
Performance Analysis of LEDBAT in the Presence of TCP-Newreno

Amuda James Abu and Steven Gordon
Sirindhorn International Institute of Technology, Thammasat University,

Pathumthani 12000, Thailand.
james@ict.siit.tu.ac.th, steve@siit.tu.ac.th

Abstract—Low Extra Delay Background Transport (LED-
BAT) is a novel one-way delay Internet congestion control
algorithm developed to react to congestion earlier than any of
the loss-based TCP congestion control algorithms (e.g. TCP-
NewReno). A LEDBAT source quickly reduces its sending rate
when the queue delay experienced in its path is greater than
a fixed pre-defined target value. This paper analyses LEDBAT
when it is sharing a bottleneck link with TCP. Our analysis
identifies the threshold of a bottleneck buffer size that leads
LEDBAT to revert to a minimum congestion window of only 1
packet in the presence of TCP. That is, for some applications
its throughput will be too low. In addition to the fact that intra-
protocol unfairness among multiple LEDBAT sources may
occur when using the fixed minimum LEDBAT congestion win-
dow to improve the limited LEDBAT throughput, we show that
the average LEDBAT throughput is fixed even as the bottleneck
link capacity increases as opposed to TCP throughput that
increases proportionally. This therefore necessitates the need
for a dynamic minimum congestion window in the LEDBAT
algorithm.

Keywords-LEDBAT, delay-based congestion control, low pri-
ority protocols, peer-to-peer file sharing, real-time applications

I. INTRODUCTION

Low Extra Delay Background Transport (LEDBAT) con-
gestion control algorithm [1] is a one-way delay and window
based algorithm designed for peer-to-peer (P2P) applications
and other applications that use multiple TCP [2] connections
for data transfer. The novel congestion control algorithm
is motivated by the unfairness problem in TCP aggravated
by applications that use multiple TCP connections. The
design of LEDBAT is such that a source maximally utilizes
available network bandwidth when no other traffic source
exists, and yields quickly to newly arriving traffic. For a
LEDBAT source to be TCP-friendly, its sending rate must
not be increased faster than TCP. As with TCP, the sending
rate of a LEDBAT source, and hence throughput, are directly
proportional to the congestion window [3]. As part of the
design of LEDBAT, a constant value of target queue delay
in the path of LEDBAT is assumed by the source. The
source adjusts its sending rate with respect to an estimated
queue delay in its path so that the actual queue delay does
not exceed the target. Micro Transport Protocol (uTP) [4]
is an application layer congestion control protocol used by
µTorrent (a widely used UDP-based BitTorrent protocol) and
similar to LEDBAT [1].

LEDBAT is designed to react to congestion in a network
earlier than the TCP loss-based algorithm, TCP NewReno
[5], [6]. A LEDBAT source achieves this by reducing its
sending rate whenever a measured queue delay is greater
than the target. LEDBAT has been designed to provide
less-than best effort service in the presence of other traffic
(especially TCP). Several works have analysed LEDBAT
in the presence of a TCP loss based congestion control
algorihtm [7], [8], [9], [10], [11], our work is significant as
it is the first to identify the threshold of a bottleneck buffer
size that leads LEDBAT to revert to a minimum congestion
window in the presence of TCP.

This paper analyses the performance of LEDBAT in the
presence of TCP1 under different conditions. We start by
giving a formal explanation of how different bottleneck
buffer sizes impact on LEDBAT congestion window and
hence throughput in the presence of TCP. Our results
from simulations show that LEDBAT in the presence of
TCP reverts to its minimum congestion window (wmin) if
the bottleneck buffer size is greater than a threshold and
LEDBAT starts earlier than TCP. Otherwise, the LEDBAT
congestion window oscillates between wmin and some upper
bounds. Although there is no minimum value stated in [1],
a reasonable assumption is one maximum sized segment
(MSS). We further show that if increasing wmin would
improve the limited LEDBAT throughput in the presence
of TCP and wmin was a user configurable parameter, then
it could result in different amount of the bottleneck capacity
yielded to TCP by different LEDBAT sources. This can lead
to intra-protocol unfairness among the multiple LEDBAT
sources when they share the same bottleneck link in the
presence of TCP. We finally show that with fixed mini-
mum congestion window in LEDBAT, increasing bottleneck
capacity offers TCP an increasing throughput but nearly
fixed for LEDBAT. This may be undesirable for LEDBAT
users thus necessitating the need for a dynamic minimum
congestion window in the LEDBAT algorithm.

