
Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

1/29

RSA

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 22 Dec 2021,
rsa.tex, r1945



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

2/29

Contents

RSA Algorithm

Analysis of RSA

Implementations of RSA

RSA in OpenSSL

RSA in Python



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

3/29

RSA Public Key Algorithm

I Created Ron Rivest, Adi Shamir and Len Adleman in 1978

I Formed RSA Security (company) in 1982 to commercialise products

I Most widely used public-key algorithm

I RSA is a block cipher: plaintext and ciphertext are integers



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

4/29

The RSA Algorithm for Encryption

I Step 1: Users generated RSA key pairs using RSA Key Generation Algorithm

I Step 2: Users exchange public key

I Step 3: Sender encrypts plaintext using RSA Encryption Algorithm

I Step 4: Receiver decrypts ciphertext using RSA Decryption Algorithm



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

5/29

RSA Key Generation (algorithm)

Each user generates their own key pair

1. Choose primes p and q

2. Calculate n = pq

3. Select e: gcd(φ(n), e) = 1, 1 < e < φ(n)

4. Find d ≡ e−1 (mod φ(n))

The user keeps p, q and d private. The values of e and n can be made public.

I Public key of user, PU = {e, n}
I Private key of user PR = {d , n}



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

6/29

RSA Key Generation (exercise)

Assume user A chose the primes p = 17 and q = 11. Find the public and private
keys of user A.



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

7/29

RSA Encryption and Decryption (algorithm)

Encryption of plaintext M, where M < n:

C = Me mod n

Decryption of ciphertext C :

M = Cd mod n



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

8/29

Requirements of the RSA Algorithm

1. Successful decryption: Possible to find values of e, d , n such that
Med mod n = M for all M < n

2. Successful decryption: Encryption with one key of a key pair (e.g. PU) can
only be successfully decrypted with the other key of the key pair (e.g. PR)

3. Computational efficiency: Easy to calculate Me mod n and Cd mod n for all
values of M < n

4. Secure: Infeasible to determine d or M from known information e, n and C

5. Secure: Infeasible to determine d or M given known plaintext, e.g. (M1,C1)



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

9/29

Ordering of RSA Keys

I RSA encryption uses one key of a key pair, while decryption must use the
other key of that same key pair

I RSA works no matter the order of the keys
I RSA for confidentiality of messages

I Encrypt using the public key of receiver
I Decrypt using the private key of receiver

I RSA for authentication of messages
I Encrypt using the private key of the sender (called signing)
I Decrypt using the public key of the sender (called verification)

I In practice, RSA is primarily used for authentication, i.e. sign and verifying
messages



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

10/29

RSA used for Confidentiality

M=D(PR B,C)

PU B

C=E(PU
B

,M)M

PR B

D()E()

Ciphertext PlaintextPlaintext
Encryption Decryption

Public key Private key



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

11/29

RSA used for Authentication

M

PU A

D()E()

PR A

C=E(PR
A

,M) M=D(PU A,C)

Ciphertext PlaintextPlaintext
Encryption Decryption

Private key Public key



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

12/29

RSA Encryption for Confidentiality (exercise)

Assume user B wants to send a confidential message to user A, where that
message, M is 8. Find the ciphertext that B will send A.



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

13/29

RSA Decryption for Confidentiality (exercise)

Show that user A successfully decrypts the ciphertext.



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

14/29

Contents

RSA Algorithm

Analysis of RSA

Implementations of RSA

RSA in OpenSSL

RSA in Python



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

15/29

Why Does RSA Decryption Work?

