This
is described via a general example as illustrated in Figure 3.
The modelling approach assumes a unicast protocol with
two entities, sender and receiver, communicating by a single
full-duplex channel. The current state of each entity, and
associated state variables are stored in a single place, pSender

and pReceiver. Each event is modelled by a single transition,
when an event occurs the state’s information is updated by
AsndCS (containing the current state name and state variables)
and AsndNS (containing the next state name and actions to
update the state variables) for the pSender place and vice versa,
ArcvCS and ArcvNS , for the pReceiver place. To transmit
and receive packets from the communication channels, pS2R

and pR2S , four arcs are used; AsndTx, AsndRx, ArcvTx, and
ArcvRx. For the communication channels we assume that there
is no packet loss, and the timer events are considered non-

deterministic (it either may occur or may not occur at any
time).

(sndCS1,sndSV1)

(sndNS1,sndNSV1)

(sndNS2,sndNSV2)

(sndCS2,sndSV2)

Sender

(sndCSn,sndSVn)

(sndNSn,sndNSVn)

Timeout

RxHL

RxLL

packet

R2S

S2R packet

RxLL

Receiver

(rcvNS1,rcvNSV1)

(rcvCS1,rcvSV1)

(rcvNS2,rcvNSV2)

(rcvCS2,rcvSV2)

(rcvCSn,rcvSVn)

Timeout

RxHL
(rcvNSn,rcvNSVn)

packetpacket

Figure 3. Overall Model of a Refined Definition

We have formalised this subset of CPNs for modelling
protocols to a protocol CPNs definition in Figure 4.

IV. AUTOMATICALLY GENERATING A PROTOCOL CPN
A. Approach

Our objective is to allow a protocol designer to manually
create a state table specification of a protocol, then automati-
cally generate the CPN model from the state tables, after which
analysis of the CPN state space can be performed (again,
automatically). This saves time in developing the CPN and
hides many of the complexities of CPNs from the designer.

We assume the protocol designer can create the necessary
state tables. However to support conversion to CPNs, a pre-
defined syntax must be used. The syntax should capture all
parts of the state table definition in Figure 1. A graphical editor
could be used to aid the designer in following the syntax. For
our prototype we use the syntax as illustrated in the example
Figure 2. For events we use underscore () to separate between
event’s type (e.g. RxLL, RxHL, To) and event subject (e.g.
packet’s type or timer variable). For actions, we have three
portions separated by underscore; action’s type, target variable,
and value, respectively (excepting the transmit action that has
only two portions, action’s type and packet’s type).

Once the state table exists, it must be transformed to a
CPN. We present the transformation rules in Figure 5. These
rules take any protocol matching the state table definition in
Figure 1, and produces a protocol matching the CPN definition
in Figure 4. In the rules we use dot (.) to distinguish the
element between the two definitions, for example st.ERxLL

is an element in state table definition.
Consider at the sender, each row in the state table represents

an event. Hence for each row a CPN transition is created to
model that event. Arcs are created between the transition and
the place Sender. The arc cpn.AsndCS contains an inscription
specifying the current state name and variables. The state name
and variables on this arc means a condition of the transition
being enabled is that the sender is in the named state with
the appropriate variables. The arc cpn.AsndNS contains an
inscription specifying the next state name and actions to update
the variables.

In addition, if the event is related to receiving a packet
from the lower layer, an additional cpn.AsndRx arc is created
from the place R2S to this transition, i.e. a condition for the

1) P = {pSender , pReceiver , pS2R, pR2S}
2) T = {TRxLL, TRxHL, TTo}, where:

• TRxLL is a finite set of RxLL transitions TRxLL that receive
a packet from lower layer.

• TRxHL is a finite set of RxHL transitions TRxHL that receive
a packet from higher layer.

• TTo is a finite set of To transitions TTo that involve the timeout
occurring.

3) A = {AsndCS , AsndNS , ArcvCS , ArcvNS , AsndTx, AsndRx,
ArcvTx, ArcvRx}, where:
• AsndCS ⊆ pSender × T is a set of sndCS arcs.
• AsrcNS ⊆ T × pSender is a set of sndNS arcs.
• The definition of ArcvCS , ArcvNS follow the same style as

AsndCS and AsndNS , respectively.
• AsndTx ⊆ T × pS2R is a set of sndTx arcs.
• AsndRx ⊆ pR2S × T is a set of sndRx arcs.
• The definition of ArcvTx, ArcvRx follow the same style as

AsndTx and AsndRx, respectively.
4) Σ = {StateInfo, StateName, StateV ar, Packet, INT , BOOL,