The rest of this paper is organized as follows. Section II
gives the basic operations of LEDBAT while Section III re-
views recent works on LEDBAT. Our system model is given
in Section IV and results from simulations are presented in

1In the remainder of this paper, TCP refers to TCP using NewReno
congestion control algorithm

LEDBAT Sender LEDBAT Receiver

Step 1. Initialization:

BaseOWD = +ve infinity

Step 2. Have Data To Send:

 DATA[timestamp] = CurrentLocalTime

 send DATA

Step 3. Received Data:

OWD = CurrentLocalTime - DATA[timestamp]

ACK[delay] = OWD

send ACK

OWD means One Way Delay, Cwnd means Congestion Window

 Step 4. Received Ack:

CurrentOWD = ACK[delay]

UpdateBaseOWD(CurrentOWD)

BaseOWD = Minimum of previous OWDs

QueueDelay = CurrentOWD – BaseOWD

Cwnd += Gain x TargetDelay – QueueDelay

 Cwnd

DATA

ACK

Figure 1. Pseudocode of LEDBAT congestion control at the sender and
receiver

Section V. We conclude this paper in Section VI.

II. LEDBAT OBJECTIVES AND OPERATIONS

LEDBAT is designed for non-interactive applications to
provide lower-than-best-effort service for end-users. The key
objectives are [1]:

• To maximally utilize the bottleneck link capacity while
keeping queue delay low when no other traffic is
present in the network.

• To quickly yield to traffic sharing the same bottleneck
queue that uses standard TCP congestion control or
UDP (used by some real-time traffic).

• To contribute little to the queue delays induced by TCP
traffic.

• To operate well in networks with FIFO queue with
drop-tail queue discipline and to be deployable for com-
mon applications that currently dominate large portion
of the Internet traffic.

Figure 1 illustrates the LEDBAT congestion control al-
gorithm. The algorithm involves the source estimating the
delay to the destination by placing a time stamp in data
packets. The destination sends the measured one-way delay
of the data packet in a delay field in the acknowledgement
packet. Upon receiving the acknowledgement, the source
uses the measured one-way delay to estimate the queue
delay in the path. The source assumes the queue delay is the
difference between the current one-way delay measurements
and a base set of one-way delay measurements. The base
one-way delay is taken as the minimum one-way delay from
a list of previous one-way delay observations.

The LEDBAT source has a target queue delay: the source
aims not to increase the queue delay above this target. The
sender increases its sending rate as long as the estimated
queue delay is less than the delay target. Otherwise, it
reduces its sending rate before the access router buffer is
full, in order to allow other applications to obtain a fair
share of network resources and experience low queue delay.

LEDBAT uses a linear controller in its design to propor-
tionally modulate the congestion window with the estimated
queue delay. Equation (2) describes the controller where
w is the LEDBAT source congestion window, wmin is
the minimum congestion window, d̂que is the queue delay
estimated by the LEDBAT source, G is a constant gain and
dtar is the target queue delay. dtar and G (both constants)
are two key parameters that influence how well LEDBAT
achieves its aims of saturating the bottleneck and yielding
quickly to other traffic [10], [12].

cwnd = w(t) +
G(dtar − d̂que(t))

w(t)
(1)

w(t+ 1) =

1
2w(t) if packet loss

wmin if cwnd ≤ wmin

cwnd otherwise

(2)

LEDBAT aims to achieve friendliness with TCP by: 1) not
increasing faster than TCP during start-up phase, 2) quickly
yielding to TCP, and 3) halving its congestion window when
a packet loss is detected in the path of LEDBAT flow.
Carefully choosing a good value of gain is a step towards
achieving TCP-friendliness in terms of non-greater than
TCP ramp-up speed of LEDBAT.

