
Cryptography

Introduction

Introduction

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 04 Jan 2022,
intro.tex, r1960

1

Cryptography

Introduction
Slides for this Book

I Slides for presentation, including PDF slides (slides-colour.pdf), PDF
handouts including notes (handout-colour.pdf), LibreOffice Impress
slides with notes (slides-colour.odp), Microsoft PowerPoint slides with
notes (slides-colour.pptx) and PDF handouts in black and white for
printing (handout-print.pdf). Note the ODP and PPTX slides only
contain images of each slide, so cannot be easily edited, but can be used in
dual screen presentation mode.
https://sandilands.info/crypto/slides/

I LATEX source for the book (including all the .tex, images and style files) as
well as selected examples: https://sandilands.info/crypto/source/

2

https://sandilands.info/crypto/slides/
https://sandilands.info/crypto/source/

Cryptography

Cryptography
Concepts and
Terminology

Security Concepts

Cryptography
Concepts

Cryptography
Notation and
Terminology

Cryptography Concepts and Terminology

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 04 Jan 2022,
concepts.tex, r1961

1

Cryptography

Cryptography
Concepts and
Terminology

Security Concepts

Cryptography
Concepts

Cryptography
Notation and
Terminology

Contents

Security Concepts

Cryptography Concepts

Cryptography Notation and Terminology

2

Cryptography

Cryptography
Concepts and
Terminology

Security Concepts

Cryptography
Concepts

Cryptography
Notation and
Terminology

Important Security Protections

Confidentiality ensures only authorised parties can view information

Integrity ensures information, including identity of sender, is not altered

Availability ensures information accessible to authorised parties when needed

3

Examples of confidentiality: a file is encrypted so that only authorised party (with a secret key)
can decrypt to read the contents of the file; web traffic sent across Internet is encrypted so that
intermediate users cannot see the web sites and content of web pages you are visiting.

Examples of integrity: If someone maliciously modifies a message, the receiver can detect that
modification; if someone sends a message pretending to be someone else, the receiver can detect
that it is a different person.

Examples of availability: a web server provides customers ability to buy products; that web

server is available for the customers 24/7 even under malicious attacks.

Cryptography

Cryptography
Concepts and
Terminology

Security Concepts

Cryptography
Concepts

Cryptography
Notation and
Terminology

Other Common Protections

Authentication ensures that the individual is who she claims to be (the
authentic or genuine person) and not an impostor

Authorisation providing permission or approval to use specific technology
resources

Accounting provides tracking of events

4

Example of authentication: check username and password when user logs into system.
Example of authorisation: check that user is authorised to access a particular document.

Example of accounting: record logs of who accesses files and provide summary reports.

Cryptography

Cryptography
Concepts and
Terminology

Security Concepts

Cryptography
Concepts

Cryptography
Notation and
Terminology

Scope

I Focus on confidentiality and integrity of information using technical means

I Means of authentication also covered

I Accounting, system availability, policy, etc. are out of scope

I See other subjects or books on “IT Security”, “Network Security Concepts”
or similar

5

Cryptography

Cryptography
Concepts and
Terminology

Security Concepts

Cryptography
Concepts

Cryptography
Notation and
Terminology

Contents

Security Concepts

Cryptography Concepts

Cryptography Notation and Terminology

6

Cryptography

Cryptography
Concepts and
Terminology

Security Concepts

Cryptography
Concepts

Cryptography
Notation and
Terminology

Encryption for Confidentiality

I Aim: assure confidential information not made available to unauthorised
individuals (data confidentiality)

I How: encrypt the original data; anyone can see the encrypted data, but
only authorised individuals can decrypt to see the original data

I Used for both sending data across network and storing data on a computer
system

7

While encryption is used to provide different services in cryptography, the main service is confi-

dentiality: keeping data secret. In the following we talk about using encryption for confidentiality.

Later we will see that the same encryption mechanisms can also provide other services such as

authentication, integrity and digital signatures.

Cryptography

Cryptography
Concepts and
Terminology

Security Concepts

Cryptography
Concepts

Cryptography
Notation and
Terminology

Model of Encryption for Confidentiality

8

The figure on slide 8 shows a simple model of system that uses encryption for confidentiality.
Assume two users, A and B, want to communicate confidentially. User A has a plaintext message
to send to B. User A first encrypts that plaintext using a key. The output ciphertext is sent to
user B (e.g. across the Internet). We assume the attacker, user C, can intercept anything sent –
in this case they see the ciphertext. User B receives the ciphertext and decrypts. If the correct
key and algorithm is used, then the output of the decryption is the original plaintext.