STRING, UNIT}
5) V = {VsndCS , VsndNS , VrcvCS , VrcvNS , VsndSV , VsndNSV ,

VrcvSV , VrcvNSV , Vpacket}, where:
• VsndCS is a set of sndCS variables such that Type[v] ∈

StateName for all variables ∀v ∈ VsndCS .
• The definition of VsndNS , VrcvCS and VrcvNS follow the same

style as VsndCS .
• VsndSV is a set of sndSV variables such that Type[v] ∈

StateV ar for all variables ∀v ∈ VsndSV .
• The definition of VsndNSV , VrcvSV and VrcvNSV follow the

same style as VsndSV .
• Vpacket is a set of packet variables such that Type[v] ∈

Packet for all variables ∀v ∈ Vpacket.
6) C : P → Σ is a colour set function that assigns a colour set to each

place.

C(p) =

{
StateInfo if p ∈ {pSender, pReceiver}
Packet if p ∈ {pS2R, pR2S}

(1)

7) G : T → EXPRV is a guard function that assigns a guard to each
transition t such that Type[G(t)] = Boolean.

8) E = {EsndCS , EsndNS , ErcvCS , ErcvNS , EsndTx, EsndRx,
ErcvTx, ErcvRx}, where:
• EsndCS : AsndCS → (VsndCS , VsndSV) is an sndCS arc

expression function that assigns an arc expression to each arc
aAsndCS

such that Type[E(aAsndCS
)] = C(pSender)MS .

• EsndNS : AsndNS → (VsndNS , VsndNSV) is an sndNS arc
expression function that assigns an arc expression to each arc
aAsndNS

such that Type[E(aAsndNS
)] = C(pSender)MS .

• The definition of ErcvCS and ErcvNS follow the same style as
EsndCS and EsndNS , respectively.

• EsndTx : AsndTx → (Vpacket) is an sndTx arc expression
function that assigns an arc expression to each arc aAsndTx

such
that Type[E(aAsndTx

)] = C(pS2R)MS .
• The definition of EsndRx, ErcvTx and ErcvRx follow the same

style as EsndTx.
9) I : P → EXPR∅ is an initialisation function that assigns an initial-

isation expression to each place p such that Type[I(p)] = C(p)MS .

Figure 4. Formal Definition of Protocol CPNs

transition being enabled is that a token representing a packet
is in the place R2S.

If the event type is a timeout, then a guard is added to
the transition, i.e. a condition for the transition being enabled
is that the timer has started. For all types of events, any
conditions in the state table are included in the transition
guard.

Each action types namely, Atimer, Aincrement, Adecrement,
and Asetvalue are included in the inscription of cpn.AsndNS

arc to update the variables of that event when next state is
reached.

If the action type is an action that transmits a packet to
the communication channel, an additional cpn.AsndTx arc is
created from this transition to the place S2R.

The receiver transformation is similar to that of the sender.

Rules for sender side state tables

foreach row in state tables
create cpn.T transition for st.E event
if (e ∈ st.ERxLL)

create an cpn.AsndRx arc with cpn.EsndRx inscription
create an cpn.AsndCS arc with cpn.EsndCS inscription
create an cpn.AsndNS arc with cpn.EsndNS inscription
if (e ∈ st.ETo)

cpn.G(T) = timer variable of e is true
cpn.G(T) = st.C
foreach Actions st.A

if (a ∈ st.Atx)
create cpn.AsndTx arc with cpn.EsndTx inscription

else
Update cpn.VsndNSV variables in cpn.EsndNS inscription with st.A action

end foreach
Update cpn.VsndNS variables in cpn.EsndNS inscription with st.S NextState

end foreach

Rules for receiver side state tables

foreach row in state tables
create cpn.T transition for st.E event
if (e ∈ st.ERxLL)

create an cpn.ArcvRx arc with cpn.ErcvRx inscription
create an cpn.ArcvCS arc with cpn.ErcvCS inscription
create an cpn.ArcvNS arc with cpn.ErcvNS inscription
if (e ∈ st.ETo)

cpn.G(T) = timer variable of e is true
cpn.G(T) = st.C
foreach Actions st.A

if (a ∈ st.Atx)
create cpn.ArcvTx arc with cpn.ErcvTx inscription

else
Update the cpn.VrcvNSV variables in cpn.ErcvNS inscription with st.A action

end foreach
Update the cpn.VrcvNS variables in cpn.ErcvNS inscription with st.S NextState

end foreach

Figure 5. State Table to CPNs Model Transformation Rules

B. Implementation

We have implemented the transformation using XSLT [12]
by taking an XML state table as an input and producing
a CPN model file that can be loaded in CPN Tools as an
output (as illustrated in Figure 6). The XML state table is
the representation of the protocol state tables in XML format.
Since this is an initial prototype we assume that the XML
state table already exists. A parsing tool can help the protocol
designer to parse the contents in the state tables into an XML
format.

