Introduction

Cryptography

School of Engineering and Technology CQUniversity Australia

Prepared by Steven Gordon on 04 Jan 2022,
intro.tex, r1960

Slides for this Book

- Slides for presentation, including PDF slides (slides-colour.pdf), PDF handouts including notes (handout-colour.pdf), LibreOffice Impress slides with notes (slides-colour.odp), Microsoft PowerPoint slides with notes (slides-colour.pptx) and PDF handouts in black and white for printing (handout-print.pdf). Note the ODP and PPTX slides only contain images of each slide, so cannot be easily edited, but can be used in dual screen presentation mode. https://sandilands.info/crypto/slides/
- ATEX source for the book (including all the .tex, images and style files) as well as selected examples: https://sandilands.info/crypto/source/

Cryptography Concepts and Terminology

Cryptography
School of Engineering and Technology CQUniversity Australia

Prepared by Steven Gordon on 04 Jan 2022, concepts.tex, r1961

Contents

Cryptography
Concepts and Terminology

Security Concepts Cryptography Concepts

Cryptogra Notation and Terminology

Security Concepts

Cryptography Concepts

Cryptography Notation and Terminology

Important Security Protections

Confidentiality ensures only authorised parties can view information
Integrity ensures information, including identity of sender, is not altered Availability ensures information accessible to authorised parties when needed

Other Common Protections

Authentication ensures that the individual is who she claims to be (the authentic or genuine person) and not an impostor
Authorisation providing permission or approval to use specific technology resources

Accounting provides tracking of events

Scope

- Focus on confidentiality and integrity of information using technical means
- Means of authentication also covered
- Accounting, system availability, policy, etc. are out of scope
- See other subjects or books on "IT Security", "Network Security Concepts" or similar

Cryptography
Cryptography Concepts and Terminology Cryptography Concepts

Cryptograph Notation and Terminology

Contents

Security Concepts

Cryptography Concepts

Cryptography Notation and Terminology

Encryption for Confidentiality

- Aim: assure confidential information not made available to unauthorised individuals (data confidentiality)
- How: encrypt the original data; anyone can see the encrypted data, but only authorised individuals can decrypt to see the original data
- Used for both sending data across network and storing data on a computer system

Cryptography
Cryptography Concepts and Terminology

Model of Encryption for Confidentiality

Cryptography Terms

Plaintext original message
Ciphertext encrypted or coded message
Encryption convert from plaintext to ciphertext (enciphering)
Decryption restore the plaintext from ciphertext (deciphering)
Key information used in cipher known only to sender/receiver
Cipher a particular algorithm (cryptographic system)
Cryptography study of algorithms used for encryption
Cryptanalysis study of techniques for decryption without knowledge of plaintext
Cryptology areas of cryptography and cryptanalysis

Contents

Cryptography Concepts and Terminology

Cryptography Notation and Terminology

Security Concepts

Cryptography Concepts

Cryptography Notation and Terminology

Cryptography Concepts and Terminology

Common Symbols and Notation

Symbol	Description	Example		
P	Plaintext or message	$P=\mathrm{D}\left(K_{A B}, C\right)$		
M	Message or plaintext	$M=\mathrm{D}\left(P R_{B}, C\right)$		
C	Ciphertext	$C=\mathrm{E}\left(K_{A B}, P\right)$ or $C=\mathrm{E}\left(P U_{B}, M\right)$		
K	Secret key, symmetric key			
$K_{A B}$	Secret key shared between A and B			
E()	Encrypt operation	$\mathrm{E}\left(K_{A B}, P\right)$ or $\mathrm{E}\left(P U_{B}, M\right)$		
$\mathrm{E}_{\text {cipher }}()$	Encrypt operation using cipher	$\mathrm{E}_{A E S}\left(K_{A B}, P\right)$		
D()	Decrypt operation	$\mathrm{D}\left(K_{A B}, C\right)$ or $\mathrm{D}\left(P R_{B}, C\right)$		
$P U_{A}$	Public key of user A			
$P R_{A}$	Private key of user A			
H()	Hash operation	$\mathrm{H}(M)$		
MAC()	MAC operation	$\mathrm{MAC}\left(K_{A B}, M\right)$		
XOR, \oplus	Exclusive OR operation	$A \mathrm{XOR}, A \oplus B$		
h	Hash value	$h=\mathrm{H}(M)$		
$\\|$	Concatenate (join) operation	$A \\| B$		

Software Tools

Cryptography

School of Engineering and Technology CQUniversity Australia

Prepared by Steven Gordon on 04 Jan 2022,
tools.tex, r1962

Statistics for Communications and Security

Cryptography
School of Engineering and Technology
CQUniversity Australia
Prepared by Steven Gordon on 19 Feb 2020, statistics.tex, r1791

Contents

Statistics for Communications and Security

Binary Values
Counting
Permutations and Combinations

Binary Values

Counting

Permutations and Combinations

Probability

Collisions

Properties of Exponentials and Logarithms

$$
\begin{gathered}
n^{x} \times n^{y}=n^{x+y} \\
\frac{n^{x}}{n^{y}}=n^{x-y} \\
\log _{n}(x \times y)=\log _{n}(x)+\log _{n}(y) \\
\log _{n}\left(\frac{x}{y}\right)=\log _{n}(x)-\log _{n}(y)
\end{gathered}
$$ and Security

Properties of Exponentials (example)

Properties can be applied to simplify calculations:

$$
\begin{aligned}
2^{12} & =2^{2+10} \\
& =2^{2} \times 2^{10} \\
& =4 \times 1024 \\
& =4096
\end{aligned}
$$

Useful Exact and Approximate Values in Binary

Exponent, b (bits)	Exact Value	2^{b}
0	1	Approx. Value
1	2	-
2	4	-
3	8	-
4	16	-
5	32	-
6	64	-
7	128	-
8	256	-
9	512	-
10	1,024	$1,000=10^{3}$
11	-	2,000
12	-	4,000
13	-	8,000

Properties of Exponentials with Binary Values (example)

Properties and approximations can be used to perform large calculations:

$$
\begin{aligned}
\frac{2^{128}}{2^{100}} & =2^{128-100} \\
& =2^{28} \\
& =2^{8} \times 2^{20} \\
& \approx 256 \times 10^{6} \\
& \approx 10^{8}
\end{aligned}
$$

Statistics for Communications and Security

Properties of Logarithms (example)

The number of bits needed to represent a decimal number can be found using logarithms:

$$
\begin{aligned}
\log _{2}(20,000) & =\log _{2}\left(20 \times 10^{3}\right) \\
& =\log _{2}(20)+\log _{2}\left(10^{3}\right) \\
& \approx 4+10 \\
& \approx 14
\end{aligned}
$$

```
Cryptography
Contents
Statistics for
Communications
and Security
Binary Values
Counting
ermutations ano
Combinations
Dmathatit+M
Counting
Permutations and Combinations
Probability
Collisions
```

Cryptography
Statistics for Communications and Security

Number of Binary Values (definition)

Given an n-bit number, there are 2^{n} possible values.

Number of Sequence Numbers (example)

Consider a sliding-window flow control protocol that uses an 16-bit sequence number. There are $2^{16}=65,536$ possible values of the sequence number, ranging from 0 to 65,535 (after which it wraps back to 0).

Statistics for Communications and Security

Number of IP Addresses (example)
An IP address is a 32 -bit value. There are 2^{32} or approximately 4×10^{9} possible IP addresses.

Statistics for Communications and Security

Number of Keys (example)
If choosing a 128 -bit encryption key randomly, then there are 2^{128} possible values of the key.

Statistics for Communications and Security

Fixed Length Sequences (definition)

Given a set of n items, there are n^{k} possible k-item sequences, assuming repetition is allowed.

Statistics for Communications and Security

Sequences of PINs (example)

A user chooses a 4-digit PIN for a bank card. As there are 10 possible digits, there are 10^{4} possible PINs to choose from.

Sequences of Keyboard Characters (example)

A standard keyboard includes 94 printable characters (a-z, $A-Z, 0-9$, and 32
punctuation characters). If a user must select a password of length 8 , then there
A standard keyboard includes 94 printable characters (a-z, $A-Z, 0-9$, and 32
punctuation characters). If a user must select a password of length 8 , then there are 94^{8} possible passwords that can be selected.

Cryptography
Statistics for Communications and Security

Pigeonhole Principle (definition)

If n objects are distributed over m places, and if $n>m$, then some places receive at least two objects.

Pigeonhole Principle on Balls (example)

There are 20 balls to be placed in 5 boxes. At least one box will have at least two balls. If the balls are distributed in a uniform random manner among the boxes, then on average there will be 4 balls in each box.

Pigeonhole Principle on Hash Functions (example)

A hash function takes a 100 -bit input value and produces a 64 -bit hash value. There are 2^{100} possible inputs distributed to 2^{64} possible hash values. Therefore at least some input values will map to the same hash value, that is, a collision occurs. If the hash function distributes the input values in a uniform random manner, then on average, there will be $\frac{2^{100}}{2^{64}} \approx 6.4 \times 10^{10}$ different input values mapping to the same hash value.

Cryptography
Statistics for Communications and Security

Binary Values

Permutations and Combinations

Contents

Binary Values

Counting

Permutations and Combinations

Probability

Collisions

Cryptography
Statistics for Communications and Security

Factorial (definition)

There are n ! different ways of arranging n distinct objects into a sequence.

Statistics for Communications and Security Combinations

Factorial and Balls (example)

Consider four coloured balls: Red, Green, Blue and Yellow. There are 4! $=24$ arrangements (or permutations) of those balls:
RGBY, RGYB, RBGY, RBYG, RYGB, RYBG, GRBY, GRYB, GBRY, GBYR, GYRB, GYBR, BRGY, BRYG, BGRY, BGYR, BYRG, BYGR, YRGB, YRBG, YGRB, YGBR, YBRG, YBGR and Security

Factorial and English Letters (example)

The English alphabetic has 26 letters, a-z. There are $26!\approx 4 \times 10^{26}$ ways to arrange those 26 letters.

Cryptography

Statistics for Communications and Security

Factorial and Plaintext Messages (example)

An encryption algorithm takes a 64-bit plaintext message and a key as input and then maps that to a 64-bit ciphertext message as output. There are $2^{64} \approx 1.6 \times 10^{19}$ possible input plaintext messages. There are $2^{64}!\approx 10^{10^{88}}$ different reversible mappings from plaintext to ciphertext, i.e. 2^{64} ! possible keys.

Combinations (definition)

The number of combinations of items when selecting k at a time from a set of n items, assuming repetition is not allowed and order doesn't matter, is:

$$
\frac{n!}{k!(n-k)!}
$$

Statistics for Communications and Security

Number of Pairs (definition)

The number of pairs of items in a set of n items, assuming repetition is not allowed and order doesn't matter, is:

$$
\frac{n(n-1)}{2}
$$

Pairs of Coloured Balls (example)

There are four coloured balls: Red, Green, Blue and Yellow. The number of different coloured pairs of balls is $4 \times 3 / 2=6$. They are: RG, RB, RY, GB, GY, BY. Repetitions are not allowed (as they won't produce different coloured pairs), meaning RR is not a valid pair. Ordering doesn't matter, meaning RG is the same as GR.

Cryptography
Statistics for Communications and Security

Pairs of Network Devices (example)

A computer network has 10 devices. The number of links needed to create a full-mesh topology is $10 \times 9 / 2=45$.

Cryptography
Statistics for Communications and Security

Pairs of Key Sharers (example)

There are 50 users in a system, and each user shares a single secret key with every other user. The number of keys in the system is $50 \times 49 / 2=1,225$.

Cryptography
Statistics for Communications and Security

Binary Values
Countina
Permutations and Combinations

Probability

Contents

Binary Values
Counting
Permutations and Combinations
Probability
Collisions

Probability of Selecting a Value（definition）
Probability of randomly selecting a specific value from a set of n values is $1 / n$ ． and Security

Probability of Selecting Coloured Ball (example)

There are five coloured balls in a box: red, green, blue, yellow and black. The probability of selecting the yellow ball is $1 / 5$. and Security

Probability of Selecting Backoff Value（example）

IEEE $802.11(\mathrm{WiFi})$ involves a station selecting a random backoff from 0 to 15. The probability of selecting 5 is $1 / 16$ ．

Total Expectation (definition)

For a set of n events which are mutually exclusive and exhaustive, where for event i the expected value is E_{i} given probability P_{i}, then the total expected value is:

$$
E=\sum_{i=1}^{n} E_{i} P_{i}
$$

Total Expectation of Packet Delay (example)

Average packet delay for packets in a network is 100 ms along path 1 and 150 ms along path 2. Packets take path 130% of the time, and take path 270% of the time. The average packet delay across both paths is: $100 \times 0.3+150 \times 0.7=135 \mathrm{~ms}$.

Statistics for Communications and Security

Total Expectation of Password Length (example)

In a network with 1,000 users, 150 users choose a 6-character password, 500 users choose a 7 -character password, 250 users choose 9 -character password and 100 users choose a 10 -character password. The average password length is 7.65 characters.

Number of Attempts (definition)

If randomly selecting values from a set of n values, then the number of attempts needed to select a particular value is:
best case: 1
worst case: n
average case: $n / 2$

Number of Attempts in Choosing Number (example)

One person has chosen a random number between 1 and 10. Another person attempts to guess the random number. The best case is that they guess the chosen number on the first attempt. The worst case is that they try all other numbers before finally getting the correct number, that is 10 attempts. If the process is repeated 1000 times (that is, one person chooses a random number, the other guesses, then the person chooses another random number, and the other guesses again, and so on), then on average 10% of time it will take 1 attempt (best case), 10% of the time it will take 2 attempts, 10% of the time it will take 3 attempts, ..., and 10% of the time it will take 10 attempts (worst case). The average number of attempts is therefore 5 .

Statistics for

 Communications and Security
Number of Attempts in Choosing Key (example)

A user has chosen a random 128-bit encryption key. There are 2^{128} possible keys. It takes an attacker on average $2^{128} / 2=2^{127}$ attempts to find the key. If instead a 129-bit encryption key was used, then the attacker would take on average $2^{129} / 2=2^{128}$ attempts. (Increasing the key length by 1 bit doubles the number of attempts required by the attacker to guess the key).

```
Cryptography
    Statistics for
Communications
    and Security
Binary Values
Counting
Permutations and
Combinations
Probability
Collisions
```


