Cryptography

Key Distribution and Management

Key Distribution and Management

Cryptography

School of Engineering and Technology CQUniversity Australia

Prepared by Steven Gordon on 04 Jan 2022, keys.tex, r1969

Cryptography

Key Distribution and Management

Recommended Key Sizes

Contents

Recommended Key Sizes

2

The BlueKrypt website summarises recommendations from various organisations. You should visit the website and explore the different recommendations. While there are differences, you can get an approximate idea of the key lengths that should be used.

The ECRYPT-CSA project is one effort to compare algorithms. The PDF report gives a comprehensive summary of different cryptographic mechanisms, analysis of specific algorithms, and recommendations.

Cryptography

Key Distribution and Management

Recommended Key

Sizes

Recommend Key Lengths from ECRYPT-CSA 2018

Protection	Symmetric	Factoring	Discrete Logarithm		Elliptic	Hach
		Modulus	Key	Group	Curve	nasn
Legacy standard level	80	1024	160	1024	160	160
Should not be used in new systems	00	1024	100	1024	100	100
Near term protection	120	2072	256	2072	256	256
Security for at least 10 years	120	3072	250	3072	250	250
Long-term protection	256	15260	E10	15260	E12	E12
Security for 30 to 50 years	250	15300	512	15300	512	512

Credit: BlueKrypt www.keylength.com, CC-BY-SA 3.0

4

The figure on slide 4 shows recommended key (or hash) lengths, in bits, for symmetric key algorithms (e.g. AES), public key algorithms based on factoring a modulus (e.g. RSA), public key algorithms based on solving discrete logarithms (e.g. the secret key and modulus/group length in Diffie-Hellman), public key algorithms based on elliptic curve cryptography, and hash functions.

Three different levels of security are given: legacy, current (near-term) and future (long-term). Current or future levels of security should be used, although legacy levels may still be secure for some cases.