The aim of the attacker is to find the plaintext. They can either do some analysis of the
ciphertext to try to discover the plaintext, or try to find the key (if the attacker knows key 2,
they can decrypt the same as user B).

In symmetric key crypto, Key 1 and Key 2 are identical (symmetry of the keys).

In public key crypto, Key 1 is the public key of B and Key 2 is the private key of B. (asymmetric

of the keys).

Cryptography

Cryptography
Concepts and
Terminology

Security Concepts

Cryptography
Concepts

Cryptography
Notation and
Terminology

Cryptography Terms

Plaintext original message

Ciphertext encrypted or coded message

Encryption convert from plaintext to ciphertext (enciphering)

Decryption restore the plaintext from ciphertext (deciphering)

Key information used in cipher known only to sender/receiver

Cipher a particular algorithm (cryptographic system)

Cryptography study of algorithms used for encryption

Cryptanalysis study of techniques for decryption without knowledge of plaintext

Cryptology areas of cryptography and cryptanalysis

9

Cryptography

Cryptography
Concepts and
Terminology

Security Concepts

Cryptography
Concepts

Cryptography
Notation and
Terminology

Contents

Security Concepts

Cryptography Concepts

Cryptography Notation and Terminology

10

Cryptography

Cryptography
Concepts and
Terminology

Security Concepts

Cryptography
Concepts

Cryptography
Notation and
Terminology

Common Symbols and Notation

Symbol Description Example

P Plaintext or message P = D(KAB ,C)
M Message or plaintext M = D(PRB ,C)
C Ciphertext C = E(KAB ,P) or C = E(PUB ,M)
K Secret key, symmetric key
KAB Secret key shared between A and B
E() Encrypt operation E(KAB ,P) or E(PUB ,M)
Ecipher () Encrypt operation using cipher EAES(KAB ,P)
D() Decrypt operation D(KAB ,C) or D(PRB ,C)
PUA Public key of user A
PRA Private key of user A
H() Hash operation H(M)
MAC() MAC operation MAC(KAB ,M)
XOR, ⊕ Exclusive OR operation A XOR B, A⊕ B
h Hash value h = H(M)
|| Concatenate (join) operation A||B

11

Cryptography

Software Tools

Software Tools

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 04 Jan 2022,
tools.tex, r1962

1

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Statistics for Communications and Security

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 19 Feb 2020,
statistics.tex, r1791

1

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Contents

Binary Values

Counting

Permutations and Combinations

Probability

Collisions

2

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Properties of Exponentials and Logarithms

nx × ny = nx+y

nx

ny
= nx−y

logn (x × y) = logn(x) + logn(y)

logn

(
x

y

)
= logn(x)− logn(y)

3

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Properties of Exponentials (example)

Properties can be applied to simplify calculations:

212 = 22+10

= 22 × 210

= 4× 1024

= 4096

4

With this property of exponentials, if you can remember the values of 21 to 210 then you can

approximate most values of 2b that you come across in communications and security. Table 5

gives the exact or approximate decimal value for b-bit numbers.

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Useful Exact and Approximate Values in Binary

Exponent, b 2b

(bits) Exact Value Approx. Value

0 1 -
1 2 -
2 4 -
3 8 -
4 16 -
5 32 -
6 64 -
7 128 -
8 256 -
9 512 -

10 1,024 1,000 = 103

11 - 2,000
12 - 4,000
13 - 8,000
14 - 16,000

. . .
19 - 512,000
20 - 1,000,000 = 106

21 - 2× 106

22 - 4× 106

23 - 8× 106

. . .
29 - 512× 106

30 - 109

31 - 2× 109

32 - 4× 109

33 - 8× 109

. . .
39 - 512× 109

40 - 1012

50 - 1015

60 - 1018

70 - 1021

x × 10 - 103x

5

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Properties of Exponentials with Binary Values (example)

Properties and approximations can be used to perform large calculations:

2128

2100
= 2128−100

= 228

= 28 × 220

≈ 256× 106

≈ 108

6

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Properties of Logarithms (example)

The number of bits needed to represent a decimal number can be found using
logarithms:

log2(20, 000) = log2(20× 103)

= log2(20) + log2(103)

≈ 4 + 10

≈ 14

7

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Contents

Binary Values

Counting

Permutations and Combinations

Probability

Collisions

8

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Number of Binary Values (definition)

Given an n-bit number, there are 2n possible values.