Contents

```
Binary Values
```

Binary Values
Counting
Permutations and Combinations
Probability

```

Collisions

\section*{Birthday Paradox (definition)}

Given \(n\) random numbers selected from the range 1 to \(d\), the probability that at least two numbers are the same is:
\[
p(n ; d) \approx 1-\left(\frac{d-1}{d}\right)^{n(n-1) / 2}
\]

Statistics for Communications and Security

\section*{Two People Have Same Birthday (example)}

Given a group of 10 people, the probability of at least two people have the same birth date (not year) is:
\[
p(10 ; 365) \approx 1-\left(\frac{364}{365}\right)^{10(9) / 2}=11.6 \%
\]

\section*{Group Size for Birthday Matching (example)}

How many people in a group are needed such that the probability of at least two of them having the same birth date is \(50 \%\) ?
\[
n(0.5 ; 365) \approx \sqrt{2 \times 365 \times \ln \left(\frac{1}{1-0.5}\right)}=22.49
\]

So 23 people in a group means there is \(50 \%\) chance that at least two have the same birth date.

\section*{Group Size for Hash Collision（example）}

Given a hash function that outputs a 64－bit hash value，how many attempts are need to give a \(50 \%\) chance of a collision？
\[
\begin{aligned}
n\left(0.5 ; 2^{64}\right) & \approx \sqrt{2 \times 2^{64} \times \ln \left(\frac{1}{1-0.5}\right)} \\
& \approx \sqrt{2^{64}} \\
& =2^{32}
\end{aligned}
\]

\title{
Number Theory
}

\section*{Cryptography}

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 04 Jan 2022, number.tex, r1963

Number Theory

Divisibility and Primes

Modular Arithmetic Fenmeterend Euler's Theorems

\section*{Discrete}

\section*{Contents}

\author{
Divisibility and Primes \\ Modular Arithmetic \\ Fermat's and Euler's Theorems \\ Discrete Logarithms \\ Computationally Hard Problems
}

Cryptography Number Theory

Divisibility and Primes

\section*{Divides (definition)}
\(b\) divides \(a\) if \(a=m b\) for some \(m\), where \(a, b\) and \(m\) are integers. We can also say \(b\) is a divisor of \(a\), or \(b \mid a\).

\section*{Cryptography}

Number Theory

Divisibility and Primes

Divides (example)
3 divides 12 , since \(12=4 \times 3\). Also, 3 is a divisor of 12 , or \(3 \mid 12\).

Cryptography Number Theory

Divisibility and Primes

\section*{Greatest Common Divisor (definition)}
\(\operatorname{gcd}(a, b)\) returns the greatest common divisor of integers \(a\) and \(b\). There are efficient algorithms for finding the gcd, i.e. Euclidean algorithm.

Cryptography Number Theory

Divisibility and Primes

\section*{Greatest Common Divisor (example)}
\(\operatorname{gcd}(12,20)=4\), since the divisors of 12 are \((1,2,3,4,6,12)\) and the divisors of 20 are (1, 2, 4, 5, 10, 20).

Relatively Prime (definition)
Two integers, \(a\) and \(b\), are relatively prime if \(\operatorname{gcd}(a, b)=1\).

Relatively Prime (example)
\(\operatorname{gcd}(7,12)=1\), since the divisors of 7 are \((1,7)\) and the divisors of 12 are ( 1,2 , \(3,4,6,12)\). Therefore 7 and 12 are relatively prime to each other.

\section*{Cyptography
Number Theory Relatively Prime (exercise)}

How many positive integers less than 10 are relatively prime with 10 ?

Divisibility and Primes

Cryptography Number Theory

Divisibility and Primes

\section*{Prime Number (definition)}

An integer \(p>1\) is a prime number if and only if its only divisors are \(+1,-1\), \(+p\) and \(-p\).

Cryptography Number Theory

Divisibility and Primes

\section*{Prime Number (example)}

The divisors of 13 are \((1,13)\), that is, 1 and itself. Therefore 13 is a prime number. The divisors of 15 are ( \(1,3,5,15\) ). Since the divisors include numbers other than 1 and itself, 15 is not prime.

Cryptography
Number Theory

Divisibility and Primes

First 300 Prime Numbers
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline 1-20 & 2 & 3 & 5 & 7 & 11 & 13 & 17 & 19 & 23 & 29 & 31 & 37 & 41 & 43 & 47 & 53 & 59 & 61 & 67 & 71 \\
\hline 21-40 & 73 & 79 & 83 & 89 & 97 & 101 & 103 & 107 & 109 & 113 & 127 & 131 & 137 & 139 & 149 & 151 & 157 & 163 & 167 & 173 \\
\hline 41-60 & 179 & 181 & 191 & 193 & 197 & 199 & 211 & 223 & 227 & 229 & 233 & 239 & 241 & 251 & 257 & 263 & 269 & 271 & 277 & 281 \\
\hline 61-80 & 283 & 293 & 307 & 311 & 313 & 317 & 331 & 337 & 347 & 349 & 353 & 359 & 367 & 373 & 379 & 383 & 389 & 397 & 401 & 409 \\
\hline 81-100 & 419 & 421 & 431 & 433 & 439 & 443 & 449 & 457 & 461 & 463 & 467 & 479 & 487 & 491 & 499 & 503 & 509 & 521 & 523 & 541 \\
\hline 101-120 & 547 & 557 & 563 & 569 & 571 & 577 & 587 & 593 & 599 & 601 & 607 & 613 & 617 & 619 & 631 & 641 & 643 & 647 & 653 & 659 \\
\hline 121-140 & 661 & 673 & 677 & 683 & 691 & 701 & 709 & 719 & 727 & 733 & 739 & 743 & 751 & 757 & 761 & 769 & 773 & 787 & 797 & 809 \\
\hline 141-160 & 811 & 821 & 823 & 827 & 829 & 839 & 853 & 857 & 859 & 863 & 877 & 881 & 883 & 887 & 907 & 911 & 919 & 929 & 937 & 941 \\
\hline 161-180 & 947 & 953 & 967 & 971 & 977 & 983 & 991 & 997 & 1009 & 1013 & 1019 & 1021 & 1031 & 1033 & 1039 & 1049 & 1051 & 1061 & 1063 & 1069 \\
\hline 181-200 & 1087 & 1091 & 1093 & 1097 & 1103 & 1109 & 1117 & 1123 & 1129 & 1151 & 1153 & 1163 & 1171 & 1181 & 1187 & 1193 & 1201 & 1213 & 1217 & 1223 \\
\hline 201-220 & 1229 & 1231 & 1237 & 1249 & 1259 & 1277 & 1279 & 1283 & 1289 & 1291 & 1297 & 1301 & 1303 & 1307 & 1319 & 1321 & 1327 & 1361 & 1367 & 1373 \\
\hline 221-240 & 1381 & 1399 & 1409 & 1423 & 1427 & 1429 & 1433 & 1439 & 1447 & 1451 & 1453 & 1459 & 1471 & 1481 & 1483 & 1487 & 1489 & 1493 & 1499 & 1511 \\
\hline 241-260 & 1523 & 1531 & 1543 & 1549 & 1553 & 1559 & 1567 & 1571 & 1579 & 1583 & 1597 & 1601 & 1607 & 1609 & 1613 & 1619 & 1621 & 1627 & 1637 & 1657 \\
\hline 261-280 & 1663 & 1667 & 1669 & 1693 & 1697 & 1699 & 1709 & 1721 & 1723 & 1733 & 1741 & 1747 & 1753 & 1759 & 1777 & 1783 & 1787 & 1789 & 1801 & 1811 \\
\hline 281-300 & 1823 & 1831 & 1847 & 1861 & 1867 & 1871 & 1873 & 1877 & 1879 & 1889 & 1901 & 1907 & 1913 & 1931 & 1933 & 1949 & 1951 & 1973 & 1979 & 1987 \\
\hline
\end{tabular}

Credit: Wikipedia, https://en.wikipedia.org/wiki/List_of_prime_numbers, CC BY-SA 3.0

Cryptography Number Theory

Divisibility and Primes

Prime Factors (definition)
Any integer \(a>1\) can be factored as:
\[
a=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{t}^{a_{t}}
\]
where \(p_{1}<p_{2}<\ldots<p_{t}\) are prime numbers and where each \(a_{i}\) is a positive integer

Cryptography Number Theory

Divisibility and Primes

\section*{Prime Factors (example)}

The following are examples of integers expressed as prime factors:
\[
\begin{gathered}
13=13^{1} \\
15=3^{1} \times 5^{1} \\
24=2^{3} \times 3^{1} \\
50=2^{1} \times 5^{2} \\
560=2^{4} \times 5^{1} \times 7^{1} \\
2800=2^{4} \times 5^{2} \times 7^{1}
\end{gathered}
\]

Integers as Prime Factors (exercise)
Find the prime factors of 12870, 12936 and 30607.

\section*{Prime Factorization Problem (definition)}

There are no known efficient, non-quantum algorithms that can find the prime factors of a sufficiently large number.

Cryptography Number Theory

\section*{Prime Factorization Problem (example)}

RSA Challenge involved researchers attempting to factor large numbers. Largest number measured in number of bits or decimal digits. Some records held over time are:
1991: 330 bits or 100 digits
2005: 640 bits or 193 digits
2009: 768 bits or 232 digits
Equivalent of 2000 years on single core 2.2 GHz computer to factor 768 bit
Current algorithms such as RSA rely on numbers of 1024, 2048 and even 4096 bits in length

Cryptography Number Theory

Divisibility and Primes

\section*{Euler's Totient Function (definition)}

Euler's totient function, \(\phi(n)\), is the number of positive integers less than \(n\) and relatively prime to \(n\). Also written as \(\varphi(n)\) or \(\operatorname{Tot}(n)\).

\section*{Properties of Euler's Totient (definition)}

Several useful properties of Euler's totient are:
\[
\phi(1)=1
\]

For prime \(p, \phi(p)=p-1\)
For primes \(p\) and \(q, \phi(p \times \times q)=\phi(p) \times \phi(q)=(p-1) \times(q-1)\)

\section*{Euler's Totient Function (example)}

The integers relatively prime to 10 , and less than 10 , are: \(1,3,7,9\). There are 4 such numbers. Therefore \(\phi(10)=4\).
The integers relatively prime to 11 , and less than 11 , are: \(1,2,3,4,5,6,7,8\), 9,10 . There are 10 such numbers. Therefore \(\phi(11)=10\). The property could also be used since 11 is prime.
Since 7 is prime, \(\phi(7)=6\).
Since \(77=7 \times 11\), then \(\phi(77)=\phi(7 \times 11)=6 \times 10=60\).

\section*{Contents}

\title{
Divisibility and Primes
}

\author{
Modular Arithmetic
}

\section*{Fermat＇s and Euler＇s Theorems}

\section*{Discrete Logarithms}

Computationally Hard Problems

\section*{Modular arithmetic simple (definition)}

Modular arithmetic is similar to normal arithmetic (addition, subtraction, multiplication, division) but the answers "wrap around".

\section*{mod operator (definition)}

If \(a\) is an integer and \(n\) is a positive integer, then \(a \bmod n\) is defined as the remainder when \(a\) is divided by \(n . n\) is called the modulus.
mod operator (example)
The following are several examples of mod:
\[
\begin{gathered}
3 \bmod 7=3, \text { since } 0 \times 7+3=3 \\
9 \bmod 7=2, \text { since } 1 \times 7+2=9 \\
10 \bmod 7=3, \text { since } 1 \times 7+3=10 \\
(-3) \bmod 7=4, \text { since }(-1) \times 7+4=-3
\end{gathered}
\]

\section*{Congruent modulo (definition)}

Two integers \(a\) and \(b\) are congruent modulo \(n\) if \((a \bmod n)=(b \bmod n)\). The congruence relation is written as:
\(a \equiv b(\bmod n)\)
When the modulus is known from the context, it may be written simply as a \(\equiv b\).

Congruent modulo (example)
The following are examples of congruence:
\[
\begin{gathered}
3 \equiv 10 \quad(\bmod 7) \\
14 \equiv 4 \quad(\bmod 10) \\
3 \equiv 11 \quad(\bmod 8)
\end{gathered}
\]

Modular arithmetic (definition)
Modular arithmetic with modulus \(n\) performs arithmetic operations within the confines of set \(Z_{n}=\{0,1,2, \ldots,(n-1)\}\).

\section*{\(\bmod\) in \(Z_{7}\) (example)}

Consider the set:
\[
Z_{7}=\{0,1,2,3,4,5,6\}
\]

All modular arithmetic operations in mod 7 return answers in \(Z_{7}\).

\section*{Modular Arithmetic}
- If \(a\) is an integer and \(n\) is a positive integer, we define \(a \bmod n\) to be the remainder when \(a\) is divided by \(n\)
- \(n\) is called the modulus
- Two integers \(a\) and \(b\) are congruent modulo \(n\) if \((a \bmod n)=(b \bmod n)\), which is written as
\[
a \equiv b \quad(\bmod n)
\]
- \((\bmod n)\) operator maps all integers into the set of integers \(Z_{n}=\{0,1, \ldots,(n-1)\}\)
- Modular arithmetic performs arithmetic operations within confines of set \(Z_{n}\)

Modular Addition (definition)
Addition in mod \(n\) is performed as normal addition, with the answer then mod by \(n\).

\section*{Modular Addition (example)}

The following are several examples of modular addition:
\[
\begin{array}{clll}
2+3 & (\bmod 7)=5 & (\bmod 7)=5 \bmod 7=5 & (\bmod 7) \\
2+6 & (\bmod 7)=8 & (\bmod 7)=8 \bmod 7=1 & (\bmod 7) \\
6+6 & (\bmod 7)=12 & (\bmod 7)=12 \bmod 7=5 & (\bmod 7) \\
3+4 & (\bmod 7)=7 & (\bmod 7)=7 \bmod 7=0 & (\bmod 7)
\end{array}
\]

\section*{Additive Inverse (definition)}
\(a\) is the additive inverse of \(b\) in \(\bmod n\), if \(a+b \equiv 0(\bmod n)\).
For brevity, \(\mathrm{Al}(a)\) may be used to indicate the additive inverse of \(a\). One property is that all integers have an additive inverse.

Cryptography Number Theory

Additive Inverse (example)
In mod 7:
\[
\begin{aligned}
& A I(3)=4, \text { since } 3+4 \equiv 0 \quad(\bmod 7) \\
& A I(6)=1, \text { since } 6+1 \equiv 0 \quad(\bmod 7)
\end{aligned}
\]

In mod 12:
\[
A I(3)=9, \text { since } 3+9 \equiv 0 \quad(\bmod 12)
\]

Modular Subtraction (definition)
Subtraction in mod \(n\) is performed by addition of the additive inverse of the subtracted operand. This is effectively the same as normal subtraction, with the answer then mod by \(n\).

\section*{Modular Subtraction (example)}

For brevity, the modulus is sometimes omitted and \(=\) is used in replace of \(\equiv\). In \(\bmod 7\) :
\[
\begin{gathered}
6-3=6+\mathrm{Al}(3)=6+4=10=3 \quad(\bmod 7) \\
6-1=6+\mathrm{Al}(1)=6+6=12=5 \quad(\bmod 7) \\
1-3=1+\operatorname{Al}(3)=1+4=5 \quad(\bmod 7)
\end{gathered}
\]

While the first two examples obviously give answers as we expect from normal subtraction, the third does as well. \(1-3=-2\), and in \(\bmod 7,-2 \equiv 5\) since \(-1 \times 7+5=(-2)\). Recall \(Z_{7}=\{0,1,2,3,4,5,6\}\).

\section*{Modular Multiplication (definition)}

Modular multiplication is performed as normal multiplication, with the answer then mod by \(n\).

Cryptography Number Theory

Modular Multiplication (example)
In mod 7:
\[
\begin{gathered}
2 \times 3=6 \quad(\bmod 7) \\
2 \times 6=12=5 \quad(\bmod 7) \\
3 \times 4=12=5
\end{gathered}(\bmod 7)
\]

\section*{Multiplicative Inverse (definition)}
\(a\) is a multiplicative inverse of \(b\) in \(\bmod n\) if \(a \times b \equiv 1(\bmod n)\). For brevity, \(\mathrm{MI}(a)\) may be used to indicate the multiplicative inverse of \(a\). \(a\) has a multiplicative inverse in \((\bmod n)\) if \(a\) is relatively prime to \(n\).

Multiplicative Inverse in mod 7 (example)
2 and 7 are relatively prime, therefore 2 has a multiplicative inverse in mod 7 .
\[
2 \times 4(\bmod 7)=1, \text { therefore } M I(2)=4 \text { and } M I(4)=2
\]

3 and 7 are relatively prime, therefore 3 has a multiplicative inverse in mod 7 .
\[
3 \times 5(\bmod 7)=1, \text { therefore } M I(3)=5 \text { and } M I(5)=3
\]
\(\phi(7)=6\), meaning \(1,2,3,4,5\) and 6 are relatively prime with 7 , and therefore all of those numbers have a MI in \(\bmod 7\).

Multiplicative Inverse in mod 8 (example)
3 and 8 are relatively prime, therefore 3 has a multiplicative inverse in mod 8 .
\[
3 \times 3 \quad(\bmod 8)=1, \text { therefore } M I(3)=3
\]

4 and 8 are NOT relatively prime, therefore 4 does not have a multiplicative inverse in \(\bmod 8 . \phi(8)=4\), and therefore only 4 numbers \((1,3,5,7)\) have a MI in mod 8 .

\section*{Modular Division (definition)}

Division in \(\bmod n\) is performed as modular multiplication of the multiplicative inverse of 2nd operand. Modular division is only possible when the 2nd operand has a multiplicative inverse, otherwise the operation is undefined.

Modular Division (example)
In \(\bmod 7\) :
\[
5 \div 2=5 \times M I(2)=5 \times 4=20 \equiv 6
\]

In mod 8:
\[
7 \div 3=7 \times M I(3)=7 \times 3=21 \equiv 5
\]
\(7 \div 4\) is undefined, since 4 does not have a multiplicative inverse in \(\bmod 8\).

\section*{Properties of Modular Arithmetic (definition)}
\[
\begin{gathered}
(a \bmod n) \bmod n=a \bmod n \\
{[(a \bmod n)+(b \bmod n)] \bmod n=(a+b) \bmod n} \\
{[(a \bmod n)-(b \bmod n)] \bmod n=(a-b) \bmod n} \\
{[(a \bmod n) \times(b \bmod n)] \bmod n=(a \times b) \bmod n}
\end{gathered}
\]

Commutative, associative and distributive laws similar to normal arithmetic also hold.

\section*{Contents}

Divisibility and Primes

Modular Arithmetic

Fermat's and Euler's Theorems

Discrete Logarithms

Computationally Hard Problems

Cryptography Number Theory

\section*{Fermat＇s Theorem 1 （definition）}

If \(p\) is prime and \(a\) is a positive integer not divisible by \(p\) ，then：
\[
a^{p-1} \equiv 1 \quad(\bmod p)
\]

\section*{Fermat's Theorem 2 (definition)}

If \(p\) is prime and \(a\) is a positive integer, then:
\[
a^{p} \equiv a \quad(\bmod p)
\]

Fermat's theorem (example)
What is \(27^{42} \bmod 43\) ? Since 43 is prime and \(42=43-1\), this matches Fermat's Theorem form 1 . Therefore the answer is 1 .

Fermat's theorem (example)
What is \(640^{163} \bmod 163\) ? Since 163 is prime, this matches Fermat's Theorem form 2. Therefore the answer is 640 , or simplified to \(640 \bmod 163=151\).

Cryptography Number Theory

\section*{Euler＇s Theorem 1 （definition）}

For every \(a\) and \(n\) that are relatively prime：
\[
a^{\phi(n)} \equiv 1 \quad(\bmod n)
\]

Cryptography Number Theory

\section*{Euler's Theorem 2 (definition)}

For positive integers \(a\) and \(n\) :
\[
a^{\phi(n)+1} \equiv a \quad(\bmod n)
\]

\section*{Euler's theorem (example)}

Show that \(37^{40} \bmod 41=1\). Since \(n=41\), which is prime, then \(\phi(41)=40\). As 37 is also prime, 37 and 41 are relatively prime. Therefore Euler's Theorem form 1 holds.

Cryptography Number Theory

\section*{Euler's theorem (example)}

What is \(13794^{4621} \bmod 4757\) ? Factoring 4757 into primes gives \(67 \times 71\). Therefore \(\phi(4757)=\phi(67) x \times \phi(71)=66 \times 70=4620\). Therefore, this follows Euler's Theorem form 2, giving an answer of 13794.

\section*{Contents}

Divisibility and Primes

Modular Arithmetic

\title{
Fermat's and Euler's Theorems
}

\section*{Discrete Logarithms}

\section*{Computationally Hard Problems}

Modular Exponentiation (definition)
As exponentiation is just repeated multiplication, modular exponentiation is performed as normal exponentiation with the answer mod by \(n\).

Cryptography
Number Theory
Modular Exponentiation (example)
\(2^{3} \bmod 7=8 \bmod 7=1\)
\(3^{4} \bmod 7=81 \bmod 7=4\)
\(3^{6} \bmod 8=729 \bmod 8=1\)

Cryptography Number Theory

Normal Logarithm (definition)
If \(b=a^{i}\), then:
\[
i=\log _{a}(b)
\]
read as "the log in base \(a\) of \(b\) is index (or exponent) \(i\) ".

Cryptography Number Theory

Discrete Logarithm (definition)
If \(b=a^{i}(\bmod p)\), then:
\[
i=d \log _{a, p}(b)
\]

A unique exponent \(i\) can be found if \(a\) is a primitive root of the prime \(p\).

\section*{Primitive Root (definition)}

If \(a\) is a primitive root of prime \(p\) then \(a_{1}, a_{2}, a_{3}, \ldots a_{p-1}\) are distinct in mod \(p\).
The integers with a primitive root are: \(2,4, p^{\alpha}, 2 p^{\alpha}\) where \(p\) is any odd prime and \(\alpha\) is a positive integer.

\section*{Primitive Root (example)}

Consider the prime \(p=7\) :
\(a=1: 1^{2} \bmod 7=1,1^{3} \bmod 7=1, \ldots(\) not distinct \()\)
\(a=2: 2^{2} \bmod 7=4,2^{3} \bmod 7=1,2^{4} \bmod 7=2,2^{5} \bmod 7=\)
4, ...(not distinct)
\(a=3: 3^{2} \bmod 7=2,3^{3} \bmod 7=6,3^{4} \bmod 7=4,3^{5} \bmod 7=5,3^{6} \bmod 7=\) 1 (distinct)
Therefore 3 is a primitive root of 7 (but 1 and 2 are not).

Cryptography
Number Theory

Powers of Integers, modulo 7
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathbf{a}\) & \(\mathbf{a}^{\mathbf{2}}\) & \(\mathbf{a}^{\mathbf{3}}\) & \(\mathbf{a}^{\mathbf{4}}\) & \(\mathbf{a}^{\mathbf{5}}\) & \(\mathbf{a}^{\mathbf{6}}\) \\
\hline \(\mathbf{1}\) & 1 & 1 & 1 & 1 & 1 \\
\hline \(\mathbf{2}\) & 4 & 1 & 2 & 4 & 1 \\
\hline 3 & 2 & 6 & 4 & 5 & 1 \\
\hline \(\mathbf{4}\) & 2 & 1 & 4 & 2 & 1 \\
\hline 5 & 4 & 6 & 2 & 3 & 1 \\
\hline \(\mathbf{6}\) & 1 & 6 & 1 & 6 & 1 \\
\hline
\end{tabular}

Cryptography
Number Theory

\section*{Discrete Logs, modulo 7}

Discrete Logarithms to the base 3, modulo 7
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathbf{a}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) \\
\(\mathbf{6}\) \\
\hline \(\operatorname{dlog}_{3,7}(\mathrm{a})\) & 6 & 2 & 2 & 1 & 4 \\
\hline
\end{tabular}

Discrete Logarithms to the base 5, modulo 7
\(\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \mathbf{a} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\ \hline \operatorname{dlog}_{5,7}(\mathrm{a}) & 6 & 4 & 5 & 5 & 2 & 1\end{array}\right]\).

Cryptography
Number Theory

Powers of Integers, modulo 17
\begin{tabular}{|ccccccccccccccccc|}
\multicolumn{1}{l|}{a} & \(\mathrm{a}^{2}\) & \(\mathrm{a}^{3}\) & \(\mathrm{a}^{4}\) & \(\mathrm{a}^{5}\) & \(\mathrm{a}^{6}\) & \(a^{7}\) & \(a^{8}\) & \(a^{9}\) & \(a^{20}\) & \(a^{11}\) & \(a^{12}\) & \(a^{13}\) & \(a^{14}\) & \(a^{15}\) & \(a^{26}\) \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 2 & 4 & 8 & 16 & 15 & 13 & 9 & 1 & 12 & 4 & 8 & 16 & 15 & 13 & 9 & 1 \\
\hline 3 & 9 & 10 & 13 & 5 & 15 & 11 & 16 & 14 & 4 & 8 & 7 & 4 & 12 & 2 & 6 & 1 \\
\hline 4 & 16 & 13 & 1 & 1 & 4 & 16 & 13 & 1 & 14 & 4 & 16 & 13 & 1 & 4 & 16 & 13 \\
1 \\
\hline 5 & 8 & 6 & 13 & 14 & 2 & 10 & 16 & 12 & 9 & 11 & 4 & 3 & 15 & 7 & 1 \\
\hline 6 & 2 & 12 & 4 & 7 & 8 & 14 & 16 & 11 & 15 & 5 & 13 & 10 & 9 & 3 & 1 \\
\hline 7 & 15 & 3 & 4 & 11 & 9 & 12 & 16 & 10 & 2 & 14 & 13 & 6 & 8 & 5 & 1 \\
\hline 8 & 13 & 2 & 16 & 9 & 4 & 15 & 1 & 8 & 13 & 2 & 16 & 9 & 4 & 15 & 1 \\
\hline 9 & 13 & 15 & 16 & 8 & 4 & 2 & 1 & 9 & 13 & 15 & 16 & 8 & 4 & 2 & 1 \\
\hline 10 & 15 & 14 & 4 & 6 & 9 & 5 & 16 & 7 & 2 & 3 & 13 & 11 & 8 & 12 & 1 \\
\hline 11 & 2 & 5 & 4 & 10 & 8 & 3 & 16 & 6 & 15 & 12 & 13 & 7 & 9 & 14 & 1 \\
\hline 12 & 8 & 11 & 13 & 3 & 2 & 7 & 16 & 5 & 9 & 6 & 4 & 14 & 15 & 10 & 1 \\
\hline 13 & 16 & 4 & 1 & 13 & 16 & 4 & 1 & 13 & 16 & 4 & 1 & 13 & 16 & 4 & 1 \\
\hline 14 & 9 & 7 & 13 & 12 & 15 & 6 & 16 & 3 & 8 & 10 & 4 & 5 & 2 & 11 & 1 \\
\hline 15 & 4 & 9 & 16 & 2 & 13 & 8 & 1 & 15 & 4 & 9 & 16 & 2 & 13 & 8 & 1 \\
\hline 16 & 1 & 16 & 1 & 16 & 1 & 16 & 1 & 16 & 1 & 16 & 1 & 16 & 1 & 16 & 1 \\
\hline
\end{tabular}

Cryptography
Number Theory

\section*{Discrete Logarithms, modulo 17}
\begin{tabular}{c|cccccccccccccccc}
\(a\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline \(\operatorname{dlog}_{3,17}(a)\) & 16 & 14 & 1 & 12 & 5 & 15 & 11 & 10 & 2 & 3 & 7 & 13 & 4 & 5 & 14 & 8 \\
\(a\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline \(\operatorname{dlog}_{5,17}(a)\) & 16 & 6 & 13 & 12 & 1 & 3 & 15 & 2 & 10 & 7 & 11 & 9 & 4 & 5 & 14 & 8 \\
\(a\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline \(\operatorname{dlog}_{6,17}(a)\) & 16 & 2 & 15 & 4 & 11 & 1 & 5 & 6 & 14 & 13 & 9 & 3 & 12 & 7 & 10 & 8 \\
\(a\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline \(\operatorname{dog}_{7,17}(a)\) & 16 & 10 & 3 & 4 & 15 & 13 & 1 & 14 & 6 & 9 & 5 & 7 & 12 & 11 & 2 & 8 \\
\(a\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline \(\operatorname{dlog}_{10,17}(a)\) & 16 & 10 & 11 & 4 & 7 & 5 & 9 & 14 & 6 & 1 & 13 & 15 & 12 & 3 & 2 & 8 \\
\(a\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline \(\operatorname{dlog}_{11,17}(a)\) & 16 & 2 & 7 & 4 & 3 & 9 & 13 & 6 & 14 & 5 & 1 & 11 & 12 & 15 & 10 & 8 \\
\(a\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline \(\operatorname{dlog}_{12,17}(a)\) & 16 & 6 & 5 & 12 & 9 & 11 & 7 & 2 & 10 & 15 & 3 & 1 & 4 & 13 & 14 & 8 \\
\(a\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline \(\operatorname{dlog}_{14,17}(a)\) & 16 & 14 & 9 & 12 & 13 & 7 & 3 & 10 & 2 & 11 & 15 & 5 & 4 & 1 & 6 & 8
\end{tabular}

\section*{Contents}

\section*{Divisibility and Primes}

\section*{Modular Arithmetic}

Fermat＇s and Euler＇s Theorems

Discrete Logarithms

Computationally Hard Problems

Cryptography Number Theory

Hard Problem: Integer Factorisation (definition)
If \(p\) and \(q\) are unknown primes, given \(n=p q\), find \(p\) and \(q\).

Cryptography Number Theory

\section*{Hard Problem: Euler's Totient (definition)}

Given composite \(n\), find \(\phi(n)\).

Cryptography Number Theory

Hard Problem: Discrete Logarithms (definition)
Given \(b, a\), and \(p\), find \(i\) such that \(i=\operatorname{dog}_{a, p}(b)\).

\title{
Classical Ciphers
}

\author{
Cryptography
}

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 04 Jan 2022,
classical.tex, r1964

\section*{Contents}

\author{
Caesar Cipher
}

Monoalphabetic Ciphers
Playfair Cipher
Polyalphabetic Ciphers
Vigenère Cipher
Vernam Cipher
One Time Pad

Transposition Techniques

\section*{Caesar Cipher (algorithm)}

To encrypt with a key \(k\), shift each letter of the plaintext \(k\) positions to the right in the alphabet, wrapping back to the start of the alphabet if necessary. To decrypt, shift each letter of the ciphertext k positions to the left (wrapping if necessary).

Caesar Cipher Encryption (exercise)
Using the Caesar cipher, encrypt plaintext hello with key 3.

How many keys are possible in the Caesar cipher? (question) If the Caesar cipher is operating on the characters a-z, then how many possible keys are there? Is a key of 0 possible? Is it a good choice? What about a key of 26?
```

Cryptography
Classical Ciphers

```

\section*{Caesar Cipher Decryption (exercise)}
```

You have received the ciphertext TBBQOLR. You know the Caesar cipher was used with key n . Find the plaintext.

```

Caesar Cipher, formal (algorithm)
\[
\begin{align*}
& C=E(K, P)=(P+K) \bmod 26  \tag{1}\\
& P=D(K, C)=(C-K) \bmod 26 \tag{2}
\end{align*}
\]

Caesar Cipher, formal (exercise)
Consider the following mapping.
\begin{tabular}{lllllllllllll} 
a & b & c & d & e & f & g & h & i & j & k & l & m \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
n & \(\circ\) & p & q & r & s & t & u & v & w & x & y & z \\
13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25
\end{tabular}

Use the the formal (mathematical) algorithm for Caesar cipher to decrypt SDV with key p .

\section*{Caesar Encrypt and Decrypt (python)}

1 >>> pycipher.Caesar(3).encipher("hello")
2 'KHOOR'
3 >>> pycipher.Caesar(3).decipher("khoor")
4 'HELLO'

\section*{Brute Force Attack (definition)}

Try all combinations (of keys) until the correct plaintext/key is found.

\section*{Caesar Brute Force (exercise)}

The ciphertext FRUURJVBCANNC was obtained using the Caesar cipher. Find the plaintext using a brute force attack.

Caesar Cipher

\section*{Caesar Brute Force (python)}

1 for \(k\) in range \((0,26)\) :
2 pycipher.Caesar(k).decipher("FRUURJVBCANNC")

0: FRUURJVBCANNC 13: SEHHEWIOPNAAP
1: EQTTQIUABZMMB 14: RDGGDVHNOMZZO
2: DPSSPHTZAYLLA 15: QCFFCUGMNLYYN
3: CORROGSYZXKKZ 16: PBEEBTFLMKXXM
4: BNQQNFRXYWJJY 17: OADDASEKLJWWL
5: AMPPMEQWXVIIX 18: NZCCZRDJKIVVK
6: ZLOOLDPVWUHHW 19: MYBBYQCIJHUUJ
7: YKNNKCOUVTGGV 20: LXAAXPBHIGTTI
8: XJMMJBNTUSFFU 21: KWZZWOAGHFSSH
9: WILLIAMSTREET 22: JVYYVNZFGERRG
10: VHKKHZLRSQDDS 23: IUXXUMYEFDQQF
11: UGJJGYKQRPCCR 24: HTWWTLXDECPPE
12: TFIIFXJPQOBBQ 25: GSVVSKWCDBOOD

How many attempts for Caesar brute force? (question)
What is the worst, best and average case of number of attempts to brute force ciphertext obtained using the Caesar cipher?

\section*{Recognisable Plaintext upon Decryption (assumption)}

The decrypter will be able to recognise that the plaintext is correct (and therefore the key is correct). Decrypting ciphertext using the incorrect key will not produce the original plaintext. The decrypter will be able to recognise that the key is wrong, i.e. the decryption will produce unrecognisable output.

\section*{Is plaintext always recognisable? (question)}

Caesar cipher is using recognisably correct plaintext, i.e. English words. But is the correct plaintext always recognisable? What if the plaintext was a different language? Or compressed? Or it was an image or video? Or binary file, e.g. .exe? Or a set of characters chosen randomly, e.g. a key or password?

How to improve upon the Caesar cipher?
1. Increase the key space so brute force is harder
2. Change the plaintext (e.g. compress it) so harder to recognise structure

\section*{Contents}
```