III. RELATED WORK

Of the existing congestion control algorithms proposed
over the last two decades, delay-based and low-priority
algorithms have similar aims and mechanisms to LEDBAT.
However, LEDBAT differs from many such algorithms in-
cluding TCP-Vegas [13], TCP-NICE [14] and TCP-LP [15],
in that it aims at minimizing queue delay in a network to
a defined value that can be tolerated by voice, video and
gaming applications. The work in [16] provides a survey of
these and other low-priority congestion control algorithms.
Several works in recent times have focused on the research
and experimentation of LEDBAT operation. The rest of this
section provides a review of these works on LEDBAT.

In addition to some potential issues with LEDBAT un-
der certain conditions, it has been shown in [7], [8], [9],
[10], [11], [12] that LEDBAT achieves some of its design
objectives. In the performance analysis of LEDBAT in a
controlled testbed and Internet experiment [7], it was found
out that TCP traffic on the ”unrelated” backward path is
capable of causing LEDBAT to significantly underutilize
the link capacity in the forward path. In [8] LEDBAT
competes fairly with TCP in the worst case (i.e. LEDBAT
misconfiguration). Potential intra-protocol fairness issues
have been identified in LEDBAT [8] which can be fixed by
using slow-start in the LEDBAT algorithm, random drops
of LEDBAT sender window, and multiplicative decrease
[9]. The proposed solutions are not without a performance

:

:

Access

Router

TCP-Newreno Source

Router

TCP-Newreno Receiver

N LEDBAT Sources

:

:

N LEDBAT Receivers

B d

baseRTT

C

Figure 2. Network model

trade-off between link utilization and fairness [9]. LEDBAT
achieves the lowest priority in the presence of TCP when
compared to other low priority protocols (TCP-NICE and
TCP-LP) [10]. Sensitivity analysis in [10] showed that
unfairness exists between two LEDBAT flows with different
delay targets or different network conditions. Our previous
work in [12] anaylsed the impact of different values of gain
on LEDBAT throughput and fairness. Based on the analysis,
a dynamic gain algorithm for stabilising LEDBAT sending
rate was proposed.

Although the works in [7], [8], [9], [10], [11] have
analysed the performance of LEDBAT in the presence of
TCP, our work is significant as it is the first to identify the
threshold of a bottleneck buffer size that leads LEDBAT
to revert to its minimum congestion window. As it will be
shown later on in this paper, a bottleneck buffer size less
than the threshold leads LEDBAT to oscillate between the
minimum congestion window and some upper bounds.

IV. SYSTEM MODEL

This analysis is aimed at: 1) identifying the threshold of
a bottleneck buffer size that leads LEDBAT to revert to its
minimum congestion window in the presence of TCP; 2)
quantifying the amount a bottleneck capacity that a LEDBAT
flow yields to a newly arriving TCP flow in the same
access network; 3) showing that LEDBAT throughput is
nearly fixed when bottleneck capacity is increased unlike
TCP throughput. This section presents the system model,
which is based on the topology in Figure 2. The assumptions
used in the analysis, as well as a formal explanation of how
different cases of the bottleneck buffer size impact LEDBAT
performance in the presence of TCP, are also given in this
section.

The network topology assumes N LEDBAT source(s)
sharing a common path with a single TCP source. It is
assumed that the TCP and LEDBAT sources always have
data to send and their sending windows are not limited
by the receiver advertised windows (but by the congestion
window). All sources (LEDBAT and TCP) send fixed size
packets of P bytes. The RTT for all sources when there is no
queue delay is baseRTT . The uplink in the access network
is the path bottleneck and has capacity C, a typical case in

the access networks of most ISP’s networks [17], [1]. The
capacities of all other links are assumed to be greater than C.
The router uses a FIFO drop-tail queue with maximum size
of B packets. For the values of LEDBAT design parameters,
we use 25ms and 40 respectively for dtar and G [1].

