Cryptography

Public Key Cryptography

Concepts of Publi Key Cryptography

Public Key Cryptography

Cryptography

School of Engineering and Technology CQUniversity Australia

Prepared by Steven Gordon on 21 Dec 2021, public.tex, r1944 Cryptography

Public Key Cryptography

Concepts of Public Key Cryptography

Contents

Concepts of Public Key Cryptography

${\sf Cryptography}$

Public Key Cryptography

Concepts of Public Key Cryptography

Public Key vs Symmetric Key

- Symmetric Key Encryption
 - Same key used for encryption and decryption
 - Key is randomly generated (e.g. by sender)
 - Problem: How does receiver securely obtain secret key?
- Public (or asymmetric) key encryption
 - Two different, but mathematically related keys
 - One key (public) for encryption, another key (private) for decryption
 - Since encrypt key is public, key exchange is not a problem
 - Ciphers designed around math problems
 - Problem: Performance: much, much slower than symmetric

 ${\sf Cryptography}$

Public Key Cryptography

Concepts of Public Key Cryptography

Public and Private Keys

- Every user has their own key pair: (PU, PR)
 - Keys are generated using known algorithm (they are not chosen randomly like symmetric keys)
- Public key, PU
 - ► Available to everyone, e.g. in email signature, on website, in newspaper
- Private key, PR
 - Secret, known only by owner, e.g. access restricted file on computer
- Ciphers: if encrypt with one key in the pair, can only successfully decrypt with the other key in the pair

- User A is sender, user B is receiver
- Encrypt using receivers public key, PU_B
- Decrypt using receivers private key, PR_B
- Only B has PR_B , therefore only B can successfully decrypt \rightarrow confidentiality

Cryptography

Public Key Cryptography

Concepts of Public Key Cryptography

Why Does Public Key Crypto Work?

- Public key ciphers consist of:
 - Key generation algorithm
 - Encryption algorithm
 - Decryption algorithm
- Designed around computationally hard mathematical problems
- Very hard to solve without key, i.e. trapdoor functions
 - Finding prime factors of large integers
 - Solving logarithms in modulo arithmetic
 - Solving logarithms on elliptic curves

 ${\sf Cryptography}$

Public Key Cryptography

Concepts of Public Key Cryptography

Public Key Crypto Examples

- RSA (Rivest Shamir Adleman)
 - Security depends on difficult to factor large integers
 - Widely used for digital signatures

Diffie-Hellman

- Security depends on difficult to solve logarithms in modulo arithmetic
- Widely used for secret key exchange
- Elliptic Curve
 - Security depends on difficulty to solve logarithms on elliptic curve
 - Newer, used in signatures and key exchange
 - Smaller keys is benefit