9

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Number of Sequence Numbers (example)

Consider a sliding-window flow control protocol that uses an 16-bit sequence
number. There are 216 = 65, 536 possible values of the sequence number,
ranging from 0 to 65,535 (after which it wraps back to 0).

10

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Number of IP Addresses (example)

An IP address is a 32-bit value. There are 232 or approximately 4× 109 possible
IP addresses.

11

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Number of Keys (example)

If choosing a 128-bit encryption key randomly, then there are 2128 possible
values of the key.

12

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Fixed Length Sequences (definition)

Given a set of n items, there are nk possible k-item sequences, assuming
repetition is allowed.

13

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Sequences of PINs (example)

A user chooses a 4-digit PIN for a bank card. As there are 10 possible digits,
there are 104 possible PINs to choose from.

14

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Sequences of Keyboard Characters (example)

A standard keyboard includes 94 printable characters (a–z, A–Z, 0–9, and 32
punctuation characters). If a user must select a password of length 8, then there
are 948 possible passwords that can be selected.

15

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Pigeonhole Principle (definition)

If n objects are distributed over m places, and if n > m, then some places receive
at least two objects.

16

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Pigeonhole Principle on Balls (example)

There are 20 balls to be placed in 5 boxes. At least one box will have at least
two balls. If the balls are distributed in a uniform random manner among the
boxes, then on average there will be 4 balls in each box.

17

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Pigeonhole Principle on Hash Functions (example)

A hash function takes a 100-bit input value and produces a 64-bit hash value.
There are 2100 possible inputs distributed to 264 possible hash values. Therefore
at least some input values will map to the same hash value, that is, a collision
occurs. If the hash function distributes the input values in a uniform random
manner, then on average, there will be 2100

264
≈ 6.4× 1010 different input values

mapping to the same hash value.

18

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Contents

Binary Values

Counting

Permutations and Combinations

Probability

Collisions

19

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Factorial (definition)

There are n! different ways of arranging n distinct objects into a sequence.

20

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Factorial and Balls (example)

Consider four coloured balls: Red, Green, Blue and Yellow. There are 4! = 24
arrangements (or permutations) of those balls:
RGBY, RGYB, RBGY, RBYG, RYGB, RYBG,

GRBY, GRYB, GBRY, GBYR, GYRB, GYBR,

BRGY, BRYG, BGRY, BGYR, BYRG, BYGR,

YRGB, YRBG, YGRB, YGBR, YBRG, YBGR

21

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Factorial and English Letters (example)

The English alphabetic has 26 letters, a–z. There are 26! ≈ 4× 1026 ways to
arrange those 26 letters.

22

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Factorial and Plaintext Messages (example)

An encryption algorithm takes a 64-bit plaintext message and a key as input and
then maps that to a 64-bit ciphertext message as output. There are
264 ≈ 1.6× 1019 possible input plaintext messages. There are 264! ≈ 1010

88

different reversible mappings from plaintext to ciphertext, i.e. 264! possible keys.

23

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Combinations (definition)

The number of combinations of items when selecting k at a time from a set of n
items, assuming repetition is not allowed and order doesn’t matter, is:

n!

k! (n − k)!

24

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Number of Pairs (definition)

The number of pairs of items in a set of n items, assuming repetition is not
allowed and order doesn’t matter, is:

n (n − 1)

2

25

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Pairs of Coloured Balls (example)

There are four coloured balls: Red, Green, Blue and Yellow. The number of
different coloured pairs of balls is 4× 3/2 = 6. They are: RG, RB, RY, GB,

GY, BY. Repetitions are not allowed (as they won’t produce different coloured
pairs), meaning RR is not a valid pair. Ordering doesn’t matter, meaning RG is
the same as GR.

26

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Pairs of Network Devices (example)

A computer network has 10 devices. The number of links needed to create a
full-mesh topology is 10× 9/2 = 45.

27

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Pairs of Key Sharers (example)

There are 50 users in a system, and each user shares a single secret key with
every other user. The number of keys in the system is 50× 49/2 = 1, 225.

28

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Contents

Binary Values

Counting

Permutations and Combinations

Probability

Collisions

29

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Probability of Selecting a Value (definition)

Probability of randomly selecting a specific value from a set of n values is 1/n.

30

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Probability of Selecting Coloured Ball (example)

There are five coloured balls in a box: red, green, blue, yellow and black. The
probability of selecting the yellow ball is 1/5.

31

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Probability of Selecting Backoff Value (example)

IEEE 802.11 (WiFi) involves a station selecting a random backoff from 0 to 15.
The probability of selecting 5 is 1/16.

