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Abstract—Low Extra Delay Background Transport (LEDBAT)
is a delay-based Internet congestion control mechanism developed
to allow fair and efficient data transfer when delay-sensitive
and file sharing applications co-exist in networks. A LEDBAT
source increases its congestion window until a fixed, pre-defined
target queue delay is experienced. This paper analyses LEDBAT
congestion control showing that the current algorithm, although
quickly reaching a steady state (i.e. target delay reached), results
in large oscillations of congestion window and queue delay once
in steady state. We therefore propose a dynamic calculation of
the congestion window gain once in steady state, and show that
the proposed modification stabilises the congestion window while
still meeting the fairness and efficiency goals of LEDBAT.

Keywords—Internet congestion control, transport protocol,
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I. INTRODUCTION

Low Extra Delay Background Transport (LEDBAT) [14]
is a newly proposed one-way delay-based congestion control
mechanism for peer-to-peer (P2P) applications and other appli-
cations that establish multiple TCP [10] connections for data
transfer. LEDBAT is designed so that a source sending rate
is similar to TCP-NewReno when no other traffic exists, and
yields to newly arriving TCP connections. To be TCP-friendly,
a LEDBAT source must not increase its sending rate faster than
TCP. Additionally, the source assumes a target queue delay in
the path, and aims to adjust its sending rate so that the actual
queue delay remains at the target.

The LEDBAT congestion control mechanism is a linear
controller where the magnitude of the congestion window
increase (and the source sending rate, as the two values are
approximately proportional [1]) depends on the difference
between the target queuing delay and measured queuing delay,
as well as a constant multiplier, gain. For the linear controller
not to ramp-up faster than TCP, the value of gain must be
carefully chosen [14]. Although a gain of 1 packet per round
trip time (RTT) in [12], [13] and 10 packets per RTT in [13]
have been suggested, no work has analysed the performance
impact of different values of gain on LEDBAT.

In this paper we present analysis of the LEDBAT congestion
control mechanism, focussing on the rate at which a LEDBAT
source changes its sending rate. Ideally, LEDBAT will increase
as fast as possible to quickly reach steady state (not faster
than TCP), but also maintain a smooth average sending rate,
so as not to introduce significant jitter into the network. Our
analysis of LEDBAT shows that, using the currently specified

constant values of gain in [14], high values allow the source
to quickly reach steady state, but result in large variations of
sending rate in steady state (hence large variations of the actual
queue delay).

To improve LEDBAT performance, we propose an algo-
rithm for dynamically adjusting the gain in steady state.
The value of our proposed dynamic gain depends on the
congestion window of LEDBAT. Further analysis shows how
LEDBAT sources, with our dynamic algorithm, can quickly
reach steady state and also maintain a smooth sending rate
during steady state. This meets the design objectives of LED-
BAT, while improving the throughput and reducing jitter when
compared to the original algorithm.

The structure of the rest of this paper is: Section II gives
an overview of LEDBAT algorithm, Section III describes the
analysis methodology, while Section IV presents results on the
performance of LEDBAT with different values of gain, our
proposed dynamic algorithm is introduced in Section V and
compared with the original LEDBAT algorithm, Section VI
provides related work while we conclude in Section VII.

II. LEDBAT CONGESTION CONTROL

A. Motivation of LEDBAT

As a motivation behind the design of LEDBAT, most
applications that transfer bulk data in the Internet use TCP [10]
as a transport protocol. Some of these applications (e.g. P2P
applications such as BitTorrent) are capable of establishing
multiple TCP connections for data transfer. Recalling that
TCP-NewReno, used widely in the Internet, needs to detect
packet loss before it reduces its sending rate [8], thus TCP
can potentially fill the buffer of a FIFO bottleneck uplink in
the access network of an Internet Service Provider (ISP). The
buffer size of most uplinks in home networks are relatively
large which can push queuing delay of packets up to several
hundreds of milliseconds [14]. When real-time applications
such as voice, video, and games co-exist in the same access
network with multiple-connections-initiating applications that
use TCP, the performance of the real-time applications de-
grades significantly as they cannot withstand high network
delay. This led to the effort of a working group in IETF [6] on
LEDBAT. A similar network-latency minimizing congestion
control algorithm has been implemented as Micro Transport
Protocol (uTP) used by �Torrent (a UDP-based BitTorrent
protocol).