XSLT

Style Sheet

XSLT

Processor

XML

State Table

CPN Model

File

Figure 6. Transformation Process

The XSLT style sheet is written follow the transformation
rules in Figure 5, it will read through the XML state table
and create an appropriate CPN model element (places and
colour sets are created follow 1) and 6) in Figure 4 before
applying the transformation rules). The transformation process
is automatically done by the XSLT processor. After loading the
output file into CPN Tools, minor manual edits may be needed
by the protocol designer. CPN Tools has in-built techniques for
automating the protocol verification (e.g. state space analysis).

V. A CASE STUDY: STOP-AND-WAIT PROTOCOL

To demonstrate the transformation, we apply our approach
to the Stop-and-Wait protocol (SWP) [13]. The state tables of
SWP are shown in Figure 2 and some portion of XML state
table of SWP, an input of the transformation, is shown in Fig-
ure 7 (this figure shows only the IDLE state of the sender side
while the other parts are omitted). After the transformation
process finished, the CPN model file of SWP is generated as
an output. Some minor manual edits of the protocol model in
CPN Tools are needed to complete the model, e.g. rearrange
the model’s elements for more readability or edit the arc
inscription of the complex action function (none for this case
study). The final SWP CPN model is shown in Figure 8.

<StateTables>
<Sender>

<State name=“IDLE”>
<Event name=“rx HL Msg”>

<Conditions>
<Condition>Finish = false </Condition>

</Condition>
<Actions>

<Action>tx Data </Action>
<Action>timer RTx start </Action>

</Actions>
<NextState name=“WAIT”/>

</Event>
<Event name=“rxLL Ack”>

. . .
</Event>
<Event name=“rxLL Nack”>

. . .
</Event>

</State>
</Sender>
<Receiver>

<State name=“WAIT”>
. . .

</State>
</Receiver>

</StateTables>

Figure 7. XML State Tables of Stop-and-Wait Protocol

Applying our transformation rules and prototype implemen-

Data

Nack

(WAIT,
set_Finish_false(rcvSV))

(WAIT,rcvSV)

Data

(WAIT,rcvSV)

(WAIT,sndSV)

(WAIT,sndSV)

Data

rx_!CorrectData

rx_CorrectData

[not(#Finish sndSV) andalso
 #Retry sndSV < MR]

Receiver

StateInfo

R2S

Packet

Packet

Sender

S2R

rxLL_Ack

(WAIT,
timer_RTx_start(sndSV))

(IDLE,sndSV)

rxLL_Nack

(IDLE,sndSV)

rxHL_Msg

(IDLE,sndSV)

(IDLE,sndSV)

(IDLE,sndSV)

rxLL_Ack

(IDLE,
set_Finish_true(
timer_RTx_stop(sndSV)))

(WAIT,sndSV)

(WAIT,sndSV)

Data

(WAIT,sndSV)

Data

Nack

Nack

Ack

(WAIT,
 set_Finish_true(rcvSV))

[(#ToRTx sndSV) andalso
 (#Retry sndSV) < MR]

[(#Retry sndSV)<MR]rxLL_Nack

rxLL_Nack

(IDLE,
set_Finish_false(
timer_RTx_stop(sndSV)))

[(#Retry sndSV)>=MR]

(WAIT,
ct_Retry_inc(
timer_RTx_restart(sndSV)))

(IDLE,
set_Finish_false(
timer_RTx_stop(sndSV)))

[(#ToRTx sndSV) andalso
 (#Retry sndSV)>=MR]

Ack

(WAIT,
ct_Retry_inc(
timer_RTx_restart(sndSV)))

Nack

Ack

to_RTx

to_RTx

StateInfo

Figure 8. Stop-and-Wait CPNs Model From the Automatic Transformation

tation to a simple protocol have been successful. However
there are a number of design challenges that exist.

1) Protocol’s Variables and Constants: To declare the
protocol’s variables and constants automatically in this im-
plementation, we add an additional section, declaration, in
the XML state table to keep the protocol’s variables (with
type) and constants (with value). When the XSLT style sheet
read through this section it will declare these variables and
constants together with the common action functions for each
variables in the CPN model. This is not the best approach for
the automatic declaration but it is simple and suited for the
first prototype of the implementation. Other approach that can
be used for the automatic declaration is writing the XSLT that
can extract the necessary informations, i.e. variable or constant
name, from the XML state table by itself.