LEDBAT throughput in the presence of TCP will depend
on the bottleneck buffer size. This is because LEDBAT
congestion window will only be increased or decreased if
the estimated queue delay is less or greater than the target
delay, respectively. During an active session of TCP, the
TCP source halves its congestion window upon inferring a
packet loss, thus reducing the queue delay in the path. When
the queue delay is reduced, say to dthreshold, LEDBAT will
increase its congestion window if dthreshold is less than the
target delay. Otherwise LEDBAT decreases its congestion
window. Denoting the bottleneck buffer size that results in
a queue delay of dthreshold as Bthreshold:

Bthreshold = C × (baseRTT + 2dtar) (3)

This is because a TCP source keeps C × baseRTT plus
a number of backlogged packets (in the queue) in transit
expecting to receive acknowledgements. For the TCP source
to maintain C × baseRTT number of unacknowledged
packets (excluding backlogged packets in the queue) in
transit after halving its congestion window upon inferring
a packet loss, the bottleneck buffer size B must be equal to
C×baseRTT . However, if B has an additional size of twice
the product of C and dtar then the TCP source will have
C× (baseRTT +dtar) number of unacknowledged packets
in transit after halving its congestion window, where C×dtar
represents the number of backlogged packets in the queue
shortly after TCP halves its congestion window.

Therefore, in the presence of TCP, it follows that if
B < Bthreshold and TCP halves its congestion window,
LEDBAT will estimate the queue delay to be less than
the target delay and consequently increase its sending rate.
Otherwise, LEDBAT will estimate the queue delay to be
greater than the target delay thus decreasing its sending rate
to a pre-defined minimum value. We therefore express the
congestion window performance of a LEDBAT source in
Equation 4 where w∗ is LEDBAT congestion window in
the presence of TCP and [wmin, w

∗
upper] represents the

oscillation of w∗ between wmin and some upper bounds
w∗

upper of LEDBAT congestion window in the presence of
TCP.

w∗(t) =

wmin if B ≥ Bthreshold

[wmin, w
∗
upper] otherwise

(4)

Therefore to analyse the scenario shown in Figure 2, bot-
tleneck buffer sizes which satisfy the two conditions given
in Equation 4 are chosen so that we can show simulation

Table I
SIMULATION PARAMETER VALUES

Parameter Value
C (Mb/s) 2
Other links capacity (Mb/s) 10
d (ms) 25
Other links delay (ms) 5
B (pkts) 10, 20
wmin (pkts) 1
Traffic source FTP
Packet size (B) 1500
Number of LEDBAT source 1

results supporting our intuition in Equation 4. Buffer of these
sizes are likely to be present in current access routers [18],
[19]. A single TCP session can sufficiently fill a bottleneck
buffer in a network as multiple TCP sessions, thus a single
TCP session is considered in this analysis.

The path delay is d. Note that although d is assigned to
the bottleneck link in Figure 2, it in fact represents the delay
across multiple links. As only small size acknowledgement
packets are sent, it is assumed that the queue delay in the
reverse direction is 0.

V. PERFORMANCE ANALYSIS

In this section we present simulation results supporting
our intuition described in Equation 4 and showing the limited
and fixed LEDBAT throughput in the presence of TCP.
Key performance metrics are LEDBAT congestion window,
access router queue delay, percentage of bottleneck capacity
yielded to TCP by LEDBAT, average LEDBAT throughput.
We refer to the percentage of the bottleneck capacity yielded
to TCP by LEDBAT to mean the percentage of C allocated
to TCP when TCP starts while LEDBAT is in steady state.
We use this to quantify the impact of introducing a TCP
flow on the LEDBAT throughput.

A. Simulation Setup

We implemented the LEDBAT congestion control algo-
rithm as a new variant of TCP congestion control mechanism
in ns-2.34 [20], [12]. This is because the novel algorithm
can be used with any of the existing transport protocols
(e.g. TCP, UDP) [1]. TCP timestamping [21] is used so
that the LEDBAT sender can determine the one-way delay.
Simulation parameter values are listed in Table I while other
parameters take their default value in ns-2.34.

We consider the impact of different values of B, wmin,
and C on the performance of LEDBAT in the presence of
TCP. The following scenarios are simulated:

• LEDBAT starts at time 0 and last for 60 seconds, TCP
arrives at time 10 seconds and stops at time 50 seconds.

• TCP starts at time 0 and stops at 50 seconds, LEDBAT
arrives at time 10 seconds and last for the entire
simulation time of 60 seconds.