Caesar Cipher

```
Monoalphabetic Ciphers
Playfair Cipher
Polyalphabetic Ciphers
Vigenère Cipher
Vernam CipherOne Time Pad
Transposition Techniques

\section*{Permutation (definition)}

A permutation of a finite set of elements is an ordered sequence of all the elements of \(S\), with each element appearing exactly once. In general, there are \(n\) ! permutations of a set with \(n\) elements.

\section*{Permutation (example)}

Consider the set \(S=\{a, b, c\}\). There are six permutations of \(S\) : abc, acb, bac, bca, cab, cba
This set has 3 elements. There are \(3!=3 \times 2 \times 1=6\) permutations.

Monoalphabetic (Substitution) Cipher (definition)
Given the set of possible plaintext letters (e.g. English alphabetc, a-z), a single permutation is chosen and used to determine the corresponding ciphertext letter.

Monoalphabetic (Substitution) Cipher (example)
In advance, the sender and receiver agree upon a permutation to use, e.g.:

C: H P W N S K L E V A Y C X O F G T B Q R U I D J Z M
To encrypt the plaintext hello, the agreed upon permutation (or mapping) is used to produce the ciphertext ESCCF.

\section*{Decrypt Monoalphabetic Cipher (exercise)}

Decrypt the ciphertext QSWBSR using the permutation chosen in the previous example.

How many keys in English monoalphabetic cipher? (question)
How many possible keys are there for a monoalphabetic cipher that uses the English lowercase letters? What is the length of an actual key?

\section*{Brute Force on Monoalphabetic Cipher (exercise)}

You have intercepted a ciphertext message that was obtained with an English monoalphabetic cipher. You have a Python function called:
mono_decrypt_and_check(ciphertext,key)
that decrypts the ciphertext with a key, and returns the plaintext if it is correct, otherwise returns false. You have tested the Python function in a while loop and the computer can apply the function at a rate of \(1,000,000,000\) times per second. Find the average time to perform a brute force on the ciphertext.

\section*{Frequency Analysis Attack (definition)}

Find (portions of the) key and/or plaintext by using insights gained from comparing the actual frequency of letters in the ciphertext with the expected frequency of letters in the plaintext. Can be expanded to analyse sets of letters, e.g. digrams, trigrams, n-grams, words.

Cryptography
Classical Ciphers

\section*{Relative Frequency of Letters by Norvig}


Cryptography Classical Ciphers

Monoalphabetic Ciphers

\section*{Relative Frequency of Digrams by Norvig}


Cryptography
Classical Ciphers

\section*{Relative Frequency of N -Grams by Norvig}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & 3 grams & 4-grams & 5-grams & 6-grams & 7-grams & 8-grams & 9-grams \\
\hline e & th & the & tion & ation & ations & present & differen & different \\
\hline t & he & and & atio & tions & ration & ational & national & governmen \\
\hline a & in & ing & that & which & tional & through & consider & overnment \\
\hline 0 & er & ion & ther & ction & nation & between & position & formation \\
\hline i & an & tio & with & other & ection & ication & ifferent & character \\
\hline n & re & ent & ment & their & cation & differe & governme & velopment \\
\hline s & on & ati & ions & there & lation & ifferen & vernment & developme \\
\hline r & at & for & this & ition & though & general & overnmen & evelopmen \\
\hline h & en & her & here & ement & presen & because & interest & condition \\
\hline 1 & nd & ter & from & inter & tation & develop & importan & important \\
\hline d & ti & hat & ould & ional & should & america & ormation & articular \\
\hline c & es & tha & ting & ratio & resent & however & formatio & particula \\
\hline u & or & ere & hich & would & genera & eration & relation & represent \\
\hline m & te & ate & whic & tiona & dition & nationa & question & individua \\
\hline f & of & his & ctio & these & ationa & conside & american & ndividual \\
\hline p & ed & con & ence & state & produc & onsider & characte & relations \\
\hline g & is & res & have & natio & throug & ference & haracter & political \\
\hline w & it & ver & othe & thing & hrough & positio & articula & informati \\
\hline y & al & all & ight & under & etween & osition & possible & nformatio \\
\hline b & ar & ons & sion & ssion & betwee & ization & children & universit \\
\hline v & st & nce & ever & ectio & differ & fferent & elopment & following \\
\hline k & to & men & ical & catio & icatio & without & velopmen & experienc \\
\hline x & nt & ith & they & latio & people & ernment & developm & stitution \\
\hline j & ng & ted & inte & about & iffere & vernmen & evelopme & xperience \\
\hline q & se & ers & ough & count & fferen & overnme & conditio & education \\
\hline z & ha & pro & ance & ments & struct & governm & ondition & roduction \\
\hline
\end{tabular}

Credit: N-Letter Sequences ( N -grams)" by Peter Norvig

Break a Monoalphabetic Cipher (exercise)
Ciphertext:
ziolegxkltqodlzgofzkgrxetngxzgzithkofeohs tlqfrzteifojxtlgyltexkofuegdhxztklqfregd hxztkftzvgkalvoziygexlgfofztkftzltexkoznz itegxkltoltyytezoctsnlhsozofzgzvghqkzlyo klzofzkgrxeofuzitzitgkngyeknhzgukqhinofes xrofuigvdqfnesqlloeqsqfrhghxsqkqsugkozid lvgkaturtlklqrouozqsloufqzxktlqfrltegfrhk gcorofurtzqoslgyktqsofztkftzltexkoznhkgz gegslqsugkozidlqfrziktqzltuohltecokxltlyo ktvqsslitfetngxvossstqkfwgzizitgktzoeqsq lhtezlgyegdhxztkqfrftzvgkaltexkoznqlvtssq ligvziqzzitgknolqhhsotrofzitofztkftzziol afgvstrutvossitshngxofrtloufofuqfrrtctsgh ofultexktqhhsoeqzogflqfrftzvgkahkgzgegsl qlvtssqlwxosrofultexktftzvgkal

\section*{Contents}

\author{
Caesar Cipher
}

Monoalphabetic Ciphers

> Playfair Cipher

Polyalphabetic Ciphers
Vigenère Cipher
Vernam Cipher
One Time Pad

Transposition Techniques

\section*{Playfair Matrix Construction (algorithm)}

Write the letters of keyword k row-by-row in a 5-by-5 matrix. Do not include duplicate letters. Fill the remainder of the matrix with the alphabet. Treat the letters \(i\) and \(j\) as the same (that is, they are combined in the same cell of the matrix).

Playfair Matrix Construction (exercise)
Construct the Playfair matrix using keyword australia.

\section*{Playfair Encryption (algorithm)}

Split the plaintext into pairs of letters. If a pair has identical letters, then insert a special letter \(x\) in between. If the resulting set of letters is odd, then pad with a special letter \(x\).
Locate the plaintext pair in the Playfair matrix. If the pair is on the same column, then shift each letter down one cell to obtain the resulting ciphertext pair. Wrap when necessary. If the plaintext pair is on the same row, then shift to the right one cell. Otherwise, the first ciphertext letter is that on the same row as the first plaintext letter and same column as the second plaintext letter, and the second ciphertext letter is that on the same row as the second plaintext letter and same column as the first plaintext letter.
Repeat for all plaintext pairs.
Playfair Encryption (exercise)
Find the ciphertext if the Playfair cipher is used with keyword australia and plaintext hello.
```

Does Playfair cipher always map a letter to the same ciphertext letter? (question)
Using the Playfair cipher with keyword australia, encrypt the plaintext hellolove.
With the Playfair cipher, if a letter occurs multiple times in the plaintext, will that letter always encrypt to the same ciphertext letter?
If a pair of letters occurs multiple times, will that pair always encrypt to the same ciphertext pair?
Is the Playfair cipher subject to frequency analysis attacks?

Contents

```
Caesar Cipher
Monoalphabetic Ciphers
Playfair Cipher
Polyalphabetic Ciphers
Vigenère Cipher
Vernam Cipher
One Time Pad
Transposition Techniques
```


Polyalphabetic (Substitution) Cipher (definition)

Use a different monoalphabetic substitution as proceeding through the plaintext. A key determines which monoalphabetic substitution is used for each transformation.

Examples of Polyalphabetic Ciphers

- Vigenère Cipher: uses Caesar cipher, but Caesar key changes each letter based on keyword
- Vernam Cipher: binary version of Vigenère, using XOR
- One Time Pad: same as Vigenère/Vernam, but random key as long as plaintext

Cryptography
Classical Ciphers

Contents

```
Caesar Cipher
Monoalphabetic Ciphers
Playfair Cipher
Polyalphabetic Ciphers
Vigenère Cipher
Vernam Cipher
One Time Pad
Transposition Techniques
```


Vigenère Cipher (algorithm)

For each letter of plaintext, a Caesar cipher is used. The key for the Caesar cipher is taken from the Vigenère key(word), progressing for each letter and wrapping back to the first letter when necessary. Formally, encryption using a keyword of length m is:

$$
c_{i}=\left(p_{i}+k_{i \bmod m}\right) \bmod 26
$$

where p_{i} is letter i (starting at 0) of plaintext P, and so on.

Vigenère Cipher Encryption (example)

Using the Vigenère cipher to encrypt the plaintext carparkbehindsupermarket with the keyword sydney produces the ciphertext UYUCEPCZHUMLVQXCIPEYUXIR.
The keyword would be repeated when Caesar is applied:
P: carparkbehindsupermarket
K: sydneysydneysydneysydney
C: UYUCEPCZHUMLVQXCIPEYUXIR

Vigenère Cipher Encryption (exercise)

Use Python (or other software tools) to encrypt the plaintext centralqueensland with the following keys with the Vigenère cipher, and investigate any possible patterns in the ciphertext: cat, dog, a, giraffe.

Weakness of Vigenère Cipher

- Determine the length of the keyword m
- Repeated n-grams in the ciphertext may indicate repeated n-grams in the plaintext
- Separation between repeated n-grams indicates possible keyword length m
- If plaintext is long enough, multiple repetitions make it easier to find m
- Treat the ciphertext as that from m different monoalphabetic ciphers
- E.g. Caesar cipher with m different keys
- Break the monoalphabetic ciphers with frequency analysis
- With long plaintext, and repeating keyword, Vigenère can be broken

Breaking Vigenère Cipher (example)

Ciphertext ZICVTWQNGRZGVTWAVZHCQYGLMGJ has repetition of VTW. That suggests repetition in the plaintext at the same position, which would be true if the keyword repeated at the same position.
012345678901234567890123456

ZICVTWQNGRZGVTWAVZHCQYGLMGJ

That is, it is possible the key letter at position 3 is the repated at position 12.
That in turn suggest a keyword length of 9 or 3 .
ciphertext ZICVTWQNGRZGVTWAVZHCQYGLMGJ
length=3: 012012012012012012012012012
length=9: 012345678012345678012345678
An attacker would try both keyword lengths. With a keyword length of 9, the attacker then performs Caesar cipher frequency analysis on every 9th letter.
Eventually they find plaintext is wearediscoveredsaveyourself and keyword is deceptive.

Contents

Caesar Cipher

Monoalphabetic Ciphers
Playfair Cipher
Polyalphabetic Ciphers
Vigenère Cipher
Vernam Cipher
One Time Pad

Transposition Techniques

Vernam Cipher (algorithm)

Encryption is performed as:

$$
c_{i}=p_{i} \oplus k_{i}
$$

decryption is performed as:

$$
p_{i}=c_{i} \oplus k_{i}
$$

where p_{i} is the i th bit of plaintext, and so on. The key is repeated where necessary.

XOR (python)

1 >>> def xor(x, y):
2 ... return '\{1:0\{0\}b\}'.format(len(x), int(x, 2) ~int(y, 2))
3

Vernam Cipher Encryption (exercise)

Using the Vernam cipher, encrypt the plaintext 011101010101000011011001 with the key 01011.

Cryptography Classical Ciphers

Vernam Cipher Encryption (python)

1 >>> xor('011101010101000011011001','010110101101011010110101')
2 '001011111000011001101100'

Contents

Caesar Cipher
Monoalphabetic Ciphers
Playfair Cipher
Polyalphabetic Ciphers
Vigenère Cipher
Vernam Cipher
One Time Pad
Transposition Techniques

One－Time Pad（algorithm）

Use polyalphabetic cipher（such as Vigenère or Vernam）but where the key must be：random，the same length as the plaintext，and not used multiple times．

Properties of OTP

- Encrypting plaintext with random key means output ciphertext will be random
- E.g. XOR plaintext with a random key produces random sequence of bits in ciphertext
- Random ciphertext contains no information about the structure of plaintext
- Attacker cannot analyse ciphertext to determine plaintext
- Brute force attack on key is ineffective
- Multiple different keys will produce recognisable plaintext
- Attacker has no way to determine which of the plaintexts are correct
- OTP is only known unbreakable (unconditionally secure) cipher

Attacking OTP (example)

Consider a variant of Vigenère cipher that has 27 characters (including a space). An attacker has obtained the ciphertext:
ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
Attacker tries all possible keys. Two examples:
k1: pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih
p1: mr mustard with the candlestick in the hall
k2: pftgpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt
p2: miss scarlet with the knife in the library
There are many other legible plaintexts obtained with other keys. No way for attacker to know the correct plaintext

Summary of OTP

- Only known unbreakable (unconditionally secure) cipher
- Ciphertext has no statistical relationship with plaintext
- Given two potential plaintext messages, attacker cannot identify the correct message
- But two significant practical limitations:

1. Difficult to create large number of random keys
2. Distributing unique long random keys is difficult

- Limited practical use

Contents

\author{
Caesar Cipher
 Monoalphabetic Ciphers
 Playfair Cipher
 Polyalphabetic Ciphers
 Vernam Cipher
 One Time Pad
 Transposition Techniques
 ```
Vigenère Cipher
 Vigenère Cipher

``` \\ Vernam Cipher \\ One Tïme Pad
}

\section*{Classical Ciphers}

Monoalphabetic Ciphers Playfair Cipher

Polyalphabetic Ciphers Vigenère Cipher Vernam Cipher

Ane Time Pad Techniques

\section*{Transposition vs Substitution}
- Substitution: replace one (or more) character in plaintext with another from the entire possible character set
- Transposition: re-arrange the characters in the plaintext
- The set of characters in the ciphertext is the same as in the plaintext
- Problem: the plaintext frequency statistics are also in the ciphertext
- On their own, transposition techniques are easy to break
- Combining transposition with substitution makes ciphers stronger, and building block of modern ciphers

\section*{Rail Fence Cipher Encryption (definition)}

Select a depth as a key. Write the plaintext in diagonals in a zig-zag manner to the selected depth. Read row-by-row to obtain the ciphertext.

\section*{Rail Fence Encryption (exercise)}

Consider the plaintext securityandcryptography with key 4. Using the rail fence cipher, find the ciphertext.

\section*{Rows Columns Cipher Encryption (definition)}

Select a number of columns \(m\) and permutate the integers from 1 to \(m\) to be the key. Write the plaintext row-by-row over \(m\) columns. Read column-by-column, in order of the columns determined by the key, to obtain the ciphertext.

Rows Columns Encryption（exercise）
Consider the plaintext securityandcryptography with key 315624．Using the rows columns cipher，find the ciphertext．

\section*{Rows Columns Multiple Encryption (example)}

Assume the ciphertext from the previous example has been encrypted again with the same key. The resulting ciphertext is YYCPRRCTEOIPDRAHYSGUATXH. Now let's view how the cipher has "mixed up" the letters of the plaintext. If the plaintext letters are numbered by position from 01 to 24, their order (split across two rows) is:
010203040506070809101112

After first encryption the order becomes:
\(\begin{array}{llllllllll}02 & 08 & 14 & 20 & 05 & 11 & 17 & 23 & 01 & 07 \\ 13 & 19\end{array}\)
061218240309152104101622
After the second encryption the order comes:
\(\begin{array}{llllllllll}08 & 23 & 12 & 21 & 05 & 13 & 03 & 16 & 02 & 17 \\ 06 & 15\end{array}\)
\(\begin{array}{llllllllllllllllllll}11 & 19 & 09 & 20 & 14 & 01 & 18 & 04 & 20 & 07 & 24 & 10\end{array}\)
Are there any obviously obversvable patterns?

\section*{Summary of Transposition and Substitution Ciphers}
- Transposition ciphers on their own offer no practical security
- But combining transposition ciphers with substitution ciphers, and repeated applications, practical security can be achieved
- Modern symmetric ciphers use multiple applications (rounds) of substitition and transposition (permutation) operations

\title{
Encryption and Attacks
}

\author{
Cryptography \\ School of Engineering and Technology CQUniversity Australia
}

Prepared by Steven Gordon on 04 Jan 2022, encryption.tex, r1965

Cryptography Encryption and Attacks

Encryption Building Blocks Attacks on Encryption Rlark Finh. Design Principles
Stream Cipher
Design Princip
Example: Brute
Force on DES
-
Force on AES
Example
Meet-in- he-Middl
Attack
Example
Cryptanali
Croptana
AES

\section*{Contents}

\section*{Encryption Building Blocks}

\section*{Attacks on Encryption}

Block Cipher Design Principles
Stream Cipher Design Principles
Example: Brute Force on DES
Example: Brute Force on AES
Example: Meet-in-the-Middle Attack
Example: Cryptanalysis on Triple-DES and AES

Cryptography Attacks

Model of Encryption for Confidentiality


\section*{Characterising Ciphers by Number of Keys}

> Symmetric sender/receiver use same key (single-key, secret-key, shared-key, conventional)
> Public-key sender/receiver use different keys (asymmetric)

Symmetric Key Encryption for Confidentiality


\section*{Common Operations in Symmetric Ciphers}

Substitution replace one element in plaintext with another
Permutation re-arrange elements (also called transposition)
Product systems multiple stages of substitutions and permutations, e.g. Feistel network, Substitution Permutation Network (SPN)

Characterising Ciphers by Processing Plaintext
Block cipher process one block of elements at a time, typically 64 or 128 bits Stream cipher process input elements continuously, e.g. 1 byte at a time, by XOR plaintext with keystream

Two Important Symmetric Key Block Ciphers
Data Encryption Standard (DES) Became a US government standard in 1977 and widely used for more than 20 years; key is too short Advanced Encryption Standard (AES) Standardised a replacement of DES in 1998, and now widely used. Highly recommended for use.

Cryptography
Encryption and Attacks

\section*{Common Symmetric Key Block Ciphers}
\begin{tabular}{lllccc} 
Cipher & Year & Designers & Block Size & Key Size & Design \\
\hline DES & 1977 & IBM/NSA & 64 & 56 & Feistel \\
IDEA & 1991 & Lai and Massey & 64 & 128 & Other \\
Blowfish & 1993 & Schneier & 64 & \(32-448\) & Feistel \\
RC5 & 1994 & Rivest & 64,128 & -2040 & Feistel-like \\
CAST-128 & 1996 & Adams and Tavares & 64 & \(40-128\) & Feistel \\
Twofish & 1998 & Schneier et al & 128 & \(128,192,256\) & Feistel \\
Serpent & 1998 & Anderson et al & 128 & \(128,192,256\) & SPN \\
CAST-256 & 1998 & Adams and Tavares & 128 & -256 & Feistel \\
RC6 & 1998 & Rivest et al & 128 & \(128,192,256\) & Feistel \\
AES & 1998 & Rijmen and Daemen & 128 & \(128,192,256\) & SPN \\
3DES & 1998 & NIST & 64 & \(56,112,168\) & Feistel \\
Camellia & 2000 & Mitsubishi/NTT & 128 & \(128,192,256\) & Feistel
\end{tabular}

Cryptography
Encryption and Attacks

Encryption Building Blor

Attacks on Encryption Block Cipher Design Principles Stream Cipher Design Princiales
Example: Brute
Force on DES
Example: Brute
Force on AES
Example
Meet-in-the-Middl
Attack
Evamal
Cryptanalysis on
Triple-DES and

\section*{Contents}

Encryption Building Blocks

\author{
Attacks on Encryption
}

Block Cipher Design Principles
Stream Cipher Design Principles
Example：Brute Force on DES
Example：Brute Force on AES
Example：Meet－in－the－Middle Attack
Example：Cryptanalysis on Triple－DES and AES

\section*{Aims and Knowledge of the Attacker}
- Study of ciphers and attacks on them is based on assumptions and requirements
- Assumptions about what attacker knows and can do, e.g. intercept messages, modify messages
- Requirements of the system/users, e.g. confidentiality, authentication
- Normally assumed attacker knows cipher
- Keeping internals of algorithms secret is hard
- Keeping which algorithm used secret is hard
- Attacker also knows the ciphertext
- Attacker has two general approaches
- "Dumb": try all possible keys, i.e. brute force
- "Smart": use knowledge of algorithm and ciphertext/plaintext to discover unknown information, i.e. cryptanalysis

Cryptography
Encryption and Attacks

\section*{Worst Case Brute Force Time for Different Keys}
\begin{tabular}{ccccc}
\hline \begin{tabular}{c} 
Key \\
length
\end{tabular} & Key & \multicolumn{3}{c}{ Worst case time at speed: } \\
space & \(10^{9} / \mathrm{sec}\) & \(10^{12} / \mathrm{sec}\) & \(10^{15} / \mathrm{sec}\) \\
\hline \hline 32 & \(2^{32}\) & 4 sec & 4 ms & 4 us \\
56 & \(2^{56}\) & 833 days & 20 hrs & 72 sec \\
64 & \(2^{64}\) & 584 yrs & 213 days & 5 hrs \\
80 & \(2^{80}\) & \(10^{7} \mathrm{yrs}\) & \(10^{4} \mathrm{yrs}\) & 38 yrs \\
100 & \(2^{100}\) & \(10^{13} \mathrm{yrs}\) & \(10^{10} \mathrm{yrs}\) & \(10^{7} \mathrm{yrs}\) \\
128 & \(2^{128}\) & \(10^{22} \mathrm{yrs}\) & \(10^{19} \mathrm{yrs}\) & \(10^{16} \mathrm{yrs}\) \\
192 & \(2^{192}\) & \(10^{41} \mathrm{yrs}\) & \(10^{38} \mathrm{yrs}\) & \(10^{35} \mathrm{yrs}\) \\
256 & \(2^{256}\) & \(10^{60} \mathrm{yrs}\) & \(10^{57} \mathrm{yrs}\) & \(10^{54} \mathrm{yrs}\) \\
\(26!\) & \(2^{88}\) & \(10^{10} \mathrm{yrs}\) & \(10^{7} \mathrm{yrs}\) & \(10^{4} \mathrm{yrs}\) \\
\hline
\end{tabular}

Cryptography Encryption and Attacks

\section*{Classifying Attacks Based Upon Information Known}
1. Ciphertext Only Attack
2. Known Plaintext Attack
3. Chosen Plaintext Attack
4. Chosen Ciphertext Attack
5. Chosen Text Attack Attacks

\section*{Ciphertext Only Attack}
- Attacker knows:
- encryption algorithm
- ciphertext
- Hardest type of attack
- If cipher can be defeated by this, then cipher is weakest

\section*{Known Plaintext Attack}
- Attacker knows:
- encryption algorithm
- ciphertext
- one or more plaintext-ciphertext pairs formed with the secret key
- E.g. attacker has intercept past ciphertext and somehow discovered their corresponding plaintext
- All pairs encrypted with the same secret key (which is unknown to attacker)

\section*{Chosen Plaintext Attack}
- Attacker knows:
- encryption algorithm
- ciphertext
- plaintext message chosen by attacker, together with its corresponding ciphertext generated with the secret key Attacks

\section*{Chosen Ciphertext Attack}
- Attacker knows:
- encryption algorithm
- ciphertext
- ciphertext chosen by attacker, together with its corresponding decrypted plaintext generated with the secret key
- Attackers aim is to find the secret key (not the plaintext)

\section*{General Measures of Security}

Unconditionally Secure Ciphertext does not contained enough information to derive plaintext or key
- One-time pad is only unconditionally secure cipher (but not very practical)

Computationally Secure If:
- cost of breaking cipher exceeds value of encrypted information
- or time required to break cipher exceeds useful lifetime of encrypted information
- Hard to estimate value/lifetime of some information
- Hard to estimate how much effort needed to break cipher

\section*{Common Metrics for Attacks}

Time: usually measured as number of operations, since real time depends on implementation and computer specifics
- Operations are encrypts or decrypts; ignore other processing tasks
- E.g. worst case brute force of \(k\)-bit key takes \(2^{k}\) (decrypt) operations
Amount of Memory: temporary data needed to be stored during attack
Known information: number of known plaintext/ciphertext values attacker needs to know in advance to perform attack
```

Contents
Encryption Building Blocks
Attacks on Encryption

```

Block Cipher Design Principles
Stream Cipher Design Principles
Example: Brute Force on DES
Example: Brute Force on AES
Example: Meet-in-the-Middle Attack
Example: Cryptanalysis on Triple-DES and AES

\section*{Block Cipher with n bit blocks}
- Encrypt a block of plaintext as a whole to produce same sized ciphertext
- Typical block sizes are 64 or 128 bits
- Modes of operation used to apply block ciphers to larger plaintexts


Cryptography
Encryption and Attacks

\section*{Simple Ideal 2-bit Block Cipher 1}

\section*{Encryption Cipher 1}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline P & K0 & K1 & K2 & K3 & K4 & K5 & K6 & K7 & K8 & K9 & K & & & & & & & & & & & & & K23 \\
\hline 00 & 10 & 10 & 00 & 10 & 11 & 10 & 11 & 00 & 01 & 01 & 00 & 01 & 11 & 01 & 00 & 00 & 10 & 11 & 11 & 01 & 00 & 01 & 10 & 11 \\
\hline 01 & 00 & 11 & 10 & 11 & 00 & 00 & 10 & 01 & 10 & 00 & 10 & 11 & 10 & 00 & 11 & 01 & 01 & 01 & 00 & 11 & 11 & 10 & 01 & 01 \\
\hline 10 & 11 & 00 & 11 & 01 & 10 & 01 & 00 & 10 & 11 & 10 & 01 & 10 & 01 & 11 & 01 & 11 & 00 & 10 & 01 & 00 & 10 & 00 & 11 & 00 \\
\hline 11 & 01 & 01 & 01 & 00 & 01 & 11 & 01 & 11 & 00 & 11 & 11 & 00 & 00 & 10 & 10 & 10 & 11 & 00 & 10 & 10 & 01 & 11 & 00 & 10 \\
\hline
\end{tabular}

Encryption and Attacks

\section*{Encrypt with Ideal Cipher 1 (exercise)}

Encrypt the message Tokyo using the above ideal 2-bit block cipher 1 with key K6.