B. LEDBAT Goals and Design

LEDBAT is designed for time-independent applications to
provide lower-than-best-effort service for end-users towards
achieving the following goals [14]:

∙ To fully saturate the bottleneck while keeping queuing
delay low when only LEDBAT is present in the network.

∙ To quickly yield to traffic traversing the same bottleneck
link that uses standard TCP congestion control or UDP.

∙ To contribute little to the queuing delay caused by TCP.

The LEDBAT algorithm [14], shown in Fig. 1, involves the
source estimating the delay to the destination by placing a time
stamp in data packets. The destination sends the measured
delay of the data packet in a field in the acknowledgement
packet. Upon receiving the acknowledgement, the source uses
the measured delay to estimate the queue delay in the path. The
source assumes the queue delay is the difference between the
current delay measurements and a base set of delay measure-
ments. The base one-way delay is taken as the minimum one-
way delay from a list of previous one-way delay observations.

LEDBAT Destination receives data_packet:
remote_timestamp = data_packet.timestamp
acknowledgement.delay =

local_timestamp() - remote_timestamp
# fill in other fields of acknowledgement
acknowledgement.send()

LEDBAT Source receives acknowledgement:
delay = acknowledgement.delay
update_base_delay(delay)
queuing_delay = current_delay() - base_delay()
off_target = TARGET - queuing_delay
cwnd += GAIN * off_target / cwnd

Fig. 1. LEDBAT algorithm at the sender and receiver

The LEDBAT source has a target queue delay: the source
aims not to increase the queue delay above this target. The
sender increases its sending rate as long as the estimated
queuing delay is less than the delay target. Otherwise, it
reduces its sending rate before the access router buffer is
full, in order to allow other applications to obtain a fair
share of network resources and experience low queuing delay.
Although not explicitly stated in [14], we set the minimum
congestion window to be 1 packet. The LEDBAT congestion
control algorithm can be implemented with any transport
protocol such as TCP, UDP, DCCP, or SCTP.

C. LEDBAT Parameters

LEDBAT uses a linear controller in its design to proportion-
ally modulate LEDBAT congestion window with the estimated
queuing delay [14]. A precise description of the controller
is given in (1) where ws is the LEDBAT source congestion
window, D is the estimated queuing delay by the LEDBAT
source, and Toffset = D − target.

ws(t+ 1) =

⎧⎨⎩

ws(t) +
gain×Toffset

ws(t)
if D < target

ws(t)− gain×Toffset

ws(t)
if D > target

ws(t) if D = target

ws(t)
2 On packet loss.

(1)
LEDBAT aims to achieve friendliness with TCP by: 1) not

increasing faster than TCP during start-up phase, 2) quickly
yielding to TCP, and 3) halving its congestion window when a
packet loss is detected in the path of LEDBAT flow. Carefully
choosing a good value of gain is a step towards achieving
TCP-friendliness in terms of not-greater than TCP ramp-up
speed of LEDBAT.

Two parameters, namely target and gain, are used in the
LEDBAT algorithm. [14] requires target to be set to 25ms
while gain should be set such that LEDBAT does not increase
faster than TCP. The value of target is justified by the fact
that it should not be less than the operating systems accuracy
in timestamping packets as queuing delay is estimated from
measurement. We use a delay target of 25ms throughout this
work. The remainder of the paper analyses the selection of
different values of gain.

III. ANALYSIS METHODOLOGY

The aims of our analysis are to: analyse and quantify the
impact of different values of gain on the performance of
LEDBAT and other traffic; and improve LEDBAT performance
with high values of gain.