0

5

10

15

20

0 10 20 30 40 50 60

C
o

n
g
e

s
ti
o

n
 W

in
d

o
w

 (
p

k
ts

) B < C × (baseRTT + 2dtar)
B ≥ C × (baseRTT + 2dtar)

0

20

40

60

80

100

120

0 10 20 30 40 50 60

Q
u

e
u

e
 D

e
la

y
 (

m
s
)

Time (s)

Figure 3. Evolution of the congestion window of LEDBAT and queue
delay of packets when LEDBAT starts earlier than TCP for different values
of the bottleneck buffer size.

• LEDBAT starts at time 0 while TCP arrives 150 sec-
onds later. Both complete at 300 seconds

B. LEDBAT Congestion Window and Access router Queue
Delay Over Time

In this section the results of LEDBAT congestion window
and access router queue delay over time are presented for
the 60-second simulation for different values of B and the
relative arrival time of TCP to LEDBAT. Although LEDBAT
yields to TCP in all the cases considered, different amounts
of the bottleneck capacity are yielded to TCP for different
values of B and TCP arrival times relative to LEDBAT.

1) LEDBAT Starting Earlier Than TCP: As shown in
Figure 3, LEDBAT spends most of the time in steady state in
the first 10 seconds before TCP arrives when the bottleneck
capacity is already saturated and queue delay is near 25ms.

As TCP arrives at 10s for the case where B ≥ Bthreshold

i.e. B = 20 packets, LEDBAT quickly yields by reducing
its congestion window. This is because of the large increase
in queue delay caused by the arrival of TCP packets during
TCP slow start phase. However once the queue size reaches
the maximum, packet loss is experienced by TCP which
results in halving of the TCP congestion window. During
this time, LEDBAT increases its congestion window after
about 1s because queue delay is less than the LEDBAT
target delay. As TCP enters congestion avoidance phase,
the access router queue starts to build up (even beyond
the target), leading to LEDBAT decreasing its congestion
window until it reaches the pre-defined minimum congestion
window of 1 packet (wmin = 1 by default in the simulation).
As the queue delay of packets does not go below the
target indicated by the non-increasing congestion window of
LEDBAT from 1 packet in Figure 3, even when TCP reacts
to packet loss, LEDBAT congestion window remains at the

0

5

10

15

20

10 20 30 40 50 60

C
o
n
g
e
s
ti
o
n
 W

in
d
o
w

 (
p
k
ts

)

0

20

40

60

80

100

120

0 10 20 30 40 50 60

Q
u
e
u
e
 D

e
la

y
 (

m
s
)

Time (s)

Figure 4. Evolution of the congestion window of LEDBAT and queue
delay of packets when TCP starts earlier than LEDBAT

minimum level for the rest of the TCP session. Thus, the
average congestion window and consequently the throughput
of LEDBAT during TCP session in this scenario tends to the
minimum congestion window of LEDBAT as the duration
of the TCP congestion avoidance phase increases.

However for the case of B < Bthreshold i.e. B = 10
packets, similar observation to the case where B = 20
is observed before and shortly after the arrival of TCP at
10s. The difference becomes obvious as TCP enters its con-
gestion avoidance phase. In this phase LEDBAT congestion
window does reach 1 packet but increases to about 4 packets
as shown in Figure 3. Thus, LEDBAT congestion window
oscillates between 1 and 4 packets for the entire session of
TCP. The end result is a higher throughput than the case
where B ≥ Bthreshold.

When the TCP session completes at time 25s, the queue
delay drops below the target and LEDBAT soon returns to
steady state for all values of B.

2) TCP Starting Earlier Than LEDBAT: In this section
results showing LEDBAT performance when TCP arrives
10s earlier than LEDBAT for B ≥ Bthreshold are given in
Figure 4. After 10s LEDBAT congestion window oscillates
between 1 and 2 packets. This is because the LEDBAT
source measures a base one-way delay as the actual base
one-way delay plus the queue delay currently caused by
TCP. The source then increases its sending rate until the
target delay is reached. However when TCP halves its
congestion window due to packet loss, LEDBAT estimates
the queue delay to be less than target and increases its
sending rate. Subsequent packet losses by TCP results in
this process being repeated until the end of the TCP session
as shown in Figure 4. The end result is a higher average
LEDBAT throughput than when LEDBAT starts earlier than
TCP.