\section*{Issues When Applying Block Ciphers}
- Encoding/decoding: independent of block cipher, which operate only in binary values
- Mode of operation: typically independent of block cipher, which operate only on a single block
- Repetition of plaintext blocks: undesirable. Make block size larger and use mode of operation that obscures repetition
- Key space: larger block size needed to allow more keys in ideal block cipher
- Implementing an ideal block cipher: how are they generated? can all values be stored?

Cryptography
Encryption and Attacks

\section*{Simple Ideal 2-bit Block Cipher 2}

Encryption Cipher 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline P & K0 & K1 & K2 & K3 & K4 & K5 & K6 & K7 & K8 & K9 & K10 & K1 & 12 & K13 & K1 & K15 & K16 & K17 & K18 & K19 & , & & & 23 \\
\hline 00 & 01 & 01 & 00 & 10 & 11 & 00 & 11 & 11 & 01 & 10 & 01 & 00 & 00 & 10 & 01 & 11 & 11 & 01 & 11 & 10 & 00 & 10 & 00 & 10 \\
\hline 01 & 10 & 11 & 01 & 01 & 11 & 10 & 10 & 01 & 10 & 11 & 11 & 01 & 11 & 00 & 00 & 00 & 01 & 00 & 10 & 01 & 10 & 00 & 11 & 11 \\
\hline 10 & 11 & 00 & 11 & 00 & 10 & 11 & 01 & 10 & 00 & 01 & 10 & 10 & 10 & 11 & 11 & 01 & 00 & 10 & 00 & 11 & 01 & 01 & 01 & 00 \\
\hline 11 & 00 & 10 & 10 & 11 & 01 & 01 & 00 & 00 & 11 & 00 & 00 & 11 & 01 & 01 & 10 & 10 & 10 & 11 & 01 & 00 & 11 & 11 & 10 & 01 \\
\hline
\end{tabular} 2? (question)
What is plaintext with key K 13 , ciphertext 11 with ideal cipher 2 ?

What is plaintext with key K4, ciphertext 11 with ideal cipher 2 ? (question)
What is plaintext with key K4, ciphertext 11 with ideal cipher 2 ?

Cryptography
Encryption and Attacks

\section*{Simple Ideal 2-bit Block Cipher 2 (fixed)}

Encryption Cipher 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline P & K0 & K1 & K2 & K3 & K4 & K5 & K6 & K7 & K8 & K9 & K & K11 & & & & & & & & & K20 & & & 3 \\
\hline 00 & 01 & 01 & 00 & 10 & 11 & 00 & 11 & 11 & 01 & 10 & 01 & 00 & 00 & 10 & 01 & 11 & 11 & 01 & 11 & 10 & 00 & 10 & 00 & 10 \\
\hline 01 & 10 & 11 & 01 & 01 & 00 & 10 & 10 & 01 & 10 & 11 & 11 & 01 & 11 & 00 & 00 & 00 & 01 & 00 & 10 & 01 & 10 & 00 & 11 & 11 \\
\hline 10 & 11 & 00 & 11 & 00 & 10 & 11 & 01 & 10 & 00 & 01 & 10 & 10 & 10 & 11 & 11 & 01 & 00 & 10 & 00 & 11 & 01 & 01 & 01 & 00 \\
\hline 11 & 00 & 10 & 10 & 11 & 01 & 01 & 00 & 00 & 11 & 00 & 00 & 11 & 01 & 01 & 10 & 10 & 10 & 11 & 01 & 00 & 11 & 11 & 10 & 01 \\
\hline
\end{tabular}

How many bits are needed to represent the key in cipher 2? (question)
The example 2-bit ideal block cipher 2 (as well as cipher 1) list 24 different keys (or mappings from plaintext to ciphertext). How many bits are needed to represent a key for this cipher?

How to reduce repetition of plaintext blocks? (question)
With a 2-bit ideal block cipher, with a long plaintext, many of plaintext blocks will repeat. This is bad for security (see Modes of Operation). What can you change in the design of an ideal block cipher that reduces repetition of plaintext blocks?

Cryptography
Encryption and Attacks

\section*{Impact of Block Sizes for 80 bit Plaintext}

80 bits of plaintext

Block size: 2 bits Plaintext block values: 4 Number of blocks: 40


Block size: 3 bits Plaintext block values: 8 Number of blocks: 27


Block size: 4 bits Plaintext block values: 16 Number of blocks: 20
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline
\end{tabular}

\section*{General n-bit Ideal Block Cipher}
- \(n\)-bit block cipher takes \(n\) bit plaintext and produces \(n\) bit ciphertext
- \(2^{n}\) possible different plaintext blocks
- Encryption must be reversible (decryption possible)
- Number of permutations of plaintext (and number of keys) is \(2^{n}\) !
- Design trade-offs:
- Large block size to reduce plaintext repetitions (64-bits is good)
- Key space large enough to avoid brute force, but small enough to make distribution practical
- Small block size to simplify implementation

Cryptography Encryption and Attacks

\section*{Ideal 64-bit Block Cipher (exercise)}

Consider an ideal 64-bit block cipher. How many different different keys are possible? How many bits are needed to store a single key? How much space is required to store the mappings?

\section*{Feistel Structure for Block Ciphers}
- Ideal block ciphers are not practical
- Feistel proposed applying two or more simple ciphers in sequence so final result is cryptographically stronger than component ciphers
- \(n\)-bit block length; \(k\)-bit key length; \(2^{k}\) transformations
- Feistel cipher alternates: substitutions, transpositions (permutations)
- Applies concepts of diffusion and confusion
- Applied in many ciphers today
- Approach:
- Plaintext split into halves
- Subkeys (or round keys) generated from key
- Round function, \(F\), applied to right half
- Apply substitution on left half using XOR
- Apply permutation: interchange to halves

Cryptography
Encryption and Attacks

\section*{Diffusion and Confusion}
- Diffusion
- Statistical nature of plaintext is reduced in ciphertext
- E.g. A plaintext letter affects the value of many ciphertext letters
- How: repeatedly apply permutation (transposition) to data, and then apply function
- Confusion
- Make relationship between ciphertext and key as complex as possible
- Even if attacker can find some statistical characteristics of ciphertext, still hard to find key
- How: apply complex (non-linear) substitution algorithm

Cryptography
Encryption and Attacks

\section*{Feistel Encryption and Decryption}


Decryption


\footnotetext{
Credit: Amirki, https://commons.wikimedia.org/wiki/File:Feistel_cipher_diagram_en.svg, CC BY-SA 3.0
}

\section*{Using the Feistel Structure}
- Exact implementation depends on various design features
- Block size, e.g. 64, 128 bits: larger values leads to more diffusion
- Key size, e.g. 128 bits: larger values leads to more confusion, resistance against brute force
- Number of rounds, e.g. 16 rounds
- Subkey generation algorithm: should be complex
- Round function \(F\) : should be complex
- Other factors include fast encryption in software and ease of analysis
- Trade-off: security vs performance

Encryption and Attacks

\section*{Contents}

Encryption Building Blocks

\section*{Attacks on Encryption}

Block Cipher Design Principles

\section*{Stream Cipher Design Principles}

Example: Brute Force on DES
Example: Brute Force on AES
Example: Meet-in-the-Middle Attack
Example: Cryptanalysis on Triple-DES and AES

\section*{Stream Ciphers}
- Encrypts a digital data stream one bit or one byte at a time
- One time pad is example; but practical limitations
- Typical approach for stream cipher:
- Key \((K)\) used as input to bit-stream generator algorithm
- Algorithm generates cryptographic bit stream \(\left(k_{i}\right)\) used to encrypt plaintext
- \(k_{i}\) is XORed with each byte of plaintext \(P_{i}\)
- Users share a key; use it to generate keystream

Cryptography
Encryption and Attacks

Stream Cipher Encrypt and Decrypt


\section*{Key Re-use in Stream Ciphers}
- Encrypting two different plaintexts with the same key leads to key re-use attack
- Attacker intercepts two ciphertexts: \(C_{1}=P_{1} \oplus k_{1}\) and \(C_{2}=P_{2} \oplus k_{1}\)
- Properties of XOR: commutative and \(A \oplus A=0\)
- Attacker performs XOR on two ciphertexts
- \(C_{1} \oplus C_{2}=P_{1} \oplus k_{1} \oplus P_{2} \oplus k_{1}=P_{1} \oplus P_{2}\)
- Even without knowing \(P_{1}\) or \(P_{2}\), attacker can easily use frequency analysis to discover both
- Solution: Use additional IV that changes for every encryption

Cryptography Encryption and Attacks

\section*{When can key re-use attack be successful if IV is used? (question)}

If a stream cipher is using a \(n\)-bit IV, but the same key, under what conditions is a key re-use attack possible? Assume the IV increments every time an encrypt operation is performed.

Cryptography
Encryption and Attacks

\section*{Contents}

\section*{Encryption Building Blocks}

Attacks on Encryption
Block Cipher Design Principles

Stream Cipher Design Principles
Example：Brute Force on DES
Example：Brute Force on AES
Example：Meet－in－the－Middle Attack
Example：Cryptanalysis on Triple－DES and AES Attacks

\section*{DES and Real Brute Force Attacks}
- DES is 64 -bit block cipher with 56 -bit (effective) key length
- Developed in 1977, recommended standard until 1990's
- Brute force: \(2^{56}\) operations
- Hardware built to perform brute force attack
- 1998: DeepCrack
- 2006: COPACABANA Attacks

\section*{Paul Kocher and DeepCrack}
- Developed by EFF
- Cost less than \$US250,000
- \(80 \times 10^{9}\) keys \(/ \mathrm{sec}\)
- Solved DES challenge in 56 hours
- See www.cryptography.com and www.eff.org


Cryptography
Encryption and Attacks

\section*{COPACABANA by SciEngines, 2006}
- Joint effort by SciEngines and German universities
- 120 FPGA, \(400 \times 10^{6}\) keys \(/ \mathrm{sec} /\) FPGA
- For comparison, a Pentium 4: \(2 \times 10^{6}\) keys \(/ \mathrm{sec}\)
- Brute force DES in 8.6 days
- Cost about \$US10,000
- See www.sciengines.com
 Attacks

\section*{Can We Estimate Cost Today?}
- Moore's law: computers double speed every 1.5 years
- Alternative: computers halve in cost every 1.5 years
- \$US10,000 to brute force DES in 2006
- Cost has halved about 10 times
- Cost to brute force DES in 2020: \(\$ 10\)

Cryptography
Encryption and Attacks
```

Contents
Encryption Building Blocks
Attacks on Encryption
Block Cipher Design Principles
Stream Cipher Design Principles
Example: Brute Force on DES
Example: Brute Force on AES
Example: Meet-in-the-Middle Attack
Example: Cryptanalysis on Triple-DES and AES

```

Cryptography
Encryption and Attacks

RIVYERA S3-5000 by SciEngines, 2013
- Rivyera S3 supported up to 128 Xilinx Spartan-3 FPGAs
- Approx \(\$ 100\) per FPGA (XCS5000)
- AES-128 Brute Force
- \(500 \times 10^{6}\) keys per sec
- \(4 \times 10^{6}\) keys per mW
- Biclique Attack
- \(945 \times 10^{6}\) keys per sec
- \(7.3 \times 10^{6}\) keys per mW


Credit: Copyright SciEngines GMBH Attacks

\section*{Breaking AES-128 in 2020}
- AES-128 has key space of \(2^{128}\)
- 2013: \(\$\) US12,800 for \(5 \times 10^{8} \mathrm{k} / \mathrm{s}\)
- Assume: computers double speed every 1.5 years
- 2020: Increase by \(2^{5}=32 ; 1.6 \times 10^{10} \mathrm{k} / \mathrm{s}\)
- \$12,800: \(6.7 \times 10^{20}\) years
- \$12,800,000: \(6.7 \times 10^{17}\) years
- \$12,800,000,000: \(6.7 \times 10^{14}\) years
- Biclique attack about 2 to 4 times faster, but requires \(2^{88}\) known plaintext/ciphertext pairs
- In 2035, cost \(\$ 12,800,000,000\) to brute force AES-128 in \(670,000,000,000\) years

Cryptography
Encryption and Attacks

\section*{Contents}

\section*{Encryption Building Blocks}

\section*{Attacks on Encryption}

Block Cipher Design Principles

Stream Cipher Design Principles
Example：Brute Force on DES

Example：Brute Force on AES
Example：Meet－in－the－Middle Attack
Example：Cryptanalysis on Triple－DES and AES

Cryptography
Encryption and Attacks

\section*{Double Encryption Concept}
- Encrypt plaintext with one key, then encrypt output with another key

Double Encryption


Double Decryption

- Advantage: doubles the key length
- Single version of cipher has \(k\)-bit key
- Double version of cipher uses two different \(k\)-bit keys
- Worst case brute force: \(2^{2 k}\)
- Advantage: uses an existing cipher
- Disadvantage: doubles the processing time
- Problem: double encryption is subject to meet-in-the-middle attack

\section*{Meet-in-the-Middle Attack}
- Double Encryption where key \(K\) is \(k\)-bits: \(C=\mathrm{E}\left(K_{2}, \mathrm{E}\left(K_{1}, P\right)\right)\)
- Say \(X=\mathrm{E}\left(K_{1}, P\right)=\mathrm{D}\left(K_{2}, C\right)\)
- Attacker knows two plaintext, ciphertext pairs \(\left(P_{a}, C_{a}\right)\) and \(\left(P_{b}, C_{b}\right)\)
1. Encrypt \(P_{a}\) using all \(2^{k}\) values of \(K_{1}\) to get multiple values of \(X\)
2. Store results in table and sort by \(X\)
3. Decrypt \(C_{a}\) using all \(2^{k}\) values of \(K_{2}\)
4. As each decryption result produced, check against table
5. If match, check current \(K_{1}, K_{2}\) on \(C_{b}\). If \(P_{b}\) obtained, then accept the keys
- With two known plaintext, ciphertext pairs, probability of successful attack is almost 1
- Encrypt/decrypt operations required: \(\approx 2 \times 2^{k}\) (twice as many as single encryption)

Cryptography
Encryption and Attacks

Example:
Meet-in-the-Middle Attack

\section*{Example 5-bit Block Cipher}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{8}{|c|}{Ciphertext for key, K:} \\
\hline P & 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 \\
\hline 00000 & 00001 & 10010 & 01101 & 01111 & 11011 & 10011 & 10000 & 11101 \\
\hline 00001 & 10001 & 01001 & 11010 & 10000 & 01010 & 11100 & 10100 & 01010 \\
\hline 00010 & 01011 & 10100 & 11011 & 01100 & 00100 & 10100 & 00111 & 00100 \\
\hline 00011 & 01110 & 10110 & 01011 & 00111 & 10110 & 11101 & 11000 & 00101 \\
\hline 00100 & 00011 & 00011 & 00001 & 11101 & 11001 & 10010 & 11011 & 01100 \\
\hline 00101 & 10100 & 10111 & 01110 & 00010 & 01101 & 00011 & 01101 & 00110 \\
\hline 00110 & 10101 & 11111 & 00110 & 10011 & 00010 & 10001 & 10111 & 10110 \\
\hline 00111 & 01101 & 10001 & 10111 & 00110 & 11111 & 01100 & 11100 & 10011 \\
\hline 01000 & 01000 & 11011 & 10011 & 01010 & 01001 & 10110 & 10011 & 11111 \\
\hline 01001 & 10010 & 11110 & 10001 & 10101 & 01111 & 00100 & 00000 & 01110 \\
\hline 01010 & 01111 & 00010 & 10000 & 10110 & 11000 & 01010 & 00001 & 00010 \\
\hline 01011 & 11110 & 01110 & 00111 & 01011 & 11101 & 11011 & 01111 & 10010 \\
\hline 01100 & 11011 & 10000 & 01010 & 00101 & 01100 & 00101 & 01100 & 00111 \\
\hline 01101 & 11101 & 00111 & 10110 & 01000 & 01000 & 10111 & 10010 & 11100 \\
\hline 01110 & 11000 & 01000 & 10100 & 00000 & 11010 & 01111 & 11111 & 01000 \\
\hline 01111 & 01001 & 11101 & 01100 & 00001 & 00011 & 01000 & 01010 & 01101 \\
\hline 10000 & 00110 & 11100 & 01111 & 01001 & 01011 & 11111 & 00010 & 11011 \\
\hline 10001 & 11111 & 01100 & 10010 & 10010 & 00000 & 11010 & 11110 & 00000 \\
\hline 10010 & 10110 & 10011 & 11110 & 01101 & 10111 & 01101 & 10001 & 10000 \\
\hline 10011 & 00010 & 00001 & 11000 & 11100 & 10100 & 00111 & 00011 & 10111 \\
\hline 10100 & 10111 & 01101 & 11001 & 11111 & 10011 & 00000 & 00100 & 00011 \\
\hline 10101 & 01010 & 01111 & 00101 & 00011 & 00001 & 01001 & 10101 & 01011 \\
\hline 10110 & 00000 & 00110 & 10101 & 11010 & 00110 & 01011 & 01000 & 11001 \\
\hline 10111 & 00111 & 11000 & 01001 & 11110 & 10000 & 00010 & 01110 & 10100 \\
\hline 11000 & 00101 & 01011 & 00010 & 10001 & 11100 & 10000 & 11010 & 10001 \\
\hline 11001 & 11100 & 00000 & 11101 & 10111 & 10001 & 01110 & 00101 & 11000 \\
\hline 11010 & 11010 & 11001 & 01000 & 01110 & 01110 & 11110 & 01011 & 01001 \\
\hline 11011 & 01100 & 11010 & 11111 & 11001 & 10101 & 00001 & 10110 & 00001 \\
\hline 11100 & 11001 & 01010 & 00100 & 00100 & 00101 & 11001 & 00110 & 10101 \\
\hline 11101 & 10011 & 10101 & 00011 & 10100 & 00111 & 00110 & 11001 & 01111 \\
\hline 11110 & 00100 & 00101 & 11100 & 11000 & 10010 & 11000 & 11101 & 11110 \\
\hline 11111 & 10000 & 00100 & 00000 & 11011 & 11110 & 10101 & 01001 & 11010 \\
\hline
\end{tabular}

\section*{Meet-in-the-Middle Attack (exercise)}

The figure on slide 54 shows an example 5-bit block cipher, referred to as Bob's Cipher. A double version of Bob's cipher, called Double-Bob, was used by two users to exchange multiple encrypted messages using the same 6-bit secret key. You have obtained the plaintext/ciphertext pairs of two of those messages: \(\left(P_{1}, C_{1}\right)=(01101,11111)\) and \(\left(P_{2}, C_{2}\right)=(11001,11011)\). Using a meet-in-the-middle attack, find the secret key. Attacks

\section*{Example:}

Meet-in-the-Middle Attack

\section*{Triple Encryption Concept}
- Different variations:
- Use 2 keys, e.g. Triple-DES 112 bits
- Use 3 keys, e.g. Triple-DES 168 bits

- Why E-D-E? To be compatible with single DES:
\[
C=\mathrm{E}\left(K_{1}, \mathrm{D}\left(K_{1}, \mathrm{E}\left(K_{1}, P\right)\right)\right)=\mathrm{E}\left(K_{1}, P\right)
\]
- Problem: 3 times slower than single DES Attacks

\section*{Contents}

\section*{Encryption Building Blocks}

\section*{Attacks on Encryption}

\section*{Block Cipher Design Principles}

Stream Cipher Design Principles
Example: Brute Force on DES
Example: Brute Force on AES

\section*{Example: Meet-in-the-Middle Attack}

\section*{Example: Cryptanalysis on Triple-DES and AES}

Cryptography
Encryption and Attacks

\section*{Cryptanalysis of Triple-DES and AES}
\begin{tabular}{cccccc}
\hline Cipher & Method & Key & \multicolumn{3}{c}{ Required resources: } \\
& & space & Time & Memory & Known data \\
\hline \hline DES & Brute force & \(2^{56}\) & \(2^{56}\) & - & - \\
3DES & MITM & \(2^{168}\) & \(2^{111}\) & \(2^{56}\) & \(2^{2}\) \\
3DES & Lucks & \(2^{168}\) & \(2^{113}\) & \(2^{88}\) & \(2^{32}\) \\
AES 128 & Biclique & \(2^{128}\) & \(2^{126.1}\) & \(2^{8}\) & \(2^{88}\) \\
AES 256 & Biclique & \(2^{256}\) & \(2^{254.4}\) & \(2^{8}\) & \(2^{40}\) \\
\hline
\end{tabular}
- Known data: chosen pairs of (plaintext, ciphertext)
- Lucks: S. Lucks, Attacking Triple Encryption, in Fast Software Encryption, Springer, 1998
- Biclique: Bogdanov, Khovratovich and Rechberger, Biclique Cryptanalysis of the Full AES, in ASIACRYPT2011, Springer, 2011

\title{
Data Encryption Standard
}

\author{
Cryptography \\ School of Engineering and Technology CQUniversity Australia \\ Prepared by Steven Gordon on 04 Jan 2022, des.tex, r1966
}

\section*{Contents}

\section*{Data Encryption} Standard

Overview of the Data Encryption Standard (DES)

\section*{Overview of the Data Encryption Standard (DES)}

\section*{Simplified-DES}

Details of DES

DES in OpenSSL

DES in Python

\section*{Data Encryption Standard}
- Symmetric block cipher
- 56-bit key, 64-bit input block, 64-bit output block
- Developed in 1977 by NIST; designed by IBM (Lucifer) with input from NSA
- Principles used in other ciphers, e.g. 3DES, IDEA

\section*{Contents}

\title{
Overview of the Data Encryption Standard (DES)
}

\section*{Simplified-DES}

Details of DES

DES in OpenSSL

DES in Python

\section*{Simplified DES}
- Input (plaintext) block: 8-bits
- Output (ciphertext) block: 8-bits
- Key: 10-bits
- Rounds: 2
- Round keys generated using permutations and left shifts
- Encryption: initial permutation, round function, switch halves
- Decryption: Same as encryption, except round keys used in opposite order

Cryptography
Data Encryption Standard

\section*{S-DES Key Generation and Encryption}


Cryptography
Data Encryption Standard

\section*{S-DES Key Generation and Decryption}

Secret key


Plaintext

Cryptography
Data Encryption Standard

\section*{S-DES Round Function Details}


S-DES Permutations (definition)
Permutations used in S-DES:
P10 (permutate)
Input : 12345678910
Output: 35274101986
P8 (select and permutate)
Input : 12345678910
Output: 637485109
P4 (permutate)
Input : 1234
Output: 2431
EP (expand and permutate)
Input : 1234
Output: 41232341
IP (initial permutation)
Input : 12345678
Output: 26314857

\section*{Other Operations in S-DES}
- LS-1: left shift by 1 position
- LS-2: left shift by 2 positions
- \(\mathrm{IP}^{-1}\) : inverse of IP , such that \(X=\mathrm{IP}^{-1}(\mathrm{IP}(X))\)
- SW: swap the halves
- \(f_{K}\) : a round function using round key \(K\)
- F: internal function in each round

\section*{S-DES S-Boxes (definition)}

S-Box considered as a matrix: input used to select row/column; selected element is output
4-bit input: bit \(_{1}\), bit \(_{2}\), bit \(_{3}\), bit \(_{4}\)
bit \(_{1}\) bit \(_{4}\) specifies row ( \(0,1,2\) or 3 in decimal) bit \(_{2}\) bit \(_{3}\) specifies column
\[
S 0=\left[\begin{array}{llll}
01 & 00 & 11 & 10 \\
11 & 10 & 01 & 00 \\
00 & 10 & 01 & 11 \\
11 & 01 & 11 & 10
\end{array}\right] \quad S 1=\left[\begin{array}{llll}
00 & 01 & 10 & 11 \\
10 & 00 & 01 & 11 \\
11 & 00 & 01 & 00 \\
10 & 01 & 00 & 11
\end{array}\right]
\]

\section*{Encrypt with S-DES (exercise)}

Show that when the plaintext 01110010 is encrypted using S-DES with key 1010000010 that the ciphertext obtained is 01110111.