We consider a scenario of a user uploading a file (FTP)
to a remote computer (Fig. 2): First in the absence of other
traffic, and secondly in the presence of a real-time video traffic
from another user in the same access network. In both cases,
we consider the link connecting the access router to the next
router as a bottleneck with relatively large buffer size. Using
the network simulator ns-2.34 [9] we analyse the performance
of using LEDBAT for the file transfer.
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Fig. 2. Simulation network topology

A. Simulation Setup

The network topology is depicted in Fig. 2. We set all links
to 10Mb/s and 5ms except the link connecting the access
router to the next router. This is set to 1.5Mb/s in order to
make it the bottleneck link, and the delay is 20ms because



we assume there are multiple links connecting the end-users’
access networks. We use a buffer size of 50 packets at the
router with a FIFO droptail queue discipline. Link MTU is
given as 1500B. Key parameter values used in the simulation
are given in TABLE I. Other parameters take their default
values in ns-2.34. In the case of gain, 40 is the default value.

TABLE I
SIMULATION PARAMETERS WITH RESPECTIVE DEFAULT VALUES

Category Parameters Values

LEDBAT
gain 5, 10, 20, 40, 80, 160, 240, 320, 400
target 25ms
Traffic FTP
Packet size 1500B (including IP header)

UDP Traffic Constant Bit Rate (CBR)
Packet size 500B
Rate 750Kb/s

There are three scenarios analysed:
1) LEDBAT source starts at time 0sec and runs until the

end of simulation after 30 seconds. A UDP traffic source
starts at time 20sec. We record the instantaneous values
of LEDBAT congestion window and queuing delay of
LEDBAT packets with each value of gain.

2) LEDBAT source runs, on its own, for a duration of 180
seconds.

3) LEDBAT source runs for 180sec, sharing the bottleneck
link with a UDP for the entire duration.

For the last two scenarios the performance metrics are:
∙ Average queuing delay of LEDBAT packets at the access

router, denoted as Queue Delay.
∙ Average congestion window of LEDBAT, Cwnd.
∙ Average link utilization of LEDBAT traffic.
∙ Standard deviation of queuing delays which defines how

much the queuing delay of each LEDBAT packet deviates
from the queuing delay target, denoted as �delay.

∙ Standard deviation of congestion window which defines
how much each computed LEDBAT congestion window
deviates from the average value denoted as �cwnd.

∙ Time taken by LEDBAT to reach steady state.
Since one of our objectives is to analyse the performance of
LEDBAT with different values of gain in steady state, average
values of metrics collected are taken over the duration of the
steady state of LEDBAT.

B. Implementation of LEDBAT in ns2

We implement the LEDBAT congestion control algorithm
[14] in the network simulator ns-2.34 [9]. It is implemented as
a new variant of TCP congestion control mechanism in order
to ensure retransmission in case of packet loss. We use TCP
timestamping option [16] for the timestamping of packets at
the LEDBAT sender.

IV. ANALYSIS OF CONGESTION WINDOW GAIN

In this section, we present our analysis results when we
simulate the topology shown in Fig. 2 with different values of
gain as given in TABLE I.

As shown in Fig. 3a with a gain of 40, LEDBAT sig-
nificantly increases its congestion window from 2 packets
to 12 packets where it detects that the queuing delay has
built-up to about 25ms as shown in Fig. 3b. The congestion
window stabilizes at this point in order to keep queuing delay
as low as 25ms until the arrival of UDP flow at 20s where
LEDBAT estimates queuing delay is greater than target. In
response to this, LEDBAT reduces its congestion window until
estimated queuing delay is less than target where it increases
its congestion window to about 6 packets. LEDBAT reaches
steady state at this value because UDP traffic arrives at a
constant rate of 750Kb/s. This means that LEDBAT makes use
of the remaining half of the bottleneck bandwidth of 1.5Mb/s.
However, different behaviour of both the congestion window
and queuing delay curves are observed in Fig. 3c and 3d
respectively as both curves oscillates significantly because of
high value of gain (i.e. G = 320). This is because, according
to (1), higher gain means more growth or shrink of Cwnd.