32

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Total Expectation (definition)

For a set of n events which are mutually exclusive and exhaustive, where for
event i the expected value is Ei given probability Pi , then the total expected
value is:

E =
n∑

i=1

EiPi

33

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Total Expectation of Packet Delay (example)

Average packet delay for packets in a network is 100 ms along path 1 and 150
ms along path 2. Packets take path 1 30% of the time, and take path 2 70% of
the time. The average packet delay across both paths is:
100× 0.3 + 150× 0.7 = 135 ms.

34

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Total Expectation of Password Length (example)

In a network with 1,000 users, 150 users choose a 6-character password, 500
users choose a 7-character password, 250 users choose 9-character password and
100 users choose a 10-character password. The average password length is 7.65
characters.

35

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Number of Attempts (definition)

If randomly selecting values from a set of n values, then the number of attempts
needed to select a particular value is:

best case: 1
worst case: n
average case: n/2

36

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Number of Attempts in Choosing Number (example)

One person has chosen a random number between 1 and 10. Another person
attempts to guess the random number. The best case is that they guess the
chosen number on the first attempt. The worst case is that they try all other
numbers before finally getting the correct number, that is 10 attempts. If the
process is repeated 1000 times (that is, one person chooses a random number,
the other guesses, then the person chooses another random number, and the
other guesses again, and so on), then on average 10% of time it will take 1
attempt (best case), 10% of the time it will take 2 attempts, 10% of the time it
will take 3 attempts, . . . , and 10% of the time it will take 10 attempts (worst
case). The average number of attempts is therefore 5.

37

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Number of Attempts in Choosing Key (example)

A user has chosen a random 128-bit encryption key. There are 2128 possible
keys. It takes an attacker on average 2128/2 = 2127 attempts to find the key. If
instead a 129-bit encryption key was used, then the attacker would take on
average 2129/2 = 2128 attempts. (Increasing the key length by 1 bit doubles the
number of attempts required by the attacker to guess the key).

38

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Contents

Binary Values

Counting

Permutations and Combinations

Probability

Collisions

39

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Birthday Paradox (definition)

Given n random numbers selected from the range 1 to d , the probability that at
least two numbers are the same is:

p(n; d) ≈ 1−
(
d − 1

d

)n(n−1)/2

40

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Two People Have Same Birthday (example)

Given a group of 10 people, the probability of at least two people have the same
birth date (not year) is:

p(10; 365) ≈ 1−
(

364

365

)10(9)/2

= 11.6%

41

Defintion 40 can be re-arranged to find the number of values needed to obtain a specified
probability that at least two numbers are the same:

n(p; d) ≈

√
2d ln

(
1

1− p

)

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Group Size for Birthday Matching (example)

How many people in a group are needed such that the probability of at least two
of them having the same birth date is 50%?

n(0.5; 365) ≈

√
2× 365× ln

(
1

1− 0.5

)
= 22.49

So 23 people in a group means there is 50% chance that at least two have the
same birth date.

42

Cryptography

Statistics for
Communications
and Security

Binary Values

Counting

Permutations and
Combinations

Probability

Collisions

Group Size for Hash Collision (example)

Given a hash function that outputs a 64-bit hash value, how many attempts are
need to give a 50% chance of a collision?

n(0.5; 264) ≈

√
2× 264 × ln

(
1

1− 0.5

)
≈
√

264

= 232

43

Following Example 43, the number of attempts to produce a collision when using an n-bit hash

function is approximately 2n/2.

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Number Theory

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 04 Jan 2022,
number.tex, r1963

1

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Contents

Divisibility and Primes

Modular Arithmetic

Fermat’s and Euler’s Theorems

Discrete Logarithms

Computationally Hard Problems

2

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Divides (definition)

b divides a if a = mb for some m, where a, b and m are integers. We can also
say b is a divisor of a, or b|a.

3

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Divides (example)

3 divides 12, since 12 = 4× 3. Also, 3 is a divisor of 12, or 3|12.

4

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Greatest Common Divisor (definition)

gcd(a, b) returns the greatest common divisor of integers a and b. There are
efficient algorithms for finding the gcd, i.e. Euclidean algorithm.

5

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Greatest Common Divisor (example)

gcd(12, 20) = 4, since the divisors of 12 are (1, 2, 3, 4, 6, 12) and the divisors of
20 are (1, 2, 4, 5, 10, 20).

6

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Relatively Prime (definition)

Two integers, a and b, are relatively prime if gcd(a, b) = 1.