Cryptography
Data Encryption Standard

\section*{S-DES Summary}
- Educational encryption algorithm
- S-DES expressed as functions:
\[
\begin{aligned}
& \text { ciphertext }=\operatorname{IP}^{-1}\left(f_{K_{2}}\left(\operatorname{SW}\left(f_{K_{1}}(\operatorname{IP}(\text { plaintext }))\right)\right)\right) \\
& \text { plaintext }=\operatorname{IP}^{-1}\left(f_{K_{1}}\left(\operatorname{SW}\left(f_{K_{2}}(\operatorname{IP}(\text { ciphertext }))\right)\right)\right)
\end{aligned}
\]
- Brute force attack on S-DES is easy since only 10-bit key
- If know plaintext and corresponding ciphertext, can we determine key? Very hard

Cryptography
Data Encryption Standard
- S-DES vs DES
- Block size: 8 bits vs 64 bits
- Rounds: 2 vs 16
- IP: 8 bits vs 64 bits
- F: 4 bits vs 32 bits
- S-Boxes: 2 vs 8
- Round key: 8 bits vs 48 bits

\section*{Contents}

Data Encryption
Standard

Overview of the
Data Encryption Standard (DES) Simplified-DES

Details of DES DES in OpenSSL DES in Openss DES in Python

Overview of the Data Encryption Standard (DES)

\section*{Simplified-DES}

\section*{Details of DES}

\section*{DES in OpenSSL}

DES in Python

Cryptography
Data Encryption Standard

\section*{General DES Encryption Algorithm}


Cryptography
Data Encryption Standard

\section*{Initial Permutation Tables for DES}

\section*{IP}
\begin{tabular}{lrrrrrrr}
58 & 50 & 42 & 34 & 26 & 18 & 10 & 2 \\
60 & 52 & 44 & 36 & 28 & 20 & 12 & 4 \\
62 & 54 & 46 & 38 & 30 & 22 & 14 & 6 \\
64 & 56 & 48 & 40 & 32 & 24 & 16 & 8 \\
57 & 49 & 41 & 33 & 25 & 17 & 9 & 1 \\
59 & 51 & 43 & 35 & 27 & 19 & 11 & 3 \\
61 & 53 & 45 & 37 & 29 & 21 & 13 & 5 \\
63 & 55 & 47 & 39 & 31 & 23 & 15 & 7
\end{tabular}
\(I P^{-1}\)
\begin{tabular}{rrrrrrrr}
40 & 8 & 48 & 16 & 56 & 24 & 64 & 32 \\
39 & 7 & 47 & 15 & 55 & 23 & 63 & 31 \\
38 & 6 & 46 & 14 & 54 & 22 & 62 & 30 \\
37 & 5 & 45 & 13 & 53 & 21 & 61 & 29 \\
36 & 4 & 44 & 12 & 52 & 20 & 60 & 28 \\
35 & 3 & 43 & 11 & 51 & 19 & 59 & 27 \\
34 & 2 & 42 & 10 & 50 & 18 & 58 & 26 \\
33 & 1 & 41 & 9 & 49 & 17 & 57 & 25
\end{tabular}

Cryptography
Data Encryption Standard

Calculation of \(F(R, K)\)


\section*{Permutation Tables for DES}

\section*{Data Encryption} Standard

E BIT-SELECTION TABLE
\begin{tabular}{rrrrrr}
32 & 1 & 2 & 3 & 4 & 5 \\
4 & 5 & 6 & 7 & 8 & 9 \\
8 & 9 & 10 & 11 & 12 & 13 \\
12 & 13 & 14 & 15 & 16 & 17 \\
16 & 17 & 18 & 19 & 20 & 21 \\
20 & 21 & 22 & 23 & 24 & 25 \\
24 & 25 & 26 & 27 & 28 & 29 \\
28 & 29 & 30 & 31 & 32 & 1 \\
& & \(\underline{\boldsymbol{P}}\) & & &
\end{tabular}
\begin{tabular}{rrrr}
16 & 7 & 20 & 21 \\
29 & 12 & 28 & 17 \\
1 & 15 & 23 & 26 \\
5 & 18 & 31 & 10 \\
2 & 8 & 24 & 14 \\
32 & 27 & 3 & 9 \\
19 & 13 & 30 & 6 \\
22 & 11 & 4 & 25
\end{tabular}

Cryptography Data Encryption Standard

\section*{Definition of DES S-Boxes 1 to 4}
\(S_{1}\)
\begin{tabular}{rrrrrrrrrrrrrrrr}
14 & 4 & 13 & 1 & 2 & 15 & 11 & 8 & 3 & 10 & 6 & 12 & 5 & 9 & 0 & 7 \\
0 & 15 & 7 & 4 & 14 & 2 & 13 & 1 & 10 & 6 & 12 & 11 & 9 & 5 & 3 & 8 \\
4 & 1 & 14 & 8 & 13 & 6 & 2 & 11 & 15 & 12 & 9 & 7 & 3 & 10 & 5 & 0 \\
15 & 12 & 8 & 2 & 4 & 9 & 1 & 7 & 5 & 11 & 3 & 14 & 10 & 0 & 6 & 13
\end{tabular}
\[
\begin{array}{rrrrrrrrrrrrrrrrr}
15 & 1 & 8 & 14 & 6 & 11 & 3 & 4 & 9 & 7 & 2 & 13 & 12 & 0 & 5 & 10 \\
3 & 13 & 4 & 7 & 15 & 2 & 8 & 14 & 12 & 0 & 1 & 10 & 6 & 9 & 11 & 5 \\
0 & 14 & 7 & 11 & 10 & 4 & 13 & 1 & 5 & 8 & 12 & 6 & 9 & 3 & 2 & 15 \\
13 & 8 & 10 & 1 & 3 & 15 & 4 & 2 & 11 & 6 & 7 & 12 & 0 & 5 & 14 & 9
\end{array}
\]
\(S_{3}\)
\[

\]

Cryptography Data Encryption Standard

\section*{Definition of DES S-Boxes 5 to 6}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{\(S_{5}\)} \\
\hline 2 & 12 & 4 & 1 & 7 & 10 & 11 & 6 & 8 & 5 & 3 & 15 & 13 & 0 & 14 & 9 \\
\hline 14 & 11 & 2 & 12 & 4 & 7 & 13 & 1 & 5 & 0 & 15 & 10 & 3 & 9 & 8 & 6 \\
\hline 4 & 2 & 1 & 11 & 10 & 13 & 7 & 8 & 15 & 9 & 12 & 5 & 6 & 3 & 0 & 14 \\
\hline 11 & 8 & 12 & 7 & 1 & 14 & 2 & 13 & 6 & 15 & 0 & 9 & 10 & 4 & 5 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{\(S_{6}\)} \\
\hline 12 & 1 & 10 & 15 & 9 & 2 & 6 & 8 & 0 & 13 & 3 & 4 & 14 & 7 & 5 & 11 \\
\hline 10 & 15 & 4 & 2 & 7 & 12 & 9 & 5 & 6 & 1 & 13 & 14 & 0 & 11 & 3 & 8 \\
\hline 9 & 14 & 15 & 5 & 2 & 8 & 12 & 3 & 7 & 0 & 4 & 10 & 1 & 13 & 11 & 6 \\
\hline 4 & 3 & 2 & 12 & 9 & 5 & 15 & 10 & 11 & 14 & 1 & 7 & 6 & 0 & 8 & 13 \\
\hline \multicolumn{16}{|c|}{\(\boldsymbol{S}_{7}\)} \\
\hline 4 & 11 & 2 & 14 & 15 & 0 & 8 & 13 & 3 & 12 & 9 & 7 & 5 & 10 & 6 & 1 \\
\hline 13 & 0 & 11 & 7 & 4 & 9 & 1 & 10 & 14 & 3 & 5 & 12 & 2 & 15 & 8 & 6 \\
\hline 1 & 4 & 11 & 13 & 12 & 3 & 7 & 14 & 10 & 15 & 6 & 8 & 0 & 5 & 9 & 2 \\
\hline 6 & 11 & 13 & 8 & 1 & 4 & 10 & 7 & 9 & 5 & 0 & 15 & 14 & 2 & 3 & 12 \\
\hline
\end{tabular}

\section*{\(S_{8}\)}
\begin{tabular}{rrrrrrrrrrrrrrrr}
13 & 2 & 8 & 4 & 6 & 15 & 11 & 1 & 10 & 9 & 3 & 14 & 5 & 0 & 12 & 7 \\
1 & 15 & 13 & 8 & 10 & 3 & 7 & 4 & 12 & 5 & 6 & 11 & 0 & 14 & 9 & 2 \\
7 & 11 & 4 & 1 & 9 & 12 & 14 & 2 & 0 & 6 & 10 & 13 & 15 & 3 & 5 & 8 \\
2 & 1 & 14 & 7 & 4 & 10 & 8 & 13 & 15 & 12 & 9 & 0 & 3 & 5 & 6 & 11
\end{tabular}

Cryptography

\section*{DES Permutated Choice 1 and 2}

\section*{Data Encryption \\ Standard}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{PC－1} \\
\hline 57 & 49 & 41 & 33 & 25 & 17 & 9 \\
\hline 1 & 58 & 50 & 42 & 34 & 26 & 18 \\
\hline 10 & 2 & 59 & 51 & 43 & 35 & 27 \\
\hline 19 & 11 & ， & 60 & 52 & 44 & 36 \\
\hline 63 & 55 & 47 & 39 & 31 & 23 & 15 \\
\hline 7 & 62 & 54 & 46 & 38 & 30 & 22 \\
\hline 14 & 6 & 61 & 53 & 45 & 37 & 29 \\
\hline 21 & 13 & 5 & 28 & 20 & 12 & 4 \\
\hline \multicolumn{7}{|c|}{\(\underline{P C-2}\)} \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr}
14 & 17 & 11 & 24 & 1 & 5 \\
3 & 28 & 15 & 6 & 21 & 10 \\
23 & 19 & 12 & 4 & 26 & 8 \\
16 & 7 & 27 & 20 & 13 & 2 \\
41 & 52 & 31 & 37 & 47 & 55 \\
30 & 40 & 51 & 45 & 33 & 48 \\
44 & 49 & 39 & 56 & 34 & 53 \\
46 & 42 & 50 & 36 & 29 & 32
\end{tabular}

\section*{DES Key Generation Schedule}


Cryptography

\section*{DES Schedule of Left Shifts in Key Generation}

\section*{Data Encryption Standard}
\begin{tabular}{ll}
\begin{tabular}{l} 
Iteration \\
Number
\end{tabular} & \begin{tabular}{c} 
Number of \\
Left Shifts
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{rr}
1 & 1 \\
2 & 1 \\
3 & 2 \\
4 & 2 \\
5 & 2 \\
6 & 2 \\
7 & 2 \\
8 & 2 \\
9 & 1 \\
10 & 2 \\
11 & 2 \\
12 & 2 \\
13 & 2 \\
14 & 2 \\
15 & 2 \\
16 & 1
\end{tabular}

\section*{Contents}

\title{
Overview of the Data Encryption Standard (DES)
}

\section*{Simplified-DES}

DES in OpenSSL

Details of DES

DES in OpenSSL

DES in Python

\section*{DES Encryption in OpenSSL}
- Encrypt a file with a password using the enc operation
- Generate a random key using the rand operation
- Disable padding (with exact plaintext correct size)
- Encrypt with key and IV using enc operation
- View binary data (e.g. ciphertext) with xxd

Cryptography Data Encryption Standard

\section*{DES Key Generation（exercise）}

Generate a shared secret key to be used with DES and share it with another person．

Cryptography
Data Encryption Standard

\section*{DES Encryption (exercise)}

Create a message in a plain text file and after using DES, send the ciphertext to the person you shared the key with.

DES Decryption (exercise)
Decrypt the ciphertext you received.

\section*{Contents}

\title{
Overview of the Data Encryption Standard (DES)
}

\section*{Simplified-DES}

\section*{DES in Python}

DES in OpenSSL

\section*{DES in Python} Standard

\section*{AES in Python Cryptography Library}
- cryptography.io/en/latest/hazmat/primitives/symmetric-encryption/

\title{
Advanced Encryption Standard
}

\author{
Cryptography \\ School of Engineering and Technology CQUniversity Australia \\ Prepared by Steven Gordon on 04 Jan 2022, \\ aes.tex, r1967
}

Cryptography
Advanced Encryption Standard

Overview of AES

\section*{Contents}

\section*{Overview of AES}

\section*{Simplified－AES}

\section*{Simplified－AES Example}
```

AES in OpenSSL

```
```

AES in Python

```

\section*{History of AES}
- 1977: DES (56-bit key). NIST published.
- 1991: IDEA, similar to DES, secure but patent issues
- 1999: 3DES (168-bit key). NIST recommended 3DES be used (DES only for legacy systems)
- 3DES was considered secure (apart from special case attacks)
- But 3DES is very slow, especially in software
- DES and 3DES use 64-bit blocks - larger block sizes required for efficiency
- 1997: NIST called for proposals for new Advanced Encryption Standards
- Proposals made public and evaluations performed
- 2001: Selected Rijndael as the algorithm for AES

\section*{Selecting a Winner}
- Original NIST criteria:
- Security: effort to cryptoanalyse algorithm, randomness, ...
- Cost: royalty-free license, computationally efficient, ...
- Algorithm and implementation characteristics: flexibility (different keys/blocks, implement on different systems), simplicity, ...
- 21 candidate algorithms reduced to 5
- Updated NIST evaluation criteria for 5 algorithms:
- General Security
- Software and hardware implementations (needs to be efficient)
- Low RAM/ROM requirements (e.g. for smart cards)
- Ability to change keys quickly
- Potential to use parallel processors

\section*{Selecting Rijndael for AES}
- Security: good, no known attacks
- Software implementation: fast, can make use of parallel processors
- Hardware implementation: fastest of all candidates
- Low memory requirements: good, except encryption and decryption require separate space
- Timing and Power analysis attacks: easiest to defend against
- Key flexibility: supports on-the-fly change of keys and different size of keys/blocks

\section*{Overview of AES}
- NIST Advanced Encryption Standard, FIPS-197, 2001
- Three variations of same algorithm standardised
- AES-128: 128-bit key, 10 rounds
- AES-192: 192-bit key, 12 rounds
- AES-256: 256-bit key, 14 rounds
- AES uses 128-bit block size for all variations
- S-AES used to understand AES (educational only)
- For details of AES see the Stallings textbook, AES on Wikipedia or the AES standard from NIST

\section*{Contents}

Advanced Encryption Standard

\section*{Simplified－AES} ＝xplimed－AES
＝x－ Example AES in \(C\) AES in Python

\section*{Simplified－AES}

\section*{Simplified－AES Example}
```

AES in OpenSSL

```
```

AES in Python

```

\section*{Simplified-AES}
- Educational purposes only. Mohammad A. Musa, Edward F. Schaefer and Stephen Wedig (2003) A Simplified AES Algorithm and its Linear and Differential Cryptanalyses, Cryptologia, 27:2, 148-177, DOI: 10.1080/0161-110391891838
- Input: 16-bit block of plaintext; 16-bit key
- Output: 16-bit block of ciphertext
- Operations:
- Add Key: XOR of a 16 -bit key and 16 -bit state matrix
- Nibble Substitution: S-Box table lookup that swaps nibbles (4 bits)
- Shift Row: shift of nibbles in a row
- Mix Column: re-order columns
- Rotate Nibbles: swap the nibbles
- 3 rounds (although they don't contain same operations)

Cryptography
Advanced
Encryption Standard

\section*{S-AES Encryption}


\section*{S-AES Decryption}

4

Cryptography
Advanced Encryption Standard

\section*{S－AES Key Generation for Round 1}


\section*{S-AES State Matrix (definition)}

S-AES operates on a 16-bit state matrix, viewed as 4 nibbles
\[
\left[\begin{array}{cc}
b_{0} b_{1} b_{2} b_{3} & b_{8} b_{9} b_{10} b_{11} \\
b_{4} b_{5} b_{6} b_{7} & b_{12} b_{13} b_{14} b_{15}
\end{array}\right]=\left[\begin{array}{cc}
S_{0,0} & S_{0,1} \\
S_{1,0} & S_{1,1}
\end{array}\right]
\] (definition)
S-AES Shift Row:
\[
\left[\begin{array}{ll}
S_{0,0} & S_{0,1} \\
S_{1,0} & S_{1,1}
\end{array}\right] \rightarrow\left[\begin{array}{ll}
S_{0,0} & S_{0,1} \\
S_{1,1} & S_{1,0}
\end{array}\right]
\]

S-AES Add Key: Exclusive OR (XOR)
S-AES Rotate Nibble: swap the two nibbles
S-AES Nibble Substitution: apply S-Box on each nibble
S-AES Round Constant 1: 10000000
S-AES Round Constant 2: 00110000

\section*{S-AES S-Boxes (definition)}

S-Box considered as a matrix: input used to select row/column; selected element is output
Input: 4-bit nibble, bit \(_{1}\), bit \(_{2}\), bit \(_{3}\), bit \(_{4}\) bit \(_{1}\) bit \(_{2}\) specifies row bit \(_{3}\) bit \(_{4}\) specifies column
\[
\left.\begin{array}{l}
\text { encrypt : }
\end{array} \begin{array}{llll}
1001 & 0100 & 1010 & 1011 \\
1101 & 0001 & 1000 & 0101 \\
0110 & 0010 & 0000 & 0011 \\
1100 & 1110 & 1111 & 0111
\end{array}\right],\left[\begin{array}{llll}
1010 & 0101 & 1001 & 1011 \\
0001 & 0111 & 1000 & 1111 \\
0110 & 0000 & 0010 & 0011 \\
1100 & 0100 & 1101 & 1110
\end{array}\right], ~ \text { decrypt : }
\]

Cryptography
Advanced Encryption Standard

\section*{S-AES Mix Columns (definition)}

Mix the columns in the state matrix be performing a matrix multiplication. Mix Columns:
\[
\left[\begin{array}{ll}
S_{0,0}^{\prime} & S_{0,1}^{\prime} \\
S_{1,0}^{\prime} & S_{1,1}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 4 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
S_{0,0} & S_{0,1} \\
S_{1,0} & S_{1,1}
\end{array}\right]
\]

Inverse Mix Columns:
\[
\left[\begin{array}{ll}
S_{0,0}^{\prime} & S_{0,1}^{\prime} \\
S_{1,0}^{\prime} & S_{1,1}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
9 & 2 \\
2 & 9
\end{array}\right]\left[\begin{array}{ll}
S_{0,0} & S_{0,1} \\
S_{1,0} & S_{1,1}
\end{array}\right]
\]

Galois Field GF \(\left(2^{4}\right)\) is used for addition and multiplication operations.

Cryptography
Advanced Encryption Standard

\section*{S-AES Mix Columns (Simple) (definition)}

Mix the columns in the state matrix be performing the following calculations. Mix Columns:
\[
\begin{aligned}
& S_{0,0}^{\prime}=S_{0,0} \oplus\left(0100 \times S_{1,0}\right) \\
& S_{1,0}^{\prime}=\left(0100 \times S_{0,0}\right) \oplus S_{1,0} \\
& S_{0,1}^{\prime}=S_{0,1} \oplus\left(0100 \times S_{1,1}\right) \\
& S_{1,1}^{\prime}=\left(0100 \times S_{0,1}\right) \oplus S_{1,1}
\end{aligned}
\]

Inverse Mix Columns:
\[
\begin{aligned}
& S_{0,0}^{\prime}=\left(1001 \times S_{0,0}\right) \oplus\left(0010 \times S_{1,0}\right) \\
& S_{1,0}^{\prime}=\left(0010 \times S_{0,0}\right) \oplus\left(1001 \times S_{1,0}\right) \\
& S_{0,1}^{\prime}=\left(1001 \times S_{0,1}\right) \oplus\left(0010 \times S_{1,1}\right) \\
& S_{1,1}^{\prime}=\left(0010 \times S_{0,1}\right) \oplus\left(1001 \times S_{1,1}\right)
\end{aligned}
\]

For multiplication, lookup using The figure on slide 17 .