Therefore, the case of when TCP starts after LEDBAT has
reached steady state and when B ≥ Bthreshold represents

80

85

90

95

100

1 1.5 2 2.5 3 3.5 4 4.5 5

B
o

tt
le

n
e

c
k
 C

a
p

a
c
it
y
 Y

ie
ld

e
d

 t
o
 T

C
P

 (
%

)

Minimum Congestion Window wmin (pkts)

Figure 5. Percentage of the bottleneck link capacity yielded by LEDBAT
to TCP as the minimum congestion window wmin increases.

the worst case scenario for LEDBAT in the presence of TCP.
Results in subsequent sections are obtained from the worst
case scenario.

C. Impact of Minimum Congestion Window

The results shown in Figure 5 are measured only when
TCP traffic is present for the last 150 seconds in the 300-
second simulation. Unsurprisingly, Figure 5 shows how the
percentage of the bottleneck capacity obtained by TCP re-
duces as the minimum LEDBAT congestion window, wmin,
increases. However, the results in Figure 5 rather suggest a
potential intra-protocol unfairness among multiple LEDBAT
sources sharing the same bottleneck link in the presence of
TCP. This could occur if increasing wmin would improve
the limited LEDBAT throughput in the presence of TCP, the
LEDBAT sources used different values of wmin, and wmin

was a configurable parameter.

D. Fixed LEDBAT Throughput with Increasing Bottleneck
Capacity

Using a similar setup to Section V-C, we run simulations
for different values of C with the default value of wmin. We
set the capacity of all other links to 100Mb/s to ensure that
C remains the bottleneck. We set B to 100 packets so that
the condition B ≥ Bthreshold still holds for all values of C
considered.

Results of the average value of LEDBAT throughput in
Figure 6 show that increasing C has no significant impact on
LEDBAT throughput. This is because LEDBAT congestion
window reverts to a fixed minimum congestion window of
wmin in the presence of TCP, thus limiting the throughput
for the LEDBAT source to a nearly constant value. This
is opposite to TCP that obtains an increasing absolute
portion of the bottleneck capacity with increasing C (see
Figure 6). This may be undesirable for a LEDBAT user, thus
necessitating the need for a dynamic minimum congestion

0

1

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8 9

A
v
e

ra
g
e

 T
h

ro
u
g

h
p

u
t
(M

b
/s

)

Bottleneck Capacity C (Mb/s)

LEDBAT
TCP

Figure 6. Fixed average LEDBAT throughput and non-fixed average TCP
throughput as the bottleneck capacity C increases.

window for LEDBAT that increases as the bottleneck capcity
increases.

VI. CONCLUSION

This paper has analysed the performance of LEDBAT in
the presence of TCP with focus on how different cases of
the bottleneck buffer size impact LEDBAT performance in
the presence of TCP. From our analysis, we identify the
threshold of the bottleneck buffer size that leads LEDBAT to
revert to its minimum congestion window in the presence of
TCP. Although LEDBAT achieves its objectives of yielding
to TCP, for some applications LEDBAT may yield too much,
hence reducing the usage of the protocol. Our results also
show that the minimum congestion window can be used to
increase LEDBAT throughput at the expense of reduced TCP
throughput. Other disadvantages of LEDBAT’s dependence
on a fixed minimum congestion window in the presence
of TCP are twofold. Firstly intra-protocol unfairness may
occur among multiple LEDBAT sources using different
values of the minimum congestion window and sharing
the same bottleneck link. Secondly the average throughput
for LEDBAT is nearly fixed when the bottleneck capacity
increases as opposed to TCP that proportionally increases
its throughput. The latter may be undesirable for LEDBAT
users thus necessitating the need for a dynamic minimum
congestion window in the LEDBAT algorithm which we will
address in the future.

REFERENCES

[1] S. Shalunov, “Low Extra Delay Background Transport (LED-
BAT),” IETF Internet Draft, (work-in-progress), Mar. 2010,
http://tools.ietf.org/pdf/draft-ietf-ledbat-congestion-00.pdf.

[2] J. Postel, “Transmission control protocol (TCP),” IETF RFC
793, 1981.