2) Manually Editing: One issue of the implementation
is we need to manually edit some arc inscriptions, EsndNS

and ErcvNS , which have complex action functions. As stated
early this implementation can support (automatically generate)
only the common action functions such as increment counter,
start/stop timer. For more complex functions, such as create
a special packet to send, the user must declare the function
manually in the CPN model.

3) Model Readability: The output model of this imple-
mentation is generated in one page. If the input protocol
has a lot of states and events, the output model will lack
readability since there will be many transitions in one page. To
overcome this issue in the future, we can group the events in
one state table and put them into a subpage of the model. For
example in Figure 2 consider the IDLE state of sender, we
can put the transitions that represent rxHL Msg, rxLL Ack,
and rxLL Nack into a subpage under substitution transition
named IDLE.

4) Reverse Transformation: By using this approach to
transform state tables into CPN model we can modify the
transformation rules to achieve the reverse transformation,
producing the state tables from the existing CPN model. This
will be useful for including state tables, verified from the
corresponding CPN model, directly into standards.

VI. CONCLUSION AND FUTURE WORK

The purpose of this research is to reduce the time to create
formal CPN models of protocols, making it easier for protocol
designers to identify design errors. In this paper we have de-
scribed the process for transforming state tables specifications
of protocols to CPN models. The key contributions are:

1) Refined formal definitions of state tables and CPNs
specifically for unicast, two-entity protocols

2) An algorithm for transforming a state table to CPN
3) An implementation for the algorithm, applied to a Stop-

and-Wait protocol.
Note that CPNs is one of the verification method that we have
focused on this paper. To apply this transformation technique
to the other verification method (e.g. SPIN/Promela), the
algorithm for transforming is needed to modify to suit with
target verification method.

Future work includes improving the capability of the trans-
formation e.g. can handle many types of protocol not limited
to the unicast protocol with two entities. Further evaluation of
the transformation will be performed using a larger set of case
studies, including protocols that already have a state table and
CPN representation, as well as new protocols.

REFERENCES

[1] F. Babich and L. Deotto, “Formal methods for specification and analysis
of communication protocols,” IEEE Communications Surveys & Tutori-
als, vol. 4, no. 1, pp. 2–20, First quarter 2002.

[2] J. Vollbrecht, P. Eronen, N.Petroni, and Y. Ohba, State Machines for
Extensible Authentication Protocol (EAP) Peer and Authenticator, IETF
RFC 4137, August 2005.

[3] V. Fajardo, Y. Ohba, and R. Marin-Lopez, State Machines for the
Protocol for Carrying Authentication for Network Access, IETF RFC
5609, August 2009.

[4] T. Tsenov, H. Tschofenig, X. Fu, C. Aoun, and E. Davies, General
Internet Signaling Transport (GIST) State Machine, IETF RFC 5972,
October 2010.

[5] K. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling and
Validation of Concurrent Systems. Springer, 2009.

[6] J. Billington, G. E. Gallasch, and B. Han, “A Coloured Petri net approach
to protocol verification,” in Lectures on Concurrency and Petri Nets,
Advances in Petri Nets. Springer-Verlag, 2004, pp. 210–290.

[7] S. Gordon, “Towards verification of the pana authentication and autho-
risation protocol using coloured petri nets,” in Proceedings of the 10th
Workshop and Tutorial on Practical Use of Coloured Petri Nets and the
CPN Tools, Aarhus, Denmark, October 2009, pp. 61–80.

[8] E. Kerkouche, A. Chaoui, O. Labbani, and E. Bourennane, “A uml and
colored petri nets integrated modeling and analysis approach using graph
transformation,” Object Technology, vol. 9, no. 4, pp. 25–43, 2010.

[9] B. Khadka, “Transformation of live sequence charts to colored petri nets
(lsctocpn),” Ph.D. dissertation, University of Massachusetts Dartmouth,
January 2007.

[10] S. Vanit-Anunchai, “Verification of railway interlocking tables using
coloured petri nets,” in Proceedings of the 10th Workshop and Tutorial
on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus,
Denmark, October 2009, pp. 139–158.

[11] S. Vanit-Anunchai , “Modelling railway interlocking tables using
coloured petri nets,” in Proceedings of the 12th International Conference
on Coordination Models and Languages, Volume 6116 of Lecture Notes
in Computer Science. Amsterdam, The Netherlands: Springer-Verlag,
June 2010, pp. 137–151.

[12] S. Muench, Building Oracle XML Applications. O’Reilly Media, 2000,
ch. 7, pp. 275–309.

[13] W. Stallings, Data and Computer Communications, 8th ed. Prentice
Hall, September 2010.