\section*{GF( \(2^{4}\) ) Multiplication Table used in S-AES}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0000 & 0001 & & & & & & & & & & & & & & \\
\hline 00 & 0000 & 000 & 000 & 0000 & 00 & 00 & 000 & 0000 & 000 & 0000 & 000 & 0000 & 000 & & & \\
\hline 01 & 0000 & 0001 & 0 & 0 & 10 & 010 & 0110 & 0111 & 100 & 100 & 1010 & 101 & 1100 & 1101 & 1110 & \\
\hline 10 & 00 & 00 & 010 & 01 & 1000 & 101 & 10 & 1110 & 001 & 000 & 011 & 0101 & 1011 & 001 & & \\
\hline 11 & 000 & 0011 & 011 & 0101 & 1100 & 11 & 010 & 1001 & 101 & 1000 & 10 & 11 & 0111 & 100 & & \\
\hline 00 & 0000 & 0100 & 1000 & 1100 & 0011 & 0111 & 1011 & 111 & 0110 & 0010 & 1110 & 1010 & 10 & 0001 & & \\
\hline 01 & 00 & 0101 & 1010 & 111 & 11 & 001 & 10 & 000 & 110 & 01 & 010 & 00 & 1001 & & & \\
\hline 0110 & 0000 & 011 & 1100 & 010 & 101 & 101 & 0111 & 00 & 10 & 001 & 100 & 1111 & 1110 & 1000 & 0010 & \\
\hline 0111 & 0000 & 011 & 111 & 001 & 111 & 1000 & 000 & 0110 & 110 & 101 & 0011 & 0100 & 01 & 01 & 1100 & \\
\hline 1000 & 0000 & 100 & 00 & 1011 & 011 & 111 & 0101 & 101 & 10 & 0100 & 11 & 0111 & 1010 & 0010 & & \\
\hline 1001 & 0000 & 1001 & 0001 & 1000 & 010 & 1011 & 011 & 010 & 10 & 1101 & 0101 & 1100 & 0110 & 1111 & & \\
\hline 1010 & 0000 & 1010 & 11 & 01 & 1110 & 0100 & 00 & 011 & 111 & 010 & 100 & 01 & 00 & 10 & 0110 & 110 \\
\hline 1011 & 0000 & 01 & 0101 & 10 & 1010 & 000 & 11 & 0100 & 011 & 110 & 0010 & 100 & 1101 & 01 & 1000 & 001 \\
\hline 1100 & 000 & 100 & 101 & 0111 & 010 & 1001 & 1110 & 0010 & 101 & 011 & 000 & 1101 & 1111 & 0011 & 10 & 100 \\
\hline 1101 & 0000 & 1101 & 1001 & 0100 & 00 & 1100 & 1000 & 0101 & 010 & 1111 & 101 & 0110 & 0011 & 1110 & 01 & 0111 \\
\hline 1110 & 0000 & 1110 & 1111 & 0001 & 1101 & 0011 & 0010 & 1100 & 1001 & 0111 & 011 & 000 & 0100 & & & \\
\hline & & & 11 & & & & & & & & & & & & & \\
\hline
\end{tabular}

00000000000000000000000000000000000000000000000000000000000000000000 00010000000100100011010001010110011110001001101010111100110111101111 00100000001001000110100010101100111000110001011101011011100111111101 00110000001101100101110011111010100110111000110111100111010000010010 01000000010010001100001101111011111101100010111010100101000111011001 01010000010110101111011100101101100011101011010000011001110000110110 01100000011011001010101111010111000101010011100111111110100000100100 01110000011111101001111110000001011011011010001101000010010111001011 10000000100000111011011011100101110111000100111101111010001010010001 10010000100100011000001010110011101001001101010111000110111101111110 10100000101001111101111001001001001111110101100000100001101101101100 10110000101101011110101000011111010001111100001010011101011010000011 11000000110010110111010110011110001010100110000111011111001101001000 11010000110110010100000111001000010100101111101101100011111010100111 11100000111011110001110100110010110010010111011010000100101010110101 \(1111 \mid 0000111111010010100101100100101100011110110000111000011101011010\)

\section*{Comparing S-AES and AES-128}
- S-AES
- 16-bit key, 16-bit plaintext/ciphertext
- 2 rounds: first with all 4 operations, last with 3 operations
- Round key size: 16 bits
- Mix Columns: arithmetic over GF( \(2^{4}\) )
- AES-128
- 128-bit key, 128-bit plaintext/ciphertext
- 10 rounds: first 9 with all 4 operations, last with 3 operations
- Round key size: 128 bits
- Mix Columns: arithmetic over \(\operatorname{GF}\left(2^{8}\right)\)
- Principles of operation are the same

Cryptography
Advanced Encryption Standard Example AES in OpenSSL

\section*{Contents}

Overview of AES
```

Simplified-AES

```

Simplified-AES Example

\section*{AES in OpenSSL}

\section*{AES in Python}

Cryptography
Advanced Encryption Standard

\section*{Encrypt with S-AES (exercise)}

Show that when the plaintext 1101011100101000 is encrypted using Simplified-AES with key 0100101011110101 that the ciphertext obtained is 0010010011101100.

Cryptography
Advanced Encryption Standard
```

Overview of AES

```
cimmelefind AEC
Simplified-AES
Example

AES in OpenSSL

\section*{Contents}

\section*{Overview of AES}

\section*{Simplified-AES}

\section*{Simplified-AES Example}

\section*{AES in OpenSSL}

\section*{AES in Python}

Cryptography
Advanced Encryption Standard

AES Key Generation (exercise)
Generate a shared secret key to be used with AES and share it with another person.

Cryptography
Advanced Encryption Standard

AES Encryption (exercise)
Create a message in a plain text file and after using AES, send the ciphertext to the person you shared the key with.

Cryptography
Advanced Encryption Standard

AES Decryption (exercise)
Decrypt the ciphertext you received.

Cryptography
Advanced Encryption Standard

\section*{AES Performance Benchmarking (exercise)}

Perform speed tests on AES using both the software and hardware implementations (if available). Compare and discuss the impact of the following on performance: key length; software vs hardware; different computers (e.g. compare the performance with another person).

Cryptography
Advanced Encryption Standard

Overview of AES
Simulified-AES
Simplified-AES Example
\(\triangle E S\) in \(C\) penSSL
AES in Python

\section*{Contents}

\section*{Overview of AES}

\section*{Simplified-AES}
```

Simplified-AES Example
AES in OpenSSL

```
AES in Python Standard

\section*{AES in Python Cryptography Library}
- https://cryptography.io/en/latest/hazmat/primitives/ symmetric-encryption/

\title{
Pseudorandom Number Generators
}

\section*{Cryptography}

School of Engineering and Technology CQUniversity Australia

Prepared by Steven Gordon on 13 Feb 2020，
prng．tex，r1769

\title{
Block Cipher Modes of Operation
}

\author{
Cryptography
}

School of Engineering and Technology CQUniversity Australia

Prepared by Steven Gordon on 23 Dec 2021, modes.tex, r1949

\section*{Contents}

Block Cipher Modes of Operation

Block Ciphers with Multiple Blocks

Block Ciphers with Multiple Blocks

\section*{Electronic Code Book}

Cipher Block Chaining Mode

Cipher Feedback Mode

Output Feedback Mode

Counter Mode
```

XTS-AES

```

\section*{How Do Block Ciphers Encrypt Arbitrary Length Plaintext?}
- Block cipher: operates on fixed length \(b\)-bit input to produce \(b\)-bit ciphertext
- What about encrypting plaintext longer than \(b\) bits?
- Naive approach: Break plaintext into \(b\)-bit blocks (padding if necessary) and apply cipher on each block independently
- ECB
- Security issues arise:
- Repetitions of input plaintext blocks produces repetitions of output ciphertext blocks
- Repetitions (patterns) in ciphertext are bad!
- Different modes of operation have been developed
- Tradeoffs between security, performance, error handling and additional features (e.g. include authentication)

\section*{Contents}

Block Cipher Modes of Operation

Block Ciphers with

Electronic Code Book
```

Chaining Mode

```
Cinher Feerlhael
Mod
Output Feedback
Mode
Counter Mode

\section*{Block Ciphers with Multiple Blocks}

\section*{Electronic Code Book}

Cipher Block Chaining Mode
Cipher Feedback Mode

Output Feedback Mode

Counter Mode
```

XTS-AES

```

Cryptography
Block Cipher Modes of Operation

\section*{ECB Summary}
- Each block of 64 plaintext bits is encoded independently using same key
- Typical applications: secure transmission of single values (e.g. encryption key)
- Problem: with long message, repetition in plaintext may cause repetition in ciphertext

Cryptography
Block Cipher Modes of Operation

Electronic Code Book

\section*{ECB Encryption}


Credit: Wikimedia https://commons.wikimedia.org/wiki/File:ECB_encryption.svg, public domain

Cryptography
Block Cipher Modes of Operation

\section*{ECB Decryption}


\footnotetext{
Credit: Wikimedia https://commons.wikimedia.org/wiki/File:ECB_decryption.svg, public domain
}

\section*{Contents}

Block Cipher Modes of Operation

Block Ciphers wit Multiple Blocks Electronic Code Book

Cipher Block Chaining Mode

\title{
Block Ciphers with Multiple Blocks
}

Electronic Code Book

Cipher Block Chaining Mode

Cipher Feedback Mode

Output Feedback Mode

Counter Mode
```

XTS-AES

```

\section*{CBC Summary}
- Input to encryption algorithm is XOR of next 64-bits plaintext and preceding 64-bits ciphertext
- Typical applications: General-purpose block-oriented transmission; authentication
- Initialisation Vector (IV) must be known by sender/receiver, but secret from attacker

Cryptography
Block Cipher Modes of Operation

Cipher Block Chaining Mode

\section*{CBC Encryption}


Credit: Wikimedia https://commons.wikimedia.org/wiki/File:CBC_encryption.svg, public domain

Cryptography
Block Cipher Modes of Operation

Cipher Block Chaining Mode

\section*{CBC Decryption}


Credit：Wikimedia https：／／commons．wikimedia．org／wiki／File：CBC＿decryption．svg，public domain

\section*{Contents}

Block Cipher Modes of Operation

Block Ciphers with Multiple Blocks

Electronic Code Book

Cipher Block Chaining Mode

Cipher Feedback Mode

Output Feedback Mode

Counter Mode

XTS-AES

Cryptography
Block Cipher Modes of Operation

\section*{CFB Summary}
- Converts block cipher into stream cipher
- No need to pad message to integral number of blocks
- Operate in real-time: each character encrypted and transmitted immediately
- Input processed \(s\) bits at a time
- Preceding ciphertext used as input to cipher to produce pseudo-random output
- XOR output with plaintext to produce ciphertext
- Typical applications: General-purpose stream-oriented transmission; authentication

Cryptography
Block Cipher Modes of Operation

\section*{CFB Encryption}


Cipher Feedback（CFB）mode encryption

Cryptography
Block Cipher Modes of Operation

\section*{CFB Decryption}


Credit：Wikimedia https：／／commons．wikimedia．org／wiki／File：CFB＿decryption．svg，public domain

\section*{Contents}

Block Cipher Modes of Operation

Block Ciphers with Multiple Blocks

Electronic Code Book

Cinhe Block Chaining Mode

Cipher Feedback

Output Feedback Mode Counter Mode

\section*{Block Ciphers with Multiple Blocks}

\section*{Electronic Code Book}

Cipher Block Chaining Mode

Cipher Feedback Mode

\author{
Output Feedback Mode
}

Counter Mode
```

XTS-AES

```

Cryptography
Block Cipher Modes of Operation

\section*{OFB Summary}
- Converts block cipher into stream cipher
- Similar to CFB, except input to encryption algorithm is preceding encryption output
- Typical applications: stream-oriented transmission over noisy channels (e.g. satellite communications)
- Advantage compared to OFB: bit errors do not propagate
- Disadvantage: more vulnerable to message stream modification attack

Cryptography
Block Cipher Modes of Operation

Output Feedback Mode

\section*{OFB Encryption}


\footnotetext{
Credit: Wikimedia https://commons.wikimedia.org/wiki/File:OFB_encryption.svg, public domain
}

Cryptography
Block Cipher Modes of Operation

Output Feedback Mode

\section*{OFB Decryption}


\footnotetext{
Credit：Wikimedia https：／／commons．wikimedia．org／wiki／File：OFB＿decryption．svg，public domain
}

Cryptography

Block Cipher Modes of Operation

\section*{Contents}

\section*{Block Ciphers with Multiple Blocks}

Electronic Code Book

Cipher Block Chaining Mode

Cipher Feedback Mode

Output Feedback Mode

Counter Mode

XTS-AES

Cryptography
Block Cipher Modes of Operation

\section*{CTR Summary}
- Converts block cipher into stream cipher
- Each block of plaintext XORed with encrypted counter
- Typical applications: General-purpose block-oriented transmission; useful for high speed requirements
- Efficient hardware and software implementations
- Simple and secure

Cryptography
Block Cipher Modes of Operation

\section*{CTR Encryption}


Credit: Wikimedia https://commons.wikimedia.org/wiki/File:CTR_encryption_2.svg, public domain

Cryptography
Block Cipher Modes of Operation

\section*{CTR Decryption}


Credit：Wikimedia https：／／commons．wikimedia．org／wiki／File：CTR＿decryption＿2．svg，public domain

\section*{Contents}

Block Cipher Modes of Operation

Block Ciphers witl Multiple Blocks

Electronic Code Book

Cinhe Block Chaining Mode
Cipher Feedback Mode

Output Feedback Mode Counter Mode XTS－AES

\section*{Block Ciphers with Multiple Blocks}
Electronic Code Book
Cipher Block Chaining Mode
Cipher Feedback Mode
Output Feedback Mode
Counter Mode
XTS－AES

Cryptography
Block Cipher Modes of Operation

\section*{Encryption for Stored Data with XTS-AES}
- XTS-AES designed for encrypting stored data (as opposed to transmitted data)
- Overcomes potential attack on CBC whereby one block of the ciphertext is changed by the attacker, and that change does not affect all other blocks
- See Stallings Chapter 6.7 for details and differences to transmitted data encryption

\title{
Public Key Cryptography
}

\author{
Cryptography \\ School of Engineering and Technology \\ CQUniversity Australia
}

Prepared by Steven Gordon on 21 Dec 2021，
public．tex，r1944

\section*{Contents}

Public Key Cryptography

Concepts of Public Key Cryptography

Concepts of Public Key Cryptography

Cryptography
Public Key Cryptography

\section*{Public Key vs Symmetric Key}
- Symmetric Key Encryption
- Same key used for encryption and decryption
- Key is randomly generated (e.g. by sender)
- Problem: How does receiver securely obtain secret key?
- Public (or asymmetric) key encryption
- Two different, but mathematically related keys
- One key (public) for encryption, another key (private) for decryption
- Since encrypt key is public, key exchange is not a problem
- Ciphers designed around math problems
- Problem: Performance: much, much slower than symmetric

\section*{Public and Private Keys}
- Every user has their own key pair: (PU, PR)
- Keys are generated using known algorithm (they are not chosen randomly like symmetric keys)
- Public key, PU
- Available to everyone, e.g. in email signature, on website, in newspaper
- Private key, PR
- Secret, known only by owner, e.g. access restricted file on computer
- Ciphers: if encrypt with one key in the pair, can only successfully decrypt with the other key in the pair

Cryptography
Public Key Cryptography

\author{
Concepts of Public
} Key Cryptography

\section*{Confidentiality with Public Key Crypto}

- User A is sender, user B is receiver
- Encrypt using receivers public key, \(P U_{B}\)
- Decrypt using receivers private key, \(P R_{B}\)
- Only B has \(P R_{B}\), therefore only B can successfully decrypt \(\rightarrow\) confidentiality

Cryptography
Public Key Cryptography

\section*{Why Does Public Key Crypto Work?}
- Public key ciphers consist of:
- Key generation algorithm
- Encryption algorithm
- Decryption algorithm
- Designed around computationally hard mathematical problems
- Very hard to solve without key, i.e. trapdoor functions
- Finding prime factors of large integers
- Solving logarithms in modulo arithmetic
- Solving logarithms on elliptic curves

Cryptography
Public Key Cryptography

\section*{Public Key Crypto Examples}
- RSA (Rivest Shamir Adleman)
- Security depends on difficult to factor large integers
- Widely used for digital signatures
- Diffie-Hellman
- Security depends on difficult to solve logarithms in modulo arithmetic
- Widely used for secret key exchange
- Elliptic Curve
- Security depends on difficulty to solve logarithms on elliptic curve
- Newer, used in signatures and key exchange
- Smaller keys is benefit

\section*{RSA}

\section*{Cryptography}

\title{
School of Engineering and Technology CQUniversity Australia
}

Prepared by Steven Gordon on 22 Dec 2021, rsa.tex, r1945

\section*{Contents}

\author{
RSA Algorithm
}
```

Analysis of RSA
Implementations of RSA
RSA in OpenSSL
RSA in Python

```

\section*{RSA Public Key Algorithm}
－Created Ron Rivest，Adi Shamir and Len Adleman in 1978
－Formed RSA Security（company）in 1982 to commercialise products
－Most widely used public－key algorithm
－RSA is a block cipher：plaintext and ciphertext are integers

\section*{The RSA Algorithm for Encryption}
- Step 1: Users generated RSA key pairs using RSA Key Generation Algorithm
- Step 2: Users exchange public key
- Step 3: Sender encrypts plaintext using RSA Encryption Algorithm
- Step 4: Receiver decrypts ciphertext using RSA Decryption Algorithm

\section*{RSA Key Generation (algorithm)}

Each user generates their own key pair
1. Choose primes \(p\) and \(q\)
2. Calculate \(n=p q\)
3. Select \(e: \operatorname{gcd}(\phi(n), e)=1,1<e<\phi(n)\)
4. Find \(d \equiv e^{-1}(\bmod \phi(n))\)

The user keeps \(p, q\) and \(d\) private. The values of \(e\) and \(n\) can be made public.
- Public key of user, \(P U=\{e, n\}\)
- Private key of user \(P R=\{d, n\}\)

\section*{Cryptography \\ RSA Key Generation（exercise）}

Assume user \(A\) chose the primes \(p=17\) and \(q=11\) ．Find the public and private keys of user \(A\) ．

\section*{RSA Encryption and Decryption（algorithm）}

Encryption of plaintext \(M\) ，where \(M<n\) ：
\[
C=M^{e} \bmod n
\]

Decryption of ciphertext \(C\) ：
\[
M=C^{d} \bmod n
\]

\section*{Requirements of the RSA Algorithm}
1. Successful decryption: Possible to find values of \(e, d, n\) such that \(M^{e d} \bmod n=M\) for all \(M<n\)
2. Successful decryption: Encryption with one key of a key pair (e.g. PU) can only be successfully decrypted with the other key of the key pair (e.g. PR)
3. Computational efficiency: Easy to calculate \(M^{e} \bmod n\) and \(C^{d} \bmod n\) for all values of \(M<n\)
4. Secure: Infeasible to determine \(d\) or \(M\) from known information \(e, n\) and \(C\)
5. Secure: Infeasible to determine \(d\) or \(M\) given known plaintext, e.g. \(\left(M_{1}, C_{1}\right)\)

\section*{Ordering of RSA Keys}
- RSA encryption uses one key of a key pair, while decryption must use the other key of that same key pair
- RSA works no matter the order of the keys
- RSA for confidentiality of messages
- Encrypt using the public key of receiver
- Decrypt using the private key of receiver
- RSA for authentication of messages
- Encrypt using the private key of the sender (called signing)
- Decrypt using the public key of the sender (called verification)
- In practice, RSA is primarily used for authentication, i.e. sign and verifying messages

RSA used for Confidentiality


RSA used for Authentication


\section*{\(\underset{\substack{\text { Crpetogaphy } \\ \text { RSA }}}{\text { RSA Encryption for Confidentiality (exercise) }}\)}

Assume user \(B\) wants to send a confidential message to user \(A\), where that message, \(M\) is 8 . Find the ciphertext that \(B\) will send \(A\).

RSA Decryption for Confidentiality (exercise)
Show that user \(A\) successfully decrypts the ciphertext.

\section*{Contents}

\author{
RSA Algorithm
}

\author{
Analysis of RSA
}
```

Implementations of RSA

```
RSA in OpenSSL
RSA in Python

\section*{Why Does RSA Decryption Work?}
- Encryption involves taking plaintext and raise to power e
- Decryption involves taking previous value and raise to a different power \(d\)
- Decryption must produce the original plaintext, that is:
\[
\left(M^{e}\right)^{d} \bmod n=M \text { for all } M<n
\]
- This is true of if \(e\) and \(d\) are relatively prime
- Choose primes \(p\) and \(q\), and calculate:
\[
\begin{aligned}
& n=p q \\
& 1<e<\phi(n) \\
& e d \equiv 1 \quad(\bmod \phi(n)) \text { or } d \equiv e^{-1} \quad(\bmod \phi(n))
\end{aligned}
\]

\section*{Parameter Selection in RSA Key Generation}
- Note: modular exponentiation is slow when using large values
- Choosing e
- Values such as 3, 17 and 65537 are popular: make exponentiation faster
- Small \(e\) vulnerable to attack; solution is to add random padding to each \(M\)
- Choosing \(d\)
- Small \(d\) vulnerable to attack
- But large \(d\) makes decryption slow
- Choosing \(p\) and \(q\)
- \(p\) and \(q\) must be very large primes
- Choose random odd number and test if its prime (probabilistic test)

\section*{Security of RSA}
- Brute-Force attack: choose large \(d\) (but makes algorithm slower)
- Mathematical attacks:
1. Factor \(n\) into its two prime factors
2. Determine \(\phi(n)\) directly, without determining \(p\) or \(q\)
3. Determine \(d\) directly, without determining \(\phi(n)\)
- Factoring \(n\) is considered fastest approach; hence used as measure of RSA security
- Timing attacks: practical, but countermeasures easy to add (e.g. random delay). 2 to \(10 \%\) performance penalty
- Chosen ciphertext attack: countermeasure is to use padding (Optimal Asymmetric Encryption Padding)

\section*{Progress in Factorisation}
- Factoring \(n\) into primes \(p\) and \(q\) is considered the easiest attack
- Some records by length of \(n\) :
- 1991: 330 bits (100 digits)
- 2003: 576 bits ( 174 digits)
- 2005: 640 bits (193 digits)
- 2009: 768 bits ( 232 digits), \(10^{20}\) operations, 2000 years on single core 2.2 GHz computer
- 2019: 795 bits ( 240 digits), 900 core years
- Improving at rate of 5-20 bits per year
- Typical length of \(n\) : 1024 bits, 2048 bits, 4096 bits

\section*{Contents}

\section*{RSA Algorithm}

Analucic of RSA
Implementations of RSA
```

RSA Algorithm
Analysis of RSA

```

Implementations of RSA

RSA in OpenSSL

RSA in Python

\section*{Recommended or Typical RSA Parameters}
- RSA Key length: 1024, 2048, 3072 or 4096 bits
- Refers to the length of \(n\)
- 2048 and above are recommended
- \(p\) and \(q\) are chosen randomly; about half as many bits as \(n\)
- \(e\) is small, often constant; e.g. 65537
- \(d\) is calculated; about same length as \(n\)
- For detailed recommendations see NIST FIPS 186 Digital Signature Standard

\section*{Decryption with Large d is Slow}
- Modular arithmetic, especially exponentiation, can be slow with very large numbers (1000's of bits)
- Use properties of modular arithmetic to simplify calculations, e.g.
\[
[(a \bmod n) \times(b \bmod n)] \bmod n=(a \times b) \bmod n
\]
- Also Euler's theorem and Chinese Remainder Theorem can simplify calculations
- Decryption is significantly slower than encryption since \(d\) is very large
- Implementations of RSA often store and use intermediate values to speed up decryption

\section*{RSA Implementation Example}
－Encryption：
\[
C=M^{e} \bmod n
\]
－Decryption：
\[
M=C^{d} \bmod n
\]
－Modulus，\(n\) of length \(b\) bits
－Public exponent，e
－Private exponent，\(d\)
－Prime1，\(p\) ，and Prime2，\(q\)
－Exponent1，\(d_{p}=d(\bmod p-1)\)
－Exponent2，\(d_{q}=d(\bmod q-1)\)
－Coefficient，\(q_{i n v}=q^{-1}(\bmod p)\)
－Private values：\(P R=\left\{n, e, d, p, q, d_{p}, d_{q}, q_{i n v}\right\}\)
－Public values：\(P U=\{n, e\}\)

\section*{Contents}

\author{
RSA Algorithm
}
```

Analysis of RSA
Implementations of RSA

```

RSA in OpenSSL

RSA in Python

\section*{\(\underset{\substack{\text { Crypoggaphy }}}{\text { RSA Key Generation (exercise) }}\)}

Generate your own RSA key pair using the OpenSSL genpkey command. Extract your public key and then exchange public key's with another person (or if you want to do it on your own, generate a second key pair).

\section*{Crppography \(\quad\) RSA Signing (exercise)}

Create a message in a file, sign that message using the dgst command, and then send the message and signature to another person.
\(\underset{\substack{\text { Cryogesghty } \\ \text { BSA }}}{\text { RSA Verification (exercise) }}\)
Verify the message you received.

