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Divides (definition)

b divides a if a = mb for some m, where a, b and m are integers. We can also
say b is a divisor of a, or b|a.
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Divides (example)

3 divides 12, since 12 = 4× 3. Also, 3 is a divisor of 12, or 3|12.
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Greatest Common Divisor (definition)

gcd(a, b) returns the greatest common divisor of integers a and b. There are
efficient algorithms for finding the gcd, i.e. Euclidean algorithm.
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Greatest Common Divisor (example)

gcd(12, 20) = 4, since the divisors of 12 are (1, 2, 3, 4, 6, 12) and the divisors of
20 are (1, 2, 4, 5, 10, 20).
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Relatively Prime (definition)

Two integers, a and b, are relatively prime if gcd(a, b) = 1.
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Relatively Prime (example)

gcd(7, 12) = 1, since the divisors of 7 are (1, 7) and the divisors of 12 are (1, 2,
3, 4, 6, 12). Therefore 7 and 12 are relatively prime to each other.
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Relatively Prime (exercise)

How many positive integers less than 10 are relatively prime with 10?
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Prime Number (definition)

An integer p > 1 is a prime number if and only if its only divisors are +1, −1,
+p and −p.
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Prime Number (example)

The divisors of 13 are (1, 13), that is, 1 and itself. Therefore 13 is a prime
number. The divisors of 15 are (1, 3, 5, 15). Since the divisors include numbers
other than 1 and itself, 15 is not prime.
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First 300 Prime Numbers

Credit: Wikipedia, https://en.wikipedia.org/wiki/List_of_prime_numbers, CC BY-SA 3.0

https://en.wikipedia.org/wiki/List_of_prime_numbers
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Prime Factors (definition)

Any integer a > 1 can be factored as:

a = pa11 × pa22 × · · · × patt

where p1 < p2 < . . . < pt are prime numbers and where each ai is a positive
integer
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Prime Factors (example)

The following are examples of integers expressed as prime factors:

13 = 131

15 = 31 × 51

24 = 23 × 31

50 = 21 × 52

560 = 24 × 51 × 71

2800 = 24 × 52 × 71
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Integers as Prime Factors (exercise)

Find the prime factors of 12870, 12936 and 30607.
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Prime Factorization Problem (definition)

There are no known efficient, non-quantum algorithms that can find the prime
factors of a sufficiently large number.
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Prime Factorization Problem (example)

RSA Challenge involved researchers attempting to factor large numbers. Largest
number measured in number of bits or decimal digits. Some records held over
time are:

1991: 330 bits or 100 digits
2005: 640 bits or 193 digits
2009: 768 bits or 232 digits
Equivalent of 2000 years on single core 2.2 GHz computer to factor 768 bit
Current algorithms such as RSA rely on numbers of 1024, 2048 and even 4096

bits in length
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Euler’s Totient Function (definition)

Euler’s totient function, φ(n), is the number of positive integers less than n and
relatively prime to n. Also written as ϕ(n) or Tot(n).



Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

19/67

Properties of Euler’s Totient (definition)

Several useful properties of Euler’s totient are:

φ(1) = 1

For prime p, φ(p) = p − 1

For primes p and q, φ(px × q) = φ(p)× φ(q) = (p − 1)× (q − 1)
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Euler’s Totient Function (example)

The integers relatively prime to 10, and less than 10, are: 1, 3, 7, 9. There are 4
such numbers. Therefore φ(10) = 4.

The integers relatively prime to 11, and less than 11, are: 1, 2, 3, 4, 5, 6, 7, 8,
9, 10. There are 10 such numbers. Therefore φ(11) = 10. The property could
also be used since 11 is prime.

Since 7 is prime, φ(7) = 6.
Since 77 = 7× 11, then φ(77) = φ(7× 11) = 6× 10 = 60.
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Modular arithmetic simple (definition)

Modular arithmetic is similar to normal arithmetic (addition, subtraction,
multiplication, division) but the answers “wrap around”.
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mod operator (definition)

If a is an integer and n is a positive integer, then a mod n is defined as the
remainder when a is divided by n. n is called the modulus.
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mod operator (example)

The following are several examples of mod:

3 mod 7 = 3, since 0× 7 + 3 = 3

9 mod 7 = 2, since 1× 7 + 2 = 9

10 mod 7 = 3, since 1× 7 + 3 = 10

(−3) mod 7 = 4, since (−1)× 7 + 4 = −3
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Congruent modulo (definition)