7

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Relatively Prime (example)

gcd(7, 12) = 1, since the divisors of 7 are (1, 7) and the divisors of 12 are (1, 2,
3, 4, 6, 12). Therefore 7 and 12 are relatively prime to each other.

8

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Relatively Prime (exercise)

How many positive integers less than 10 are relatively prime with 10?

9

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Prime Number (definition)

An integer p > 1 is a prime number if and only if its only divisors are +1, −1,
+p and −p.

10

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Prime Number (example)

The divisors of 13 are (1, 13), that is, 1 and itself. Therefore 13 is a prime
number. The divisors of 15 are (1, 3, 5, 15). Since the divisors include numbers
other than 1 and itself, 15 is not prime.

11

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

First 300 Prime Numbers

Credit: Wikipedia, https://en.wikipedia.org/wiki/List_of_prime_numbers, CC BY-SA 3.0

12

https://en.wikipedia.org/wiki/List_of_prime_numbers

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Prime Factors (definition)

Any integer a > 1 can be factored as:

a = pa11 × pa22 × · · · × patt

where p1 < p2 < . . . < pt are prime numbers and where each ai is a positive
integer

13

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Prime Factors (example)

The following are examples of integers expressed as prime factors:

13 = 131

15 = 31 × 51

24 = 23 × 31

50 = 21 × 52

560 = 24 × 51 × 71

2800 = 24 × 52 × 71

14

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Integers as Prime Factors (exercise)

Find the prime factors of 12870, 12936 and 30607.

15

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Prime Factorization Problem (definition)

There are no known efficient, non-quantum algorithms that can find the prime
factors of a sufficiently large number.

16

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Prime Factorization Problem (example)

RSA Challenge involved researchers attempting to factor large numbers. Largest
number measured in number of bits or decimal digits. Some records held over
time are:

1991: 330 bits or 100 digits
2005: 640 bits or 193 digits
2009: 768 bits or 232 digits
Equivalent of 2000 years on single core 2.2 GHz computer to factor 768 bit
Current algorithms such as RSA rely on numbers of 1024, 2048 and even 4096

bits in length

17

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Euler’s Totient Function (definition)

Euler’s totient function, φ(n), is the number of positive integers less than n and
relatively prime to n. Also written as ϕ(n) or Tot(n).

18

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Properties of Euler’s Totient (definition)

Several useful properties of Euler’s totient are:

φ(1) = 1

For prime p, φ(p) = p − 1

For primes p and q, φ(px × q) = φ(p)× φ(q) = (p − 1)× (q − 1)

19

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Euler’s Totient Function (example)

The integers relatively prime to 10, and less than 10, are: 1, 3, 7, 9. There are 4
such numbers. Therefore φ(10) = 4.

The integers relatively prime to 11, and less than 11, are: 1, 2, 3, 4, 5, 6, 7, 8,
9, 10. There are 10 such numbers. Therefore φ(11) = 10. The property could
also be used since 11 is prime.

Since 7 is prime, φ(7) = 6.
Since 77 = 7× 11, then φ(77) = φ(7× 11) = 6× 10 = 60.

20

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Contents

Divisibility and Primes

Modular Arithmetic

Fermat’s and Euler’s Theorems

Discrete Logarithms

Computationally Hard Problems

21

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Modular arithmetic simple (definition)

Modular arithmetic is similar to normal arithmetic (addition, subtraction,
multiplication, division) but the answers “wrap around”.

22

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

mod operator (definition)

If a is an integer and n is a positive integer, then a mod n is defined as the
remainder when a is divided by n. n is called the modulus.

23

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

mod operator (example)

The following are several examples of mod:

3 mod 7 = 3, since 0× 7 + 3 = 3

9 mod 7 = 2, since 1× 7 + 2 = 9

10 mod 7 = 3, since 1× 7 + 3 = 10

(−3) mod 7 = 4, since (−1)× 7 + 4 = −3

24

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Congruent modulo (definition)

Two integers a and b are congruent modulo n if (a mod n) = (b mod n). The
congruence relation is written as:
a ≡ b (mod n)
When the modulus is known from the context, it may be written simply as a
≡ b.

25

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Congruent modulo (example)

The following are examples of congruence:

3 ≡ 10 (mod 7)

14 ≡ 4 (mod 10)

3 ≡ 11 (mod 8)

26

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Modular arithmetic (definition)

Modular arithmetic with modulus n performs arithmetic operations within the
confines of set Zn = {0, 1, 2, . . . , (n − 1)}.