\section*{\(\underset{\substack{\text { Cypptogaphy } \\ \text { PSA }}}{\text { RSA Performance Test (exercise) }}\)}

Using the OpenSSL speed command, compare the performance of RSA encrypt/sign operation against the RSA decrypt/verify operation.

\section*{Contents}

\author{
RSA Algorithm
}
```

Analysis of RSA

```
Implementations of RSA
RSA in OpenSSL

RSA in Python

RSA in Python Cryptography Library
- https:
//cryptography.io/en/latest/hazmat/primitives/asymmetric/

\title{
Diffie-Hellman Key Exchange
}

\section*{Cryptography}

\author{
School of Engineering and Technology CQUniversity Australia
}

Prepared by Steven Gordon on 20 Feb 2020,
dh.tex, r1798
```

Cryptography Contents

```

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange Algorithm

Analysis of DHKE
Man-in the-Middle Attack on DHKE

Implementations o DHKE
nisticl fellman in OpenSSL

\title{
Diffie-Hellman Key Exchange Algorithm
}

\section*{Analysis of DHKE}
```

Man-in-the-Middle Attack on DHKE
Implementations of DHKE
Diffie-Hellman in OpenSSL
DHKE in Python

```

\section*{Diffie-Hellman Key Exchange}
- Diffie and Hellman proposed public key cryptosystem in 1976
- Motivation: solve the problem of how to exchange secret keys for symmetric key crypto
- Proposed protocol for exchanging secrets using public keys
- Merkle also contributed to the idea; sometimes called Diffie-Hellman-Merkle key exchange
- DHKE is algorithm for exchanging secret key (not for secrecy of data)
- E.g. two users want to use symmetric key crypto, but need to first exchange a secret key
- Based on discrete logarithms
- Easy to calculate exponential modulo a prime
- Infeasible to calculate inverse, i.e. discrete logarithm

\section*{Diffie-Hellman Key Exchange (algorithm)}

One-time setup. A and \(B\) agree upon public values prime \(p\) and generator \(g\), where \(g<p\) and \(g\) is a primitive root of \(p\).
Protocol.
1. A: select private \(P R_{A}<p\)
2. A: calculate public \(P U_{A}=g^{P R_{A}} \bmod p\)
3. \(A \rightarrow B\) : send \(P U_{A}\)
4. B: select private \(P R_{B}<p\)
5. B: calculate public \(P U_{B}=g^{P R_{B}} \bmod p\)
6. \(\quad B\) : calculate secret \(K_{B}=P U_{A}^{P R_{B}} \bmod p\)
7. \(\quad \mathrm{B} \rightarrow \mathrm{A}\) : send \(P U_{B}\)
8. A: calculate secret \(K_{A}=P U_{B}^{P R_{A}} \bmod p\)

Result. \(K_{A}=K_{B}\) is the shared secret value

\section*{Crytograhy \(\quad\) Diffie-Hellman Key Exchange (exercise)}

Assume two users, \(A\) and \(B\), have agreed to use DHKE with prime \(p=19\) and generator \(g=10\). Assuming A randomly chose private \(P R_{A}=7\) and B randomly chose private \(P R_{B}=8\), find the shared secret key.

Cryptography
Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange Algorithm

Analysis of DHKE Man-in-the-Middle Attack on DHKE

An-lembintations DHKE

Diffie-Hellman in OpenSSL

\section*{Contents}

\section*{Diffie-Hellman Key Exchange Algorithm}

\section*{Analysis of DHKE}

Man-in-the-Middle Attack on DHKE

Implementations of DHKE

Diffie-Hellman in OpenSSL

DHKE in Python

Diffie-Hellman Key Exchange
1. Same shared secret: \(K_{A}\) and \(K_{B}\) must be identical
2. Computational efficiency: Easy to calculate \(P U\) and \(K\)
3. Secure: Infeasible to determine \(P R\) or \(K\) from known values
- Attacker knows 3 public values in \(P U_{A}=g^{P R_{A}} \bmod p\)
- Must be practically impossible to find the 4th value \(P R_{A}\)

Diffie-Hellman Key Exchange

\section*{Crppography Prove Identical Keys in DHKE (question)}

Prove that user A and user B will always calculate the same shared secret key in DHKE. That is, prove that \(K_{A}=K_{B}\).

\section*{Brute Force Attack on PR in DHKE (question)}

Assuming you have intercepted \(P U_{A}=15\) from the DHKE exercise, how would you perform a brute force attack to find \(P R_{A}\) ? How could such a successful brute force attack be prevented in practice?

Discrete Logarithm Attack in DHKE (exercise)
Assuming a brute force attack is not possible, write an equation that the attacker would have to solve to find \(P R_{A}\).

\section*{Discrete Logarithm is Computationally Hard Problem}
- Discrete Logarithm Problem:
\[
\text { given } g, p \text { and } g^{x} \bmod p, \text { find } x
\]
- For certain values of \(p\), considered computationally hard
- \(p\) is a safe prime, i.e. \(p=2 q+1\) where \(q\) is a large prime
- \(p\) is very large, usually at least 1024 bits
- 2016: Discrete logarithm with 768 bit prime \(p\) was solved within 5300 core years on 2.2 GHz Xeon E5-2660 processor
- Considered harder to solve than equivalent integer factorisation
- 768 bit integer factored in 2000 core years

\section*{Cryptography}

Diffie-Hellman Key Exchange

Diffie-Hellman
Key Exchange
Algorithm

\section*{Analysis of DHKE}

Man-in-the-Middle Attack on DHKE

Implementations of DHKE

Man-in-the-Middle Attack on DHKE

Implementations of DHKE Diffie-Hellman in OpenSSL DHKE in Python

\section*{MITM Attack on DHKE (exercise)}

Diffie-Hellman Key Exchange

Consider the "Diffie-Hellman Key Exchange" exercise where user A chooses \(P R_{A}=7\) and B chooses \(P R_{B}=8\). Show how a MITM can be performed such that an attacker \(Q\) can decrypt any communications between \(A\) and \(B\) that use the secret shared between \(A\) and \(B\).

Cryptography

Diffie-Hellman Key Exchange

Diffie-Hellman
Key Exchange
Algorithm
Analysis of DHKE
Vlan-in-the-Middie
Attack on DHKE
Implementations of DHKE

Diffie-Hellman in OpenSSL

\section*{Contents}

\section*{Diffie-Hellman Key Exchange Algorithm}

\section*{Analysis of DHKE}

Man-in-the-Middle Attack on DHKE

Implementations of DHKE

Diffie-Hellman in OpenSSL

DHKE in Python

\section*{Selecting Public Parameters \(p\) and \(g\)}
- Some (older) communication protocols defined a fixed value of \(p\) and \(g\)
- All clients and servers use the same values
- Newer protocols allow for an exchange of values (e.g. a Group Exchange protocol)
- Example fixed value in older versions of SSH (diffie-hellman-group1-sha1 using Oakley Group 2)
\[
\begin{gathered}
p=2^{1024}-2^{960}-1+2^{64} \times\left(2^{894} \times \pi+129093\right) \\
g=2
\end{gathered}
\]
\(p\) is 1024 bits in length

Cryptography

Diffie-Hellman Key Exchange

Diffie-Hellman
Key Exchange
Algorithm
Analysis of DHKE
Van-in-the-Viddie
Attack on DHKE

Implementations of DHKE

Diffie-Hellman in OpenSSL

\section*{Contents}

\section*{Diffie-Hellman Key Exchange Algorithm}

\section*{Analysis of DHKE}

Man-in-the-Middle Attack on DHKE

Implementations of DHKE

Diffie-Hellman in OpenSSL

DHKE in Python

Cryptography
Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange Algorithm

Analysis of DHKE
nanalin the M:dal Attack on DHKE

Implementations of DHKE

Dific-Hellman in OpenSSL

DHKE in Python

\section*{Contents}

\section*{Diffie-Hellman Key Exchange Algorithm}

\section*{Analysis of DHKE}

Man-in-the-Middle Attack on DHKE

Implementations of DHKE

Diffie-Hellman in OpenSSL

DHKE in Python

\section*{Cryptography \\ Diffie-Hellman Key Exchange}

\section*{DHKE in Python Cryptography Library}
- https://cryptography.io/en/latest/hazmat/ primitives/asymmetric/

\title{
Elliptic Curve Cryptography
}

\author{
Cryptography \\ School of Engineering and Technology \\ CQUniversity Australia
}

Prepared by Steven Gordon on 23 Dec 2021,
elliptic.tex, r1949

\section*{Contents}

Elliptic Curve Cryptography

Overview of Elliptic Curve Cryptography

Overview of Elliptic Curve Cryptography

\section*{Applications of Elliptic Curve Cryptography}

Elliptic Curve Cryptography in OpenSSL

\section*{Elliptic Curve（definition）}

Elliptic Curve Cryptography

An elliptic curve is defined by：
\[
y^{2}=x^{3}+a x+b
\]
（with some constraints of constants \(a\) and \(b\) ）

Cryptography
Elliptic Curve Cryptography

Overview of Elliptic Curve Cryptography

Elliptic Curve for \(y^{2}=x^{3}-3 x+5\)


Cryptography
Elliptic Curve Cryptography Cryptography

\section*{Addition Operation with an Elliptic Curve (definition)}

Select two points on the curve, \(A\) and \(B\), and draw a straight line through them. The line will intersect with the curve at a third point, \(R\) (and no other points). The horizontal inverse of point \(R\), is defined as the addition of \(A\) and \(B\).
\[
A+B=-R
\]

Cryptography
Elliptic Curve Cryptography

\section*{Overview of} Elliptic Curve Cryptography

\section*{Addition Operation on Elliptic Curve}


Cryptography
Elliptic Curve Cryptography

Overview of Elliptic Curve Cryptography

\section*{Self Addition on Elliptic Curve}


Credit: Generated based on MIT Licensed code by Fang-Pen Lin

Cryptography
Elliptic Curve Cryptography

Overview of Elliptic Curve Cryptography

\section*{\(\mathrm{P}+2 \mathrm{P}\) on Elliptic Curve}


Cryptography
Elliptic Curve Cryptography

\author{
Overview of
} Elliptic Curve Cryptography

NP on Elliptic Curve


\section*{How is Point Addition used in Elliptic Curve Cryptography?}
- User chooses a point \(P\) (global public parameter)
- User chooses a large, random \(N\) (private key)
- User calculates NP (public key)
- Easy, since there is a shortcut (described shortly)
- Challenge for attacker: given NP, find \(N\)
- Computationally hard for large \(N\)

Cryptography
Elliptic Curve Cryptography Cryptography

\section*{Shortcut for Calculating NP}
- Assume \(N\) is large, e.g. 256-bit random number
- Naive point addition: \(P+P+P+P+\ldots+P+P\left(2^{256}-1\right.\) additions \()\)
- Shortcut algorithm for point addition:
- Calculate \(P, P+P=2 P=2^{1} P, 2 P+2 P=4 P=2^{2} P\), \(4 P+4 P=8 P=2^{3} P, \ldots, 2^{255} P\) (255 additions)
- Write \(N\) as binary expansion, e.g.:
- \(N=233=2^{7}+2^{6}+2^{5}+2^{3}+2^{0}\)
- \(N P=2^{7} P+2^{6} P+2^{5} P+2^{3} P+2^{0} P\)
- In this example, there are 4 point additions
- Maximum number of point additions for 256-bit \(N\) is 255
- Calculate NP using the binary expansion
- Maximum number of point additions for 256-bit \(N: 255+255=510\)

\section*{Elliptic Curve with Modular Arithmetic}
- The above discussed a normal elliptic curve
- But to ensure all values contained within finite coordinate space, modular arithmetic is used
- \(y^{2} \bmod p=\left(x^{3}+a x+b\right) \bmod p\)
- \(p\) is a prime number

\section*{Contents}

Elliptic Curve Cryptography

Overview of Elliptic Curve Cryptography

Applications of Elliptic Curve Cryptography

Elliptic Curve Cryptography in OpenSSL

Cryptography
Elliptic Curve Cryptography

\section*{Applications of ECC}
- Secret key exchange, e.g. ECDH, ECMQV
- Digital signatures, e.g. ECDSA, EC-KCDSA
- Public key encryption, e.g. ECIES, PSEC

Cryptography
Elliptic Curve Cryptography

\section*{Elliptic Curve Diffie-Hellman Key Exchange (algorithm)}

Assume users \(A\) and \(B\) have EC key pairs: \(P U_{A}=N P, P R_{A}=N, P U_{B}=M P\), \(P R_{B}=M\).
1. User \(A\) calculates secret \(S_{A}=N \cdot P U_{B}=N M P\) using shortcut point addition.
2. User \(B\) calculates secret \(S_{B}=M \cdot P U_{A}=M N P\) using shortcut point addition.

Cryptography
Elliptic Curve Cryptography

\section*{Choosing Parameters for ECC}
- Parameters for ECC are usually standardised
- Base point, \(P\) (also referred to as generator, \(G\) )
- Curve parameters, \(a\) and \(b\)
- Prime, \(p\)
- Other parameters also included
- Common curves (see also https://safecurves.cr.yp.to/):
- NIST FIPS 186: P-256, P-384 and 13 others
- SECG: secp160k1, secp160r1, ... (NIST curves are a subset)
- ANSI X9.62: prime192, prime256, ...
- Other curves: Curve25519, Brainpool

\section*{Contents}

Elliptic Curve Cryptography

Overview of Elliptic Curve Cryptography

Applications of Elliptic Curve Cryptography

Elliptic Curve Cryptography in OpenSSL

\title{
Hash Functions and MACs
}

\section*{Cryptography}

\author{
School of Engineering and Technology CQUniversity Australia
}

Prepared by Steven Gordon on 23 Dec 2021,
hash.tex, r1951

Hash Functions and MACs

Informal Overview of Hashes and MACs

\section*{Contents}

\author{
Informal Overview of Hashes and MACs \\ Introduction to Hash Functions \\ Properties of Cryptographic Hash Functions \\ Introduction to Message Authentication Codes
}

Cryptography Hash Functions and MACs

Informal Overview of Hashes and MACs

\section*{Hash Functions and MACs}
- Hash functions
- Takes message as input and returns short, unique and random-looking output
- Different inputs will produce different outputs
- Also called: MDC, unkeyed hash function
- Output called: hash (h), digital fingerprint, imprint, message digest
- \(h=H(M)\)
- MAC1
- Takes message and a secret key as input and returns short, unique and random-looking output
- Different inputs (key and/or data) will produce different outputs
- Also called: keyed hash function
- Output called: tag \((t)\), code or MAC
- \(t=\operatorname{MAC}(K, M)\)

Cryptography Hash Functions and MACs

Informal Overview of Hashes and MACs

\section*{Commonly Required Security Properties}
- Pre-image resistance (one-way)
- Given the output (hash/tag), attacker cannot find the input message
- Second pre-image resistance (weak collision resistance)
- Given one message, attacker cannot find another message with same output (hash/tag)
- Collision resistance (strong collision resistance)
- Attacker cannot find any two messages that produce same output (hash/tag)

Cryptography
Hash Functions and MACs

Informal Overview of Hashes and MACs

\section*{Security Properties for Selected Applications}
- Digital signature (public key crypto + hash)
- preimage, 2nd preimage, collision resistance (if attacker can perform chosen message attack)
- Message authentication with symmetric key encryption and hash
- none
- Message authentication with MAC only
- preimage, 2nd preimage, collision resistance (if attacker can perform chosen message attack)
- Message authentication using hash only
- Assumes an authentic channel, where delivery of hash is trusted
- 2nd preimage resistant
- Password storage with hash
- preimage resistant

Cryptography
Hash Functions and MACs

Informal Overvie of Hashes and *AC

Introduction to Hash Functions

\section*{Contents}

\author{
Informal Overview of Hashes and MACs \\ Introduction to Hash Functions \\ Introduction to Message Authentication Codes
}

Cryptography Hash Functions and MACs

\section*{Hash Functions for Cryptography}
- Hash function or algorithm H() :
- Input: variable-length block of data \(M\)
- Output: fixed-length, small, hash value, \(h\), where \(h=\mathrm{H}(M)\)
- Another name for hash value is digest
- Output hash values should be evenly distributed and appear random
- A secure, cryptographic hash function is practically impossible to:
- Find the original input given the hash value
- Find two inputs that produce the same hash value

\section*{Applications of Hash Functions}
- Message authentication
- Digital signatures
- Storing passwords
- Signatures of data for malicious behaviour detection (e.g. virus, intrusion)
- Generating pseudorandom number

\section*{Design Approaches for Hash Functions}

Based on Block Ciphers Well-known and studied block ciphers are used with a mode of operation to produce a hash function. Generally, less efficient than customised hash functions.

Based on Modular Arithmetic Similar motivation as to basing on block ciphers, but based on public key principles. Output length can be any value. Precautions are needed to prevent attacks that exploit mathematical structure.
Customised Hash Functions Functions designed for the specific purpose of hashing. Disadvantage is they haven't been studied as much as block ciphers, so harder to design secure functions.

Cryptography
Hash Functions and MACs

\section*{Introduction to} Hash Functions

\section*{Selected Cryptographic Hash Functions}
\begin{tabular}{|l|c|c|c|}
\hline Primitive & \begin{tabular}{c} 
Output \\
Length
\end{tabular} & \multicolumn{2}{|c|}{\begin{tabular}{c} 
Classification \\
Legacy
\end{tabular}} \\
\hline SHA-2 & \(256,384,512,512 / 256\) & \(\checkmark\) & \(\checkmark\) \\
SHA-3 & \(256,384,512\) & \(\checkmark\) & \(\checkmark\) \\
SHA-3 & SHAKE128, SHAKE256 & \(\checkmark\) & \(\checkmark\) \\
Whirlpool & 512 & \(\checkmark\) & \(\checkmark\) \\
BLAKE & \(256,384,512\) & \(\checkmark\) & \(\checkmark\) \\
\hline RIPEMD-160 & 160 & \(\checkmark\) & \(\boldsymbol{x}\) \\
SHA-2 & \(224,512 / 224\) & \(\checkmark\) & \(\boldsymbol{x}\) \\
SHA-3 & 224 & \(\checkmark\) & \(\boldsymbol{x}\) \\
\hline MD5 & 128 & \(\boldsymbol{x}\) & \(\boldsymbol{x}\) \\
RIPEMD-128 & 128 & \(\mathbf{x}\) & \(\boldsymbol{x}\) \\
SHA-1 & 160 & \(\mathbf{x}\) & \(\mathbf{x}\) \\
\hline
\end{tabular}

Hash Functions and MACs

\section*{Contents}

\section*{Informal Overview of Hashes and MACs}

\section*{Introduction to Hash Functions}

\section*{Properties of Cryptographic Hash Functions}

Introduction to Message Authentication Codes

Cryptography Hash Functions and MACs

\section*{Pre-image of a Hash Value (definition)}

For hash value \(h=\mathrm{H}(x), x\) is pre-image of \(h\). As H is a many-to-one mapping, \(h\) has multiple pre-images. If H takes a \(b\)-bit input, and produces a \(n\)-bit hash value where \(b>n\), then each hash value has \(2^{b-n}\) pre-images.

Cryptography Hash Functions and MACs

\section*{Hash Collision (definition)}

A collision occurs if \(x \neq y\) and \(\mathrm{H}(x)=\mathrm{H}(y)\). Collisions are undesirable in cryptographic hash functions.

Number of Collisions (exercise)
If \(\mathrm{H}_{1}\) takes fixed length 200-bit messages as input, and produces a 80-bit hash value as output, are collisions possible?

\section*{Requirements of Cryptographic Hash Functions}

Variable input size: H can be applied to input block of any size
Fixed output size: H produces fixed length output Efficiency: \(\mathrm{H}(x)\) relatively easy to compute (practical implementations)
Pseudo-randomness: Output of H meets standard tests for pseudo-randomness
Properties: Satisfies one or more of the properties: Pre-image Resistant, Second Pre-image Resistant, Collision Resistant

Cryptography Hash Functions and MACs

\section*{Pre-image Resistant Property (definition)}

For any given \(h\), it is computationally infeasible to find \(y\) such that \(\mathrm{H}(y)=h\). Also called the one-way property.

\section*{Second Pre-image Resistant Property (definition)}

For any given \(x\), it is computationally infeasible to find \(y \neq x\) with \(H(y)=H(x)\). Also called weak collision resistant property.

\section*{Collision Resistant Property (definition)}

It is computationally infeasible to find any pair \((x, y)\) such that \(H(x)=H(y)\).
Also called strong collision resistant property.

Cryptography Hash Functions and MACs

\section*{Brute Force Attacks on Properties}
- Pre-image and Second Pre-image Attack
- Find a \(y\) that gives specific \(h\); try all possible values of \(y\)
- With \(b\)-bit hash code, effort required proportional to \(2^{b}\)
- Collision Resistant Attack
- Find any two messages that have same hash values
- Effort required is proportional to \(2^{b / 2}\)
- Due to birthday paradox, easier than pre-image attacks

\section*{Brute Force Attack on Hash Function (exercise)}

Consider a hash function to be selected for use for digital signatures. Assume an attacker has compute capabilities to calculate \(10^{12}\) hashes per second and is prepared to wait for approximately 10 days for a brute attack. Find the minimum hash value length that the hash function should support, such that a brute force is not possible.

Cryptography
Hash Functions and MACs
nformal Overvi MAC Introduction to

Properties of
Hash Function
Introduction to Message Authentication Codes

\section*{Contents}

\section*{Informal Overview of Hashes and MACs}

Introduction to Hash Functions

Properties of Cryptographic Hash Functions

Introduction to Message Authentication Codes

Cryptography Hash Functions and MACs

\section*{Unkeyed and Keyed Hash Functions}
- Hash functions have no secret key
- Can be referred to as unkeyed hash function
- Also called Modification Detection Code
- A variation is to allow a secret key as input, in addition to the message
- \(h=\mathrm{H}(K, M)\)
- Keyed hash function or Message Authentication Code (MAC)
- Hashes and MACs can be used for message authentication, but hashes also used for multiple other purposes
- MACs are more common for authentication messages

\section*{Design Approaches for MACs}

> Based on Block Ciphers CBC-MAC, OMAC, PMAC, Customised MACs MAA, MD5-MAC, UMAC, Poly1305

Based on Hash Functions HMAC

\section*{Computation Resistance of MAC (definition)}

Given one or more text-tag pairs, \(\left[x_{i}, \operatorname{MAC}\left(K, x_{i}\right)\right]\), computationally infeasible to compute any text-tag pair \([y, \operatorname{MAC}(K, y)]\), for a new input \(y \neq x_{i}\)

\section*{Security of MACs}
- Brute Force Attack on Key

Attacker knows \(\left[x_{1}, T_{1}\right.\) ] where \(T_{1}=\operatorname{MAC}\left(K, x_{1}\right)\) Key size of \(k\) bits: brute force on key, \(2^{k}\) But .... many tags match \(T_{1}\) For keys that produce tag \(T_{1}\), try again with \(\left[x_{2}, T_{2}\right]\) Effort to find \(K\) is approximately \(2^{k}\)
- Brute Force Attack on MAC value

For \(x_{m}\), find \(T_{m}\) without knowing \(K\) Similar effort required as one-way/weak collision resistant property for hash functionsFor \(n\) bit MAC value length, effort is \(2^{n}\)
- Effort to break MAC: \(\min \left(2^{k}, 2^{n}\right)\)

\title{
Authentication and Data Integrity
}

\author{
Cryptography \\ School of Engineering and Technology CQUniversity Australia
}

Prepared by Steven Gordon on 23 Dec 2021, auth.tex, r1951

Cryptography
Authentication and Data Integrity

Aims of Authentication Authentication with Symmetric Key Encryption Authentication with Hash Functions Authentication with MACs Digital Sigmatures

\section*{Contents}

\author{
Aims of Authentication
}

\title{
Authentication with Symmetric Key Encryption
}

Authentication with Hash Functions

Authentication with MACs

Digital Signatures and Data Integrity

\section*{Attacks on Information Transfer}
1. Disclosure: encryption
2. Traffic analysis: encryption
3. Masquerade: message authentication
4. Content modification: message authentication
5. Sequence modification: message authentication
6. Timing modification: message authentication
7. Source repudiation: digital signatures
8. Destination repudiation: digital signatures

Cryptography Authentication and Data Integrity

\section*{Aims of Authentication}
- Receiver wants to verify:
1. Contents of the message have not been modified (data authentication)
2. Source of message is who they claim to be (source authentication)
- Different approaches available:
- Symmetric Key Encryption
- Hash Functions
- Message Authentication Codes (MACs)
- Public Key Encryption (i.e. Digital Signatures)

Cryptography
Authentication and Data Integrity Aims of
Authentication

Authentication with Symmetric Key Encryption

\section*{Contents}

\section*{Aims of Authentication}

\title{
Authentication with Symmetric Key Encryption
}

Authentication with Hash Functions

Authentication with MACs

Digital Signatures

Cryptography Authentication and Data Integrity

Authentication with Symmetric Key Encryption

Symmetric Encryption for Authentication


\section*{Recognising Correct Plaintext in English (question)}
\(B\) receives ciphertext (supposedly from \(A\), using shared secret key \(K\) ): DPNFCTEJLYONCJAEZRCLASJTDQFY
\(B\) decrypts with key \(K\) to obtain plaintext: SECURITYANDCRYPTOGRAPHYISFUN
Was the plaintext encrypted with key \(K\) (and hence sent by \(A\) )? Is the ciphertext received the same as the ciphertext sent by \(A\) ?