[3] F. Kelly, “Mathematical modelling of the Internet,” in Pro-
ceedings of the Fourth International Congress on Industrial
and Applied Mathematics, Edinburgh, Scotland, 5–9 Jul.
1999, pp. 105–116.

[4] uTorrent, “Micro transport protocol (UTP),”
http://www.utorrent.com/documentation/utp, accessed on
24th September 2010.

[5] S. Floyd and T. Henderson, “The NewReno modification to
TCP’s fast recovery algorithm,” IETF RFC 2582, Apr. 1999.

[6] M. Allman, V. Paxson, and W. R. Stevens, “TCP congestion
control,” IETF RFC 2581, Apr. 1999, http://www.ietf.org/rfc/
rfc2581.txt.

[7] D. Rossi, C. Testa, and S. Valenti, “Yes, we LEDBAT: Playing
with the new BitTorrent congestion control algorithm,” in
Passive and Active Measurement (PAM), Zurich, Switzerland,
Apr. 2010, pp. 31–40.

[8] D. Rossi, C. Testa, S. Valenti, and L. Muscariello, “LED-
BAT: the new BitTorrent congestion control protocol,” in
Proceedings of the International Conference on Computer
Communication Networks, Zurich, Switzerland, Aug. 2010,
pp. 1–6.

[9] G. Carofiglio, L. Muscariello, D. Rossi, and S. Valenti,
“The quest for LEDBAT fairness,” in Proceedings of IEEE
Globecom, Miami, FL, Dec. 2010, p. (to appear).

[10] G. Carofiglio, L. Muscariello, D. Rossi, and C. Testa, “A
hands-on assessment of transport protocols with lower than
best effort priority,” in Proceedings of the 35th IEEE Confer-
ence on Local Computer Networks, Denver, CO, Oct. 2010,
p. (to appear).

[11] M. I. Andreica, N. Tapus, and P. Johan, “Performance eval-
uation of a python implementation of the new LEDBAT
congestion control algorithm,” in Proceedings of IEEE In-
ternational Conference on Automation, Quality and Testing
Robotics (AQTR), Cluj-Napoca,Romania, May 2010, pp. 1–
6.

[12] A. J. Abu and S. Gordon, “A dynamic algorithm for stabilising
LEDBAT congestion window,” in Proceedings of the Inter-
national Conference on Computer and Network Technology,
Bangkok, Thailand, Apr. 2010, pp. 157–161.

[13] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end
congestion avoidance on a global Internet,” IEEE Journal on
Selected Areas in Communications, vol. 13, no. 8, pp. 1465–
1480, Oct. 1995.

[14] A. Venkataramani, R. Kokku, and M. Dahlin, “TCP Nice: A
mechanism for background transfers,” in Proceedings of the
Fifth Symposium on Operating Systems Design and Imple-
mentation, Boston, MA, 9–11 Dec. 2002, pp. 329–343.

[15] A. Kuzmanovic and E. W. Knightly, “TCP-LP: Low-priority
service via end-point congestion control,” IEEE/ACM Trans-
actions on Networking, vol. 14, no. 4, pp. 739–752, Aug.
2006.

[16] M. Welzl, “A survey of lower-than-best effort transport pro-
tocols,” IETF Internet Draft, (work-in-progress), Mar. 2010.

[17] A. Akella, S. Seshan, and A. Shaikh, “An empirical evaluation
of wide-area Internet bottlenecks,” in Proceedings of the ACM
SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, San Diego, CA, USA, 27–
29 Oct. 2003, pp. 316–317.

[18] Y. Ganjali and N. McKeown, “Update on buffer sizing in
Internet routers,” ACM SIGCOMM Computer Communication
Review, vol. 36, no. 5, pp. 67–70, Oct. 2006.

[19] R. S. Prasad, C. Dovrolis, and M. Thottan, “Router buffer
sizing for TCP traffic and the role of the output/input capacity
ratio,” IEEE/ACM Transactions on Networking, vol. 17, no. 5,
pp. 1645–1658, Oct. 2009.

[20] ns-2, “Network Simulator,” http://www.isi.edu/nsnam.
[21] V. Jacobson, B. Braden, and D. Borman, “TCP extensions for

high performance,” IETF RFC 1323, May 1992.