27

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

mod in Z7 (example)

Consider the set:
Z7 = {0, 1, 2, 3, 4, 5, 6}

All modular arithmetic operations in mod 7 return answers in Z7.

28

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Modular Arithmetic

I If a is an integer and n is a positive integer, we define a mod n to be the
remainder when a is divided by n

I n is called the modulus

I Two integers a and b are congruent modulo n if (a mod n) = (b mod n),
which is written as

a ≡ b (mod n)

I (mod n) operator maps all integers into the set of integers
Zn = {0, 1, . . . , (n − 1)}

I Modular arithmetic performs arithmetic operations within confines of set Zn

29

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Modular Addition (definition)

Addition in mod n is performed as normal addition, with the answer then mod
by n.

30

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Modular Addition (example)

The following are several examples of modular addition:

2 + 3 (mod 7) = 5 (mod 7) = 5 mod 7 = 5 (mod 7)

2 + 6 (mod 7) = 8 (mod 7) = 8 mod 7 = 1 (mod 7)

6 + 6 (mod 7) = 12 (mod 7) = 12 mod 7 = 5 (mod 7)

3 + 4 (mod 7) = 7 (mod 7) = 7 mod 7 = 0 (mod 7)

31

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Additive Inverse (definition)

a is the additive inverse of b in mod n, if a + b ≡ 0 (mod n).
For brevity, AI(a) may be used to indicate the additive inverse of a. One

property is that all integers have an additive inverse.

32

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Additive Inverse (example)

In mod 7:
AI (3) = 4, since 3 + 4 ≡ 0 (mod 7)

AI (6) = 1, since 6 + 1 ≡ 0 (mod 7)

In mod 12:
AI (3) = 9, since 3 + 9 ≡ 0 (mod 12)

33

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Modular Subtraction (definition)

Subtraction in mod n is performed by addition of the additive inverse of the
subtracted operand. This is effectively the same as normal subtraction, with the
answer then mod by n.

34

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Modular Subtraction (example)

For brevity, the modulus is sometimes omitted and = is used in replace of ≡. In
mod 7:

6− 3 = 6 + AI(3) = 6 + 4 = 10 = 3 (mod 7)

6− 1 = 6 + AI(1) = 6 + 6 = 12 = 5 (mod 7)

1− 3 = 1 + AI(3) = 1 + 4 = 5 (mod 7)

While the first two examples obviously give answers as we expect from normal
subtraction, the third does as well. 1− 3 = −2, and in mod 7, −2 ≡ 5 since
−1× 7 + 5 = (−2). Recall Z7 = {0, 1, 2, 3, 4, 5, 6}.

35

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Modular Multiplication (definition)

Modular multiplication is performed as normal multiplication, with the answer
then mod by n.

36

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Modular Multiplication (example)

In mod 7:
2× 3 = 6 (mod 7)

2× 6 = 12 = 5 (mod 7)

3× 4 = 12 = 5 (mod 7)

37

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Multiplicative Inverse (definition)

a is a multiplicative inverse of b in mod n if a× b ≡ 1 (mod n). For brevity,
MI(a) may be used to indicate the multiplicative inverse of a. a has a
multiplicative inverse in (mod n) if a is relatively prime to n.

38

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Multiplicative Inverse in mod 7 (example)

2 and 7 are relatively prime, therefore 2 has a multiplicative inverse in mod 7.

2× 4 (mod 7) = 1, therefore MI (2) = 4 and MI (4) = 2

3 and 7 are relatively prime, therefore 3 has a multiplicative inverse in mod 7.

3× 5 (mod 7) = 1, therefore MI (3) = 5 and MI (5) = 3

φ(7) = 6, meaning 1, 2, 3, 4, 5 and 6 are relatively prime with 7, and therefore
all of those numbers have a MI in mod 7.

39

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Multiplicative Inverse in mod 8 (example)

3 and 8 are relatively prime, therefore 3 has a multiplicative inverse in mod 8.

3× 3 (mod 8) = 1, therefore MI (3) = 3

4 and 8 are NOT relatively prime, therefore 4 does not have a multiplicative
inverse in mod 8. φ(8) = 4, and therefore only 4 numbers (1, 3, 5, 7) have a MI
in mod 8.

40

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Modular Division (definition)

Division in mod n is performed as modular multiplication of the multiplicative
inverse of 2nd operand. Modular division is only possible when the 2nd operand
has a multiplicative inverse, otherwise the operation is undefined.