\section*{Recognising Correct Plaintext in English (question)}
\(B\) receives ciphertext (supposedly from \(A\), using shared secret key \(K\) ): QEFPFPQEBTOLKDJBPPXDBPLOOVX
\(B\) decrypts with key \(K\) to obtain plaintext:
FTUEUEFTQIDAZSYQEEMSQEADDKM
Was the plaintext encrypted with key \(K\) (and hence sent by \(A\) )? Is the ciphertext received the same as the ciphertext sent by \(A\) ?

\section*{Recognising Correct Plaintext in Binary (question)}
\(B\) receives ciphertext (supposedly from \(A\), using shared secret key \(K\) ): 0110100110101101010110111000010
\(B\) decrypts with key \(K\) to obtain plaintext:
0101110100001101001010100101110
Was the plaintext encrypted with key \(K\) (and hence sent by \(A\) )? Is the ciphertext received the same as the ciphertext sent by \(A\) ?

\section*{Recognising Correct Plaintext}
- Many forms of information as plaintext can be recognised at correct
- However not all, and often not automatically
- Authentication should be possible without decryptor having to know context of the information being transferred
- Authentication purely via symmetric key encryption is insufficient
- Solutions:
- Add structure to information, such as error detecting code
- Use other forms of authentication, e.g. MAC

Authentication with MACs

Digital Signatures

Cryptography
Authentication and Data Integrity

\author{
Authentication with Hash Functions
}

\section*{Contents}

\section*{Aims of Authentication}

\title{
Authentication with Symmetric Key Encryption
}
uthentication with Hash Functions Authentication with MACs nisital entlatures

\author{
Disit
}

Cryptography
Authentication and Data Integrity

Authentication with Hash Functions

Authentication by Hash and then Encrypt


Cryptography
Authentication and Data Integrity

Authentication with Hash Functions

Authentication by Encrypting a Hash


Cryptography Authentication and Data Integrity

Attack of Authentication by Encrypting a Hash (exercise)
If a hash function did not have the Second Preimage Resistant property, then demonstrate an attack on the scheme in The figure on slide 13.

Cryptography
Authentication and Data Integrity

Authentication with Hash Functions

Authentication with Hash of a Shared Secret
 and Data Integrity

Attack of Authentication with Hash of Shared Secret (exercise)
If a hash function did not have the Preimage Resistant property, then demonstrate an attack on the scheme in The figure on slide 15.

Cryptography
Authentication and Data Integrity

\section*{Contents}

\section*{Aims of Authentication}

\title{
Authentication with Symmetric Key Encryption
}

Authentication with Hash Functions

Authentication with MACs

Digital Signatures

Cryptography
Authentication and Data Integrity

Authentication with only MACs


\section*{Authentication using Encryption and a MAC}
- Common to what both confidentiality and authentication (data integrity)
- MACs have advantage over hashes in that if encryption is defeated, then MAC still provides integrity
- But two keys must be managed: encryption key and MAC key
- Recommended algorithms used for encryption and MAC are independent
- Three general approaches (following definitions), referred to as authenticated encryption

\section*{Encrypt-then-MAC (definition)}

The sender encrypts the message \(M\) with symmetric key encryption, then applies a MAC function on the ciphertext. The ciphertext and the tag are sent, as follows:
\[
\mathrm{E}\left(K_{1}, M\right) \| \operatorname{MAC}\left(K_{2}, \mathrm{E}\left(K_{1}, M\right)\right)
\]

Two independent keys, \(K_{1}\) and \(K_{2}\), are used.

\section*{MAC－then－Encrypt（definition）}

The sender applies a MAC function on the plaintext，appends the result to the plaintext，and then encrypt both．The ciphertext is sent，as follows：
\[
\mathrm{E}\left(K_{1}, M \| \operatorname{MAC}\left(K_{2}, M\right)\right)
\]

\section*{Encrypt-and-MAC (definition)}

The sender encrypts the plaintext, as well ass applying a MAC function on the plaintext, then combines the two results. The ciphertext joined with tag are sent, as follows:
\[
\mathrm{E}\left(K_{1}, M\right) \| \operatorname{MAC}\left(K_{2}, M\right)
\]

\section*{Recommended Approach for Authenticated Encryption}
- There are small but important trade-offs between encrypt-then-MAC, MAC-then-encrypt and encrypt-and-MAC
- Potential attacks on each, especially if a mistake in applying them
- Generally, encrypt-then-MAC is recommended, but are cases against it
- Some discussion of issues:
- Chapter 9.6.5 of Handbook of Cryptography
- Moxie Marlinspike
- StackExchange
- Section 1 and 2 of Authenticated Encryption by J Black
- Other authenticated encryption approaches incorporate authenticate into encryption algorithm
- AES-GCM, AES-CCM, ChaCha20 and Poly1305

Cryptography
Authentication and Data Integrity
Aims of
Authentication
Aurhantimation
with Symmetric
Key Encryption
A.uthontiention
with Hash
Functions
Authentication
with MACs

Digital Signatures

\section*{Contents}

\section*{Aims of Authentication}

Authentication with Symmetric Key Encryption

Authentication with Hash Functions

Authentication with MACs

Digital Signatures

\section*{Digital Signatures}
- Authentication has two aims:
- Authenticate data: ensure data is not modified
- Authenticate users: ensure data came from correct user
- Symmetric key crypto, MAC functions are used for authentication
- But cannot prove which user created the data since two users have the same key
- Public key crypto for authentication
- Can prove that data came from only 1 possible user, since only 1 user has the private key
- Digital signature
- Encrypt hash of message using private key of signer

\section*{Digital Signatures in Practice}
- User A has own key pair: \(\left(P U_{A}, P R_{A}\right)\)
- Signing
- User A signs a message by encrypting hash of message with own private key: \(S=E\left(P R_{A}, H(M)\right)\)
- User attaches signature \(S\) to message \(M\) and sends to user \(B\)
- Verification
- User B verifies a message by decrypting signature with signer's public key: \(h=D\left(P U_{A}, S\right)\)
- User B then compares hash of received message, \(H(M)\), with decrypted \(h\); if identical, signature is verified

Cryptography
Authentication and Data Integrity

\section*{Digital Signature Example}

\section*{User A}

User B
Knows ( \(\mathrm{PU}_{\mathrm{A}}, \mathrm{PR}_{\mathrm{A}}\) )
Knows \(\mathrm{PU}_{\mathrm{A}}\)
1. Sign message M :
\(\mathrm{S}=\mathrm{E}_{\mathrm{pub}}\left(\mathrm{PR}_{\mathrm{A}}, \mathrm{H}(\mathrm{M})\right)\)
2. Append signature to message and send

3. Decrypt
\(\mathrm{h}=\mathrm{D}_{\text {pub }}\left(\mathrm{PU}_{\mathrm{A}}, \mathrm{S}\right)\)
4. Compare h with hash of received message
if \(\mathrm{H}(\mathrm{M})==\mathrm{h}\)
then message verified else
verification failed (don’t trust message)

\title{
Key Distribution and Management
}

\author{
Cryptography \\ School of Engineering and Technology CQUniversity Australia
}

Prepared by Steven Gordon on 04 Jan 2022，
keys．tex，r1969

\section*{Contents}

Key Distribution and Management

Recommended Key Sizes

\section*{Recommended Key Sizes}

\section*{Comparing Key Lengths Across Symmetric and Public Key Algorithms}
- Various governments, standardisation organisations and researchers have analysed security level of cryptographic mechanisms
- Provide recommendations for:
- Ciphers to use
- Key lengths or hash lengths
- Security level
- BlueKrypt website summarises recommendations: www.keylength.com
- E.g. from NIST, German BSI, NSA, ECRYPT project,
- ECRYPT-CSA Project 2018 report on Algorithms, Key Size and Protocols (PDF)

Cryptography
Key Distribution and Management

Recommended Key Sizes

Recommend Key Lengths from ECRYPT-CSA 2018
\begin{tabular}{|lccccccc|}
\hline Protection & Symmetric & \begin{tabular}{c} 
Factoring \\
Modulus
\end{tabular} & \begin{tabular}{c} 
Discrete Logarithm \\
Key
\end{tabular} & \begin{tabular}{c} 
Elliptic \\
Group
\end{tabular} & Hash \\
\hline \begin{tabular}{l} 
Legacy standard level \\
Should not be used in new systems
\end{tabular} & 80 & 1024 & 160 & 1024 & 160 & 160 \\
\hline \begin{tabular}{l} 
Near term protection \\
Security for at least 10 years
\end{tabular} & 128 & 3072 & 256 & 3072 & 256 & 256 \\
\hline \begin{tabular}{l} 
Long-term protection \\
Security for 30 to 50 years
\end{tabular} & 256 & 15360 & 512 & 15360 & 512 & 512 \\
\hline
\end{tabular}

Credit: BlueKrypt www.keylength.com, CC-BY-SA 3.0

\title{
Digital Certificates
}

\author{
Cryptography
}

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 19 Feb 2020, cert.tex, r1792

\title{
Quantum Computing and Cryptography
}

\author{
Cryptography \\ School of Engineering and Technology CQUniversity Australia
}

Prepared by Steven Gordon on 04 Jan 2022, quantum.tex, r1971

Quantum Computing and Cryptography

Quantum Computing Quantum Algorithms
lecirac in \(n\) Computing
Quantum Cryptogra Cryptography in the Quantum Era

\section*{Contents}

\section*{Quantum Computing}

\section*{Quantum Algorithms}

Issues in Quantum Computing

Quantum Cryptography

Cryptography in the Quantum Era

\section*{Quantum Technology (definition)}

Emerging technologies that build upon concepts of quantum physics, especially superposition and entanglement. Includes quantum computing and quantum cryptography.

Quantum Computing and Cryptography

Quantum Computing
bit (definition)
Binary digit, 0 or 1 , as the basic unit of information in classical computers. For example stored as electric charges in capacities or with magnets in hard disks. Communicated with electrical or optical pulses. A bit has two states: 0 or 1.

Quantum Computing and Cryptography

Quantum Computing

\section*{qubit (definition)}

Quantum bit has states represented in a quantum-mechanical system. The state of a qubit is a vector. A qubit has two basis states, \(|0\rangle\) and \(|1\rangle\), but many possible states in between. Often represented using subatomic particles such as electrons or photons.

\section*{Quantum Superposition (definition)}

Any two (or more) quantum states can be added together to form another quantum state. That result is a superposition of the original states.

Quantum Computing and Cryptography

\section*{qubit Superposition (example)}

Basis state \(|0\rangle\) is like bit 0 . Basis state \(|1\rangle\) is like bit 1. The state \(0.6|0\rangle+0.8|1\rangle\) is an example of a superposition of the two basis states, and forms another state of the qubit. Another example state is \(0.866|0\rangle+0.5|1\rangle\). In general, a superposition state is \(\alpha|0\rangle+\beta|1\rangle\), where \(\alpha^{2}+\beta^{2}=1\).

\section*{Quantum} Computing and Cryptography

\section*{The Measurement Problem (definition)}

Measuring a qubit gives the bit 0 with probability \(\alpha^{2}\) and bit 1 with probability \(\beta^{2}\). After measurement the qubit enters (collapses into) the basis state.

\section*{Quantum Entanglement (definition)}

Pair of particles are dependent on each other, meaning the quantum state of one particle impacts on the other.

Cryptography
Quantum Computing and Cryptography

\section*{qubit Entanglement (example)}

If 2 qubits are entangled, then if one qubit is measured to be 0 , then the other qubit will also be measured to be 0 (and similar if measured as 1 ).

Quantum Computing

\section*{Quantum Computation (informal) (definition)}

A quantum computation starts with a set of qubits, modifies their states to perform some intended calculation, and then measures the result.

\section*{Classical Computer Circuits (definition)}

Circuits in classical computers are built from logic gates, such as AND, NOT, OR, XOR, NAND and NOR.

\section*{Quantum Computer Circuits (definition)}

Circuits in quantum computers are built from quantum logic gates. Single-bit gates include NOT, Hadamard, Phase and Shift gates; two-bit gates include Controlled NOT and SWAP; as well as 3-qubit Toffoli and Fredkin gates. Not all quantum gates have analagous operation with classical gates.

\section*{Quantum Computer (definition)}

A (digital) quantum computer is built from a set of quantum logic gates, i.e. quantum circuits, and is said to perform quantum computation on qubits. An analog quantum computer also operates on qubits, but rather than using logic gates, using concepts of quantum simulation and quantum annealing.

Quantum Computing and Cryptography

\section*{Quantum Computing}

\author{
Quantum Algorithms
}

Cryptography in the Quantum Era

\section*{Issues in Quantum Computing}

\section*{Quantum Cryptography}

\section*{Contents}

\section*{Quantum Register (definition)}

A quantum register is a set of \(n\) qubits. With a classical 2-bit register, there are four possible states: 00, 01, 10 and 11. A quantum 2-bit register can be in all four states at one time, as it is a superposition of the four states:
\(\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle\). Measuring the register will return one of the four states, with probability depending on the weights.

\section*{Quantum Parallelism (definition)}

Consider a circuit that takes \(x\) as input and returns \(f(x)\) as output. Normally, passing in an input, sees the function applied once, and one output produced. Using quantum gates, such as a Fredkin gate, if \(x\) is a quantum register with a superposition of states, it is passed as input and the function is applied once. But the function operates on all of the states of the quantum register, returning output that contains information about the function applied to all states.

\section*{Classical Function (example)}

Consider the function \(f(x)=3 x \bmod 8\). Assume we want to calculate all possible answers for \(x=0,1,2, \ldots, 7\). With a classical computer we would have a 3-bit input to a circuit that calculates \(f(x)\), i.e. performs the modular multiplication. To find all possible answers we would calculate \(f(0)=0\), \(f(1)=3, f(2)=6, f(3)=1, f(4)=4, f(5)=7, f(6)=2\), and \(f(7)=5\). The function/circuit is applied 8 times.

\section*{Quantum Function (example)}

Now consider the same function, \(f(x)=3 x \bmod 8\), but implemented with a quantum circuit. We initialise a quantum register with 3 qubits. This register is in a superposition of 8 states at once: 000, 001, 010, 011, 100, 101, 110 and 111. The quantum register is input to the circuit. The output register will have 3 qubits in a superposition that contains all 8 answers. By applying the function/circuit only once, we obtain an output that has information about all 8 answers. This represents a speedup of a factor of 8 compared to the classical example!

\section*{Quantum Algorithm (definition)}

A quantum algorithms are usually a combination of classical algorithms/computations and quantum computations. First pre-processing is performed using classical techniques. Then the input quantum register is prepared, a quantum calculation performed, and output quantum register is measured. There may be some post-processing of the result with classical techniques. If the result is as desired, then exit, otherwise repeat the process. Repetition is usually needed due to both errors in quantum calculations and the probabilistic nature of the result.

\section*{Grover's Search Algorithm (definition)}

Consider a database of \(N\) unstructured data items (e.g. not sortable). Search is performed by applying a boolean function on input that returns true if correct answer. Classical search takes \(\mathcal{O}(N)\) applications of function. Grover's quantum search algorithm takes \(\mathcal{O}(\sqrt{N})\) applications of function.

Worst Case Brute Force Attempts with Classical and Quantum Algorithms
\begin{tabular}{ccc}
\hline Key length [bits] & Classical & Quantum \\
\hline \hline 64 & \(2^{64}\) & \(\sqrt{2^{64}}=2^{32}\) \\
128 & \(2^{128}\) & \(\sqrt{2^{128}}=2^{64}\) \\
256 & \(2^{256}\) & \(\sqrt{2^{256}}=2^{128}\) \\
512 & \(2^{512}\) & \(\sqrt{2^{512}}=2^{256}\) \\
\hline
\end{tabular}

\section*{Integer Factorisation with General Number Field Sieve (definition)}

Given an integer \(N\), find its prime factors. A general number field sieve on classical computer takes subexponential time, about \(2 \mathcal{O}\left(N^{1 / 3}\right)\).

Quantum Computing and Cryptography

Integer Factorisation with Schor's Algorithm (definition)
Given an integer \(N\), find its prime factors. Shor's algorithm on a quantum computer takes polynominal time, about \(\log N\).

\section*{Quantum} Algorithms

Cryptography
Quantum Computing and Cryptography

\section*{Scaling the classical number field sieve (NFS) vs. Shor's quantum algorithm for factoring}


Credit: Figure 1 from A Blueprint For Building a Quantum Computer by Van Meter and Horsman, Communications of the ACM, Oct 2013. Copyright by Van Meter and Horsman and ACM.

Cryptography
Quantum Computing and Cryptography

\section*{Likelihood quantum computers significant threat to public-key cryptosystems}


Numbers reflect how many experts (out of 22) assigned a certain probability range.
Credit: Quantum Threat Timeline Report, Michele Mosca and Marco Piani, from evolutionQ and the Global Risk Institute, 2019.

Quantum Computing and Cryptography

\section*{Quantum Computing}

\author{
\section*{Quantum Algorithms} \\ Issues in Quantum Computing
}

\section*{Quantum Cryptography}

\section*{Cryptography in the Quantum Era}

\section*{Contents}

\section*{Decoherence in Quantum Computing (definition)}

In their coherent state, qubits are described as a superposition of states. The loss of coherence (i.e. decoherence) means the qubits revert to their "classical" basis states. They no longer exhibit the unique quantum properties. Decoherence times vary for different system; for example IBM quantum computers about \(100 \mu \mathrm{~s}\).

\section*{Errors in Quantum Computing (definition)}

Errors frequently occur due to various reasons including: decay of individual qubits; environmental defects that impact multiple qubits; interference between qubits and other systems; accidental measurement of qubits; and even loss of qubits. Significant research effort is on designing error correcting schemes.

Quantum Computing and Cryptography

Quantum error rates vs qubits and intended direction of Google Quantum Research


\footnotetext{
Credit: Google Research, A Preview of Bristlecone, Google's New Quantum Processor
}

Quantum Computing and Cryptography

\section*{Cooling (definition)}

For qubits to maintain coherence, quantum circuits need to be very cold, approaching 0 Kelvin or -273 C. Computing

\section*{Quantum Computers in Practice}
- For more detailed comparison see the Quantum Computing Report
- Google: Sycamore 53-qubit (2019)
- IBM: 5- and 16-qubit machines available for free; 20-qubit machine available via cloud; 53-qubit machine (2019)
- Rigetti: Aspen-7 28-qubits (2019)
- D-Wave systems: 2000Q has 2048-qubits, however using different technology (quantum annealing) that cannot be used to solve Shor's algorithm

Cryptography
Quantum Computing and Cryptography

Quantum Computing

Issues in Quantum Computing

\section*{Quantum Cryptography}

\section*{Cryptography in the Quantum Era}

\section*{Contents}

\author{
Quantum Algorithms
}

\section*{Quantum Cryptography (definition)}

Quantum cryptography refers to techniques that apply principles of quantum systems to build cryptographic mechanisms. The most widely technique is quantum key distribution. Others approaches often involve agreements between parties that do not trust each other.

\section*{Quantum Key Distribution (informal) (definition)}

The aim of QKD is for two parties to exchange a secret key (similar to DHKE). A chooses random bits, as well as corresponding random modification of states (called sending basis). Applied together using a fixed scheme, A generates and sends photons in quantum states. B chooses own random measuring basis and measures the photons. A then informs \(B\) their sending basis, and allowing \(B\) to recognise which of the measured photons to consider (i.e. those where the measuring basis and sending basis match). B uses the resulting bits as a secret key, however only after confirming with A that there are no errors in the key (e.g. sending a challenge encrypted with the key).

Cryptography

\section*{Quantum} Computing and Cryptography

Quantum Cryptography

\section*{Example of BB84 Quantum Key Distribution}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline QUANTUM TRANSMISSION & & & & & & & & & & & & & & & \\
\hline Alice's random bits & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
\hline Random sending bases & D & R & D & R & R & R & R & R & D & D & R & D & D & D & R \\
\hline Photons Alice sends & 7 & \(\ddagger\) & 5 & \(\leftrightarrow\) & \(\uparrow\) & \(\downarrow\) & \(\leftrightarrow\) & \(\leftrightarrow\) & 5 & 7 & - & 5 & \(\checkmark\) & 7 & \(\uparrow\) \\
\hline Random receiving bases & R & D & D & R & R & D & D & R & D & R & D & D & D & D & R \\
\hline \begin{tabular}{l}
Bits as received by Bob \(\qquad\) \\
PUBLIC DISCUSSION
\end{tabular} & 1 & & 1 & & 1 & 0 & 0 & 0 & & 1 & 1 & 1 & & 0 & 1 \\
\hline Bob reports bases of received bits ............... & R & & D & & R & D & D & R & & R & D & D & & D & R \\
\hline Alice says which bases were correct & & & OK & & OK & & & OK & & & & OK & & OK & OK \\
\hline Presumably shared information (if no eavesdrop) & & & 1 & & 1 & & & 0 & & & & 1 & & 0 & 1 \\
\hline Bob reveals some key bits at random ............ & & & & & 1 & & & & & & & & & 0 & \\
\hline Alice confirms them OUTCOME & & & & & OK & & & & & & & & & OK & \\
\hline Remaining shared secret bits ................. & & & 1 & & & & & 0 & & & & 1 & & & 1 \\
\hline
\end{tabular}

Credit: Bennett and Brassard, Quantum cryptography: Public key distribution and coin tossing, Theoretical Computer Science, Dec 2014,

\section*{Copyright Elsevier.}

\section*{QKD security (informal) (definition)}

An attacker \(C\) tries to learn the secret key between \(A\) and \(B\), without \(A\) or \(B\) knowing. Therefore the attacker has to measure the photons sent by A . However, as the photons are a superposition of states, when \(C\) measures them, they are changed. As a result, B will receive changed photons, and when they check the secret key with A, the check will fail.

Quantum Computing and Cryptography
```

Quantum Computing
Quantum Algorithms
Issues in Quantum Computing
Quantum Cryptography

```

\section*{Quantum Computing}

\section*{Quantum Algorithms}

\section*{Issues in Quantum Computing}

\section*{Quantum Cryptography}

\author{
Cryptography in the Quantum Era
}

\section*{Contents}

\section*{Post-Quantum Cryptography}
- NIST Post-Quantum Cryptography project called for proposals on quantum-resistant public key cryptography algorithms
- Digital signatures, public-key encryption, key exchange
- 69 submissions in round 1 (2017)
- 26 algorithms in round 2 (2019)
- 7 finalists in round 3 (2020)
- Plan to standardise in 2022/2023
- Open Quantum Safe has open-source software for prototyping quantum-resistant cryptography, including forks of OpenSSL, OpenSSH and OpenVPN```