Two integers a and b are congruent modulo n if (a mod n) = (b mod n). The
congruence relation is written as:
a ≡ b (mod n)
When the modulus is known from the context, it may be written simply as a
≡ b.
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Congruent modulo (example)

The following are examples of congruence:

3 ≡ 10 (mod 7)

14 ≡ 4 (mod 10)

3 ≡ 11 (mod 8)
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Modular arithmetic (definition)

Modular arithmetic with modulus n performs arithmetic operations within the
confines of set Zn = {0, 1, 2, . . . , (n − 1)}.
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mod in Z7 (example)

Consider the set:
Z7 = {0, 1, 2, 3, 4, 5, 6}

All modular arithmetic operations in mod 7 return answers in Z7.
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Modular Arithmetic

I If a is an integer and n is a positive integer, we define a mod n to be the
remainder when a is divided by n

I n is called the modulus

I Two integers a and b are congruent modulo n if (a mod n) = (b mod n),
which is written as

a ≡ b (mod n)

I (mod n) operator maps all integers into the set of integers
Zn = {0, 1, . . . , (n − 1)}

I Modular arithmetic performs arithmetic operations within confines of set Zn
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Modular Addition (definition)

Addition in mod n is performed as normal addition, with the answer then mod
by n.
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Modular Addition (example)

The following are several examples of modular addition:

2 + 3 (mod 7) = 5 (mod 7) = 5 mod 7 = 5 (mod 7)

2 + 6 (mod 7) = 8 (mod 7) = 8 mod 7 = 1 (mod 7)

6 + 6 (mod 7) = 12 (mod 7) = 12 mod 7 = 5 (mod 7)

3 + 4 (mod 7) = 7 (mod 7) = 7 mod 7 = 0 (mod 7)
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Additive Inverse (definition)

a is the additive inverse of b in mod n, if a + b ≡ 0 (mod n).
For brevity, AI(a) may be used to indicate the additive inverse of a. One

property is that all integers have an additive inverse.



Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

33/67

Additive Inverse (example)

In mod 7:
AI (3) = 4, since 3 + 4 ≡ 0 (mod 7)

AI (6) = 1, since 6 + 1 ≡ 0 (mod 7)

In mod 12:
AI (3) = 9, since 3 + 9 ≡ 0 (mod 12)
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Modular Subtraction (definition)

Subtraction in mod n is performed by addition of the additive inverse of the
subtracted operand. This is effectively the same as normal subtraction, with the
answer then mod by n.
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Modular Subtraction (example)

For brevity, the modulus is sometimes omitted and = is used in replace of ≡. In
mod 7:

6− 3 = 6 + AI(3) = 6 + 4 = 10 = 3 (mod 7)

6− 1 = 6 + AI(1) = 6 + 6 = 12 = 5 (mod 7)

1− 3 = 1 + AI(3) = 1 + 4 = 5 (mod 7)

While the first two examples obviously give answers as we expect from normal
subtraction, the third does as well. 1− 3 = −2, and in mod 7, −2 ≡ 5 since
−1× 7 + 5 = (−2). Recall Z7 = {0, 1, 2, 3, 4, 5, 6}.
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Modular Multiplication (definition)

Modular multiplication is performed as normal multiplication, with the answer
then mod by n.
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Modular Multiplication (example)

In mod 7:
2× 3 = 6 (mod 7)

2× 6 = 12 = 5 (mod 7)

3× 4 = 12 = 5 (mod 7)
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Multiplicative Inverse (definition)

a is a multiplicative inverse of b in mod n if a× b ≡ 1 (mod n). For brevity,
MI(a) may be used to indicate the multiplicative inverse of a. a has a
multiplicative inverse in (mod n) if a is relatively prime to n.
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Multiplicative Inverse in mod 7 (example)

2 and 7 are relatively prime, therefore 2 has a multiplicative inverse in mod 7.

2× 4 (mod 7) = 1, therefore MI (2) = 4 and MI (4) = 2

3 and 7 are relatively prime, therefore 3 has a multiplicative inverse in mod 7.

3× 5 (mod 7) = 1, therefore MI (3) = 5 and MI (5) = 3

φ(7) = 6, meaning 1, 2, 3, 4, 5 and 6 are relatively prime with 7, and therefore
all of those numbers have a MI in mod 7.
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Multiplicative Inverse in mod 8 (example)

3 and 8 are relatively prime, therefore 3 has a multiplicative inverse in mod 8.