41

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Modular Division (example)

In mod 7:
5÷ 2 = 5×MI (2) = 5× 4 = 20 ≡ 6

In mod 8:
7÷ 3 = 7×MI (3) = 7× 3 = 21 ≡ 5

7÷ 4 is undefined, since 4 does not have a multiplicative inverse in mod 8.

42

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Properties of Modular Arithmetic (definition)

(a mod n) mod n = a mod n

[(a mod n) + (b mod n)] mod n = (a + b) mod n

[(a mod n)− (b mod n)] mod n = (a− b) mod n

[(a mod n)× (b mod n)] mod n = (a× b) mod n

Commutative, associative and distributive laws similar to normal arithmetic also
hold.

43

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Contents

Divisibility and Primes

Modular Arithmetic

Fermat’s and Euler’s Theorems

Discrete Logarithms

Computationally Hard Problems

44

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Fermat’s Theorem 1 (definition)

If p is prime and a is a positive integer not divisible by p, then:

ap−1 ≡ 1 (mod p)

45

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Fermat’s Theorem 2 (definition)

If p is prime and a is a positive integer, then:

ap ≡ a (mod p)

46

There are two forms of Fermat’s theorem—use whichever form is most convenient.

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Fermat’s theorem (example)

What is 2742 mod 43? Since 43 is prime and 42 = 43− 1, this matches Fermat’s
Theorem form 1. Therefore the answer is 1.

47

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Fermat’s theorem (example)

What is 640163 mod 163? Since 163 is prime, this matches Fermat’s Theorem
form 2. Therefore the answer is 640, or simplified to 640 mod 163 = 151.

48

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Euler’s Theorem 1 (definition)

For every a and n that are relatively prime:

aφ(n) ≡ 1 (mod n)

49

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Euler’s Theorem 2 (definition)

For positive integers a and n:

aφ(n)+1 ≡ a (mod n)

50

Note that there are two forms of Euler’s theorem—use the most relevant form.

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Euler’s theorem (example)

Show that 3740 mod 41 = 1. Since n = 41, which is prime, then φ(41) = 40. As
37 is also prime, 37 and 41 are relatively prime. Therefore Euler’s Theorem form
1 holds.

51

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Euler’s theorem (example)

What is 137944621 mod 4757? Factoring 4757 into primes gives 67× 71.
Therefore φ(4757) = φ(67)x × φ(71) = 66× 70 = 4620. Therefore, this follows
Euler’s Theorem form 2, giving an answer of 13794.

52

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Contents

Divisibility and Primes

Modular Arithmetic

Fermat’s and Euler’s Theorems

Discrete Logarithms

Computationally Hard Problems

53

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Modular Exponentiation (definition)

As exponentiation is just repeated multiplication, modular exponentiation is
performed as normal exponentiation with the answer mod by n.

54

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Modular Exponentiation (example)

23 mod 7 = 8 mod 7 = 1

34 mod 7 = 81 mod 7 = 4

36 mod 8 = 729 mod 8 = 1

55

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Normal Logarithm (definition)

If b = ai , then:
i = loga(b)

read as “the log in base a of b is index (or exponent) i”.

56

The above definition is for normal arithmetic, not for modular arithmetic. Logarithm in normal

arithmetic is the inverse operation of exponentiation. In modular arithmetic, modular logarithm

is more commonly called discrete logarithm. Note we replace n with p—the reason will become

apparent shortly.

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Discrete Logarithm (definition)

If b = ai (mod p), then:
i = dloga,p(b)

A unique exponent i can be found if a is a primitive root of the prime p.

57

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Primitive Root (definition)

If a is a primitive root of prime p then a1, a2, a3, . . . ap−1 are distinct in mod p.
The integers with a primitive root are: 2, 4, pα, 2pα where p is any odd prime

and α is a positive integer.

58

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Primitive Root (example)

Consider the prime p = 7:
a = 1 : 12 mod 7 = 1, 13 mod 7 = 1, ...(not distinct)
a = 2 : 22 mod 7 = 4, 23 mod 7 = 1, 24 mod 7 = 2, 25 mod 7 =

4, ...(not distinct)
a = 3 : 32 mod 7 = 2, 33 mod 7 = 6, 34 mod 7 = 4, 35 mod 7 = 5, 36 mod 7 =

1(distinct)
Therefore 3 is a primitive root of 7 (but 1 and 2 are not).

59

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Powers of Integers, modulo 7

60

From the above table we see 3 and 5 are primitive roots of 7.

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Discrete Logs, modulo 7

61

Discrete logarithms to the base 3, modulo 7 are distinct since 3 is a primitive root of 7. Discrete

logarithms to the base 5, modulo 7 are distinct since 5 is a primitive root of 7.