In Fig. 3e, the time taken by LEDBAT to reach steady
state (i.e. when estimated queuing delay is approximately
equal to target) in the presence and absence of UDP in the
network decreases as we increase the value of gain from 5
to 240. Beyond gain = 240, the time-taken remains constant
because the network resources such as bandwidth and link
delay remain unchanged. Time to reach steady state when
LEDBAT shares the bottleneck with UDP is less than when
only LEDBAT is present in the network. This is due to reduced
network resources by UDP traffic (i.e. available shared link
bandwidth for LEDBAT is reduced from 1.5Mb/s to 750Kb/s).
In (1), increasing gain can increase the growth of LEDBAT
congestion window during start-up phase, thus reducing the
time-taken to reach steady state.

V. PROPOSED DYNAMIC GAIN ALGORITHM

A. Motivation

Our proposed extension to LEDBAT is motivated by the
fact that high value of gain in LEDBAT does not achieve
a stable congestion window at steady state. This leads to
large oscillations in queuing delay experienced by packets
belonging to LEDBAT flow and other flows (especially real-
time) that share the same bottleneck link with LEDBAT as
shown in Fig. 3c and Fig. 3d. This is because the value of gain
is significant (i.e. a multiplier) in the equation of LEDBAT
congestion window as shown in (1).

B. A Dynamic Gain Algorithm

In the LEDBAT source congestion control algorithm in
Fig. 1, before the congestion window is calculated, we in-
troduce a new calculation of gain when steady state has been
reached:

gain =
10⌈log10⌊cwnd⌋⌉

cwnd
(2)

Equation (2) shows that the value of gain will always be in
the range of 1 to 9 for all values of cwnd. The reason for this
is that we want the expression off_target/cwnd to be
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Fig. 3. (a) LEDBAT congestion window when gain = 40; (b) Queue delay of LEDBAT packets when gain = 40; (c) LEDBAT congestion window when
gain = 320; (d) Queue delay of LEDBAT packets when gain = 320; (e) Time for LEDBAT source to reach steady state for different values of gain. In
(a)-(d) a UDP source starts at time 20s.

multiplied by a value of gain < 10 (a one-digit multiplier)
for all values of cwnd in steady state. This will significantly
reduce the high oscillation caused by high value of gain.
Using (2) makes our algorithm scalable especially in high-
speed networks because the power of 10 in the numerator
increases as the number of digits of cwnd increases.

C. Performance Results

After implementing the dynamic gain algorithm in ns-
2.34, we repeated the simulation experiments described in
Section III. Selected results are reported here.

Comparing the results in Fig. 4a and 4b with Fig. 3c and 3d,
our proposed extension to LEDBAT reduces queuing delay
at the access router significantly from 80ms to stabilize at
about 25ms after 5s unlike the unmodified LEDBAT in Fig. 3d
that oscillates largely between 80ms and approximately 0ms.
This is because LEDBAT with the proposed extension resets
gain to a dynamic value computed as shown in equation 2
as soon as it reaches steady state. As shown in Fig. 4a,
LEDBAT congestion window is quickly increased from 2
packets to about 19 packets because gain = 320, thus
inducing a maximum queuing delay of 80ms. As T < 80ms,
LEDBAT congestion window is decreased with a value of
gain determined by cwnd until after 6s where the congestion
window and queuing delay stabilize at approximately 12
packets and 25ms respectively. LEDBAT with the proposed
extension yields to UDP traffic just after 20s by reducing its
congestion window until estimated queuing delay is less than
target.

As shown in Fig. 4d, average congestion window of LED-
BAT without dynamic value of gain starts to increase signifi-
cantly after gain = 240 from 12 packets to about 15 packets
while it remains almost at 12 packets with our proposed
extension as we increase gain. Fig. 4e shows that with our
proposed extension, we obtain standard deviation that is less
than 1 packet for all values of gain while without the extension
the standard deviation increases significantly after gain = 80
from 1 packet to 5 packets.