I Encryption involves taking plaintext and raise to power e

I Decryption involves taking previous value and raise to a different power d

I Decryption must produce the original plaintext, that is:

(Me)d mod n = M for all M < n

I This is true of if e and d are relatively prime

I Choose primes p and q, and calculate:

n = pq
1 < e < φ(n)
ed ≡ 1 (mod φ(n)) or d ≡ e−1 (mod φ(n))



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

16/29

Parameter Selection in RSA Key Generation

I Note: modular exponentiation is slow when using large values
I Choosing e

I Values such as 3, 17 and 65537 are popular: make exponentiation faster
I Small e vulnerable to attack; solution is to add random padding to each M

I Choosing d
I Small d vulnerable to attack
I But large d makes decryption slow

I Choosing p and q
I p and q must be very large primes
I Choose random odd number and test if its prime (probabilistic test)



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

17/29

Security of RSA

I Brute-Force attack: choose large d (but makes algorithm slower)
I Mathematical attacks:

1. Factor n into its two prime factors
2. Determine φ(n) directly, without determining p or q
3. Determine d directly, without determining φ(n)

I Factoring n is considered fastest approach; hence used as measure of RSA
security

I Timing attacks: practical, but countermeasures easy to add (e.g. random
delay). 2 to 10% performance penalty

I Chosen ciphertext attack: countermeasure is to use padding (Optimal
Asymmetric Encryption Padding)



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

18/29

Progress in Factorisation

I Factoring n into primes p and q is considered the easiest attack
I Some records by length of n:

I 1991: 330 bits (100 digits)
I 2003: 576 bits (174 digits)
I 2005: 640 bits (193 digits)
I 2009: 768 bits (232 digits), 1020 operations, 2000 years on single core 2.2

GHz computer
I 2019: 795 bits (240 digits), 900 core years

I Improving at rate of 5–20 bits per year

I Typical length of n: 1024 bits, 2048 bits, 4096 bits

https://en.wikipedia.org/wiki/RSA_numbers


Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

19/29

Contents

RSA Algorithm

Analysis of RSA

Implementations of RSA

RSA in OpenSSL

RSA in Python



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

20/29

Recommended or Typical RSA Parameters

I RSA Key length: 1024, 2048, 3072 or 4096 bits
I Refers to the length of n
I 2048 and above are recommended

I p and q are chosen randomly; about half as many bits as n

I e is small, often constant; e.g. 65537

I d is calculated; about same length as n

I For detailed recommendations see NIST FIPS 186 Digital Signature
Standard

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf


Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

21/29

Decryption with Large d is Slow

I Modular arithmetic, especially exponentiation, can be slow with very large
numbers (1000’s of bits)

I Use properties of modular arithmetic to simplify calculations, e.g.

[(a mod n)× (b mod n)] mod n = (a× b) mod n

I Also Euler’s theorem and Chinese Remainder Theorem can simplify
calculations

I Decryption is significantly slower than encryption since d is very large

I Implementations of RSA often store and use intermediate values to speed
up decryption



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

22/29

RSA Implementation Example

I Encryption:
C = Me mod n

I Decryption:
M = Cd mod n

I Modulus, n of length b bits

I Public exponent, e

I Private exponent, d

I Prime1, p, and Prime2, q

I Exponent1, dp = d (mod p − 1)

I Exponent2, dq = d (mod q − 1)

I Coefficient, qinv = q−1 (mod p)

I Private values: PR = {n, e, d , p, q, dp, dq, qinv}
I Public values: PU = {n, e}



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

23/29

Contents

RSA Algorithm

Analysis of RSA

Implementations of RSA

RSA in OpenSSL

RSA in Python



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

24/29

RSA Key Generation (exercise)

Generate your own RSA key pair using the OpenSSL genpkey command.
Extract your public key and then exchange public key’s with another person (or
if you want to do it on your own, generate a second key pair).



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

25/29

RSA Signing (exercise)

Create a message in a file, sign that message using the dgst command, and
then send the message and signature to another person.



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

26/29

RSA Verification (exercise)

Verify the message you received.



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

27/29

RSA Performance Test (exercise)

Using the OpenSSL speed command, compare the performance of RSA
encrypt/sign operation against the RSA decrypt/verify operation.



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

28/29

Contents

RSA Algorithm

Analysis of RSA

Implementations of RSA

RSA in OpenSSL

RSA in Python



Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

29/29

RSA in Python Cryptography Library

I https:

//cryptography.io/en/latest/hazmat/primitives/asymmetric/

https://cryptography.io/en/latest/hazmat/primitives/asymmetric/
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/

	RSA Algorithm
	Analysis of RSA
	Implementations of RSA
	RSA in OpenSSL
	RSA in Python