3× 3 (mod 8) = 1, therefore MI (3) = 3

4 and 8 are NOT relatively prime, therefore 4 does not have a multiplicative
inverse in mod 8. φ(8) = 4, and therefore only 4 numbers (1, 3, 5, 7) have a MI
in mod 8.
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Modular Division (definition)

Division in mod n is performed as modular multiplication of the multiplicative
inverse of 2nd operand. Modular division is only possible when the 2nd operand
has a multiplicative inverse, otherwise the operation is undefined.
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Modular Division (example)

In mod 7:
5÷ 2 = 5×MI (2) = 5× 4 = 20 ≡ 6

In mod 8:
7÷ 3 = 7×MI (3) = 7× 3 = 21 ≡ 5

7÷ 4 is undefined, since 4 does not have a multiplicative inverse in mod 8.
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Properties of Modular Arithmetic (definition)

(a mod n) mod n = a mod n

[(a mod n) + (b mod n)] mod n = (a + b) mod n

[(a mod n)− (b mod n)] mod n = (a− b) mod n

[(a mod n)× (b mod n)] mod n = (a× b) mod n

Commutative, associative and distributive laws similar to normal arithmetic also
hold.
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Fermat’s Theorem 1 (definition)

If p is prime and a is a positive integer not divisible by p, then:

ap−1 ≡ 1 (mod p)
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Fermat’s Theorem 2 (definition)

If p is prime and a is a positive integer, then:

ap ≡ a (mod p)
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Fermat’s theorem (example)

What is 2742 mod 43? Since 43 is prime and 42 = 43− 1, this matches Fermat’s
Theorem form 1. Therefore the answer is 1.
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Fermat’s theorem (example)

What is 640163 mod 163? Since 163 is prime, this matches Fermat’s Theorem
form 2. Therefore the answer is 640, or simplified to 640 mod 163 = 151.
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Euler’s Theorem 1 (definition)

For every a and n that are relatively prime:

aφ(n) ≡ 1 (mod n)
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Euler’s Theorem 2 (definition)

For positive integers a and n:

aφ(n)+1 ≡ a (mod n)
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Euler’s theorem (example)

Show that 3740 mod 41 = 1. Since n = 41, which is prime, then φ(41) = 40. As
37 is also prime, 37 and 41 are relatively prime. Therefore Euler’s Theorem form
1 holds.
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Euler’s theorem (example)

What is 137944621 mod 4757? Factoring 4757 into primes gives 67× 71.
Therefore φ(4757) = φ(67)x × φ(71) = 66× 70 = 4620. Therefore, this follows
Euler’s Theorem form 2, giving an answer of 13794.
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Modular Exponentiation (definition)

As exponentiation is just repeated multiplication, modular exponentiation is
performed as normal exponentiation with the answer mod by n.
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Modular Exponentiation (example)

23 mod 7 = 8 mod 7 = 1

34 mod 7 = 81 mod 7 = 4

36 mod 8 = 729 mod 8 = 1
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Normal Logarithm (definition)

If b = ai , then:
i = loga(b)

read as “the log in base a of b is index (or exponent) i”.
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Discrete Logarithm (definition)

If b = ai (mod p), then:
i = dloga,p(b)

A unique exponent i can be found if a is a primitive root of the prime p.
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Primitive Root (definition)

If a is a primitive root of prime p then a1, a2, a3, . . . ap−1 are distinct in mod p.
The integers with a primitive root are: 2, 4, pα, 2pα where p is any odd prime

and α is a positive integer.
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Primitive Root (example)

Consider the prime p = 7:
a = 1 : 12 mod 7 = 1, 13 mod 7 = 1, ...(not distinct)
a = 2 : 22 mod 7 = 4, 23 mod 7 = 1, 24 mod 7 = 2, 25 mod 7 =

4, ...(not distinct)
a = 3 : 32 mod 7 = 2, 33 mod 7 = 6, 34 mod 7 = 4, 35 mod 7 = 5, 36 mod 7 =

1(distinct)
Therefore 3 is a primitive root of 7 (but 1 and 2 are not).
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Powers of Integers, modulo 7
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Discrete Logs, modulo 7
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Powers of Integers, modulo 17
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Discrete Logarithms, modulo 17
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Hard Problem: Integer Factorisation (definition)

If p and q are unknown primes, given n = pq, find p and q.
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Hard Problem: Euler’s Totient (definition)

Given composite n, find φ(n).
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Hard Problem: Discrete Logarithms (definition)

Given b, a, and p, find i such that i = dloga,p(b).
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