The increasing average and standard deviation of LEDBAT
congestion window is responsible for the increasing average
and standard deviation of queuing delay of LEDBAT packets
without the proposed extension from 25ms to 50ms and from

0ms to 35ms respectively as we increase the value of gain
as shown in Fig. 4h and 4i. However, with the proposed
extension, the average and standard deviation of queuing delay
remain constant as we increase the value of gain at about
27ms and 5ms respectively as given in the same figure.

Similar results are obtained when LEDBAT shares the
bottleneck with UDP as given in Fig. 4f, 4g, 4j, and 4k. They
only differ in the average congestion window (of ≈ 12 packets
in Fig. 4d and ≈ 6 packets in Fig. 4f) of LEDBAT with the
proposed extension. This is because only half of the bottleneck
bandwidth is available for LEDBAT as UDP traffic arrives at
the access router at a constant rate of 750Kb/s.

LEDBAT, without the proposed extension, achieves
100% and 50% link utilization until gain = 160 and 80
respectively, beyond which the average link utilizations de-
crease below 100% and 50% to ≈ 70% and ≈ 45% in the
absence and presence of UDP traffic respectively as shown in
Fig. 4c. However, in the case of LEDBAT with the proposed
extension, average link utilizations remain at 100% and 50%
in the absence and presence of UDP traffic respectively as we
increase the value of gain also shown in the same figure.

VI. RELATED WORK

The first congestion collapse that hit the Internet over 3
decades ago motivated the work in [17], after which several
other congestion control algorithms have been proposed. Re-
lated to LEDBAT are delay-based and low-priority congestion
control algorithms. Jain first introduced a delay-based conges-
tion control mechanism in [11]. In fact, none of the existing
delay-based congestion control algorithms, even the famous
TCP-Vegas [4], has been designed to minimize network delay
to a defined value.

Due to the recent dominance of the Internet by non-
interactive bulk data carrying traffic, several low-priority con-
gestion control protocols have been developed to adjust their
sending rate based on loss rate [5], delay [3], [18] and an inline
network [15] measurements, adjusting the receiver advertised
window at the application layer [2]. Further comparison of
these low priority protocols can be found in [7].

The only work that has reported the performance evaluation
of LEDBAT in [12] does not addressed the impact of different
values of gain on the performance.
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Fig. 4. (a) and (b): LEDBAT congestion window and queue delay when using dynamic gain with initial value 320 (UDP starts at 20s); (c) Bottleneck link
utilization in the presence and absence of UDP and comparing fixed gain and dynamic gain; (d) and (e): LEDBAT congestion window and its standard
deviation in the absence of UDP; (f) and (g): LEDBAT congestion window and its standard deviation in the presence of UDP; (h) and (i): Queue delay and
its standard deviation in the absence of UDP; (j) and (k): Queue delay and its standard deviation in the presence of UDP.

VII. CONCLUSION

We have analysed the rate at which the LEDBAT congestion
window changes, both while only a single LEDBAT source is
running, as well as when LEDBAT shares a bottleneck link
with a real-time UDP application. Focussing on the congestion
window gain, our results show that a LEDBAT source can
quickly reach a steady state with a high gain (where the steady
state is when the target queue delay is reached). However,
once in steady state the high gain leads to large oscillations
in the sending rate, and large peaks in queue delay. Therefore
we propose calculating a dynamic gain once in steady state,
where the gain depends on the current congestion window
size. Further analysis shows how our proposed dynamic gain
algorithm stabilises the sending rate, without compromising
on the fast start-up, thereby still meeting the LEDBAT design
goal of TCP-friendliness.

Further work is needed on understanding the performance
of LEDBAT congestion control. In particular, the interaction
between multiple LEDBAT flows with other TCP and UDP
flows needs to be analysed, as fairness problems may arise
between LEDBAT flows as well as between LEDBAT and
non-LEDBAT flows. Also LEDBAT assumes the only variable
component of the RTT is the queue delay at the bottleneck
router. The impact of other variable components (e.g. due to re-
routing, variable link delay) must be analysed before LEDBAT
can be considered as a suitable congestion control mechanism
in the Internet.
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