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Powers of Integers, modulo 17

62

We see that 3, 5, 6, 7, 10, 11, 12 and 14 are primitive roots of 17.

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Discrete Logarithms, modulo 17

63

The discrete logarithm in modulo 17 can be calculated for the 8 primitive roots.

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Contents

Divisibility and Primes

Modular Arithmetic

Fermat’s and Euler’s Theorems

Discrete Logarithms

Computationally Hard Problems

64

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Hard Problem: Integer Factorisation (definition)

If p and q are unknown primes, given n = pq, find p and q.

65

Also known as prime factorisation. While someone that knows p and q can easily calculate n, if

an attacker knows only n they cannot find p and q.

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Hard Problem: Euler’s Totient (definition)

Given composite n, find φ(n).

66

While it is easy to calculate Euler’s totient of a prime, or of the multiplication of two primes if

those primes are known, an attacker cannot calculate Euler’s totient of sufficiently large non-

prime number. Solving Euler’s totient of n, where n = pq, is considered to be harder than

integer factorisation.

Cryptography

Number Theory

Divisibility and
Primes

Modular
Arithmetic

Fermat’s and
Euler’s Theorems

Discrete
Logarithms

Computationally
Hard Problems

Hard Problem: Discrete Logarithms (definition)

Given b, a, and p, find i such that i = dloga,p(b).

67

While modular exponentiation is relatively easy, such as calculating b = ai mod p, the inverse op-
eration of discrete logarithms is computationally hard. The complexity is considered comparable
to that of integer factorisation.

When studying RSA and Diffie-Hellman, you will see how these hard problems in number theory

are used to secure ciphers.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Classical Ciphers

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 04 Jan 2022,
classical.tex, r1964

1

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Contents

Caesar Cipher

Monoalphabetic Ciphers

Playfair Cipher

Polyalphabetic Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition Techniques

2

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Caesar Cipher (algorithm)

To encrypt with a key k, shift each letter of the plaintext k positions to the right
in the alphabet, wrapping back to the start of the alphabet if necessary. To
decrypt, shift each letter of the ciphertext k positions to the left (wrapping if
necessary).

3

In the examples we will assume the Caesar cipher (and most other classical ciphers) operate on

case-insenstive English plaintext. That is, the character set is a through to z. However it can

also be applied to any language or character set, so long as the character set is agreed upon by

the users.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Caesar Cipher Encryption (exercise)

Using the Caesar cipher, encrypt plaintext hello with key 3.

4

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

How many keys are possible in the Caesar cipher? (question)

If the Caesar cipher is operating on the characters a–z, then how many possible
keys are there? Is a key of 0 possible? Is it a good choice? What about a key of
26?

5

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Caesar Cipher Decryption (exercise)

You have received the ciphertext TBBQOLR. You know the Caesar cipher was used
with key n. Find the plaintext.

6

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Caesar Cipher, formal (algorithm)

C = E (K ,P) = (P + K) mod 26 (1)

P = D(K ,C) = (C − K) mod 26 (2)

7

In the equations, P is the numerical value of a plaintext letter. Letters are numbered in alpha-

betical order starting at 0. That is, a=0, b=1, . . . , z=25. Similarly, K and C are the numerical

values of the key and ciphertext letter, respectively. Shifting to the right in encryption is addi-

tion, while shifting to the left in decryption is subtraction. To cater for the wrap around (e.g.

when the letter z is reacher), the last step is to mod by the total number of characters in the

alphabet.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Caesar Cipher, formal (exercise)

Consider the following mapping.
a b c d e f g h i j k l m

0 1 2 3 4 5 6 7 8 9 10 11 12

n o p q r s t u v w x y z

13 14 15 16 17 18 19 20 21 22 23 24 25

Use the the formal (mathematical) algorithm for Caesar cipher to decrypt SDV
with key p.

8

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Caesar Encrypt and Decrypt (python)

1 >>> pycipher.Caesar(3).encipher("hello")

2 ’KHOOR’

3 >>> pycipher.Caesar(3).decipher("khoor")

4 ’HELLO’

9

Note that the pycipher package needs to be installed and imported first (see Section ??).

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Brute Force Attack (definition)

Try all combinations (of keys) until the correct plaintext/key is found.

10

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Caesar Brute Force (exercise)

The ciphertext FRUURJVBCANNC was obtained using the Caesar cipher. Find the
plaintext using a brute force attack.

11

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Caesar Brute Force (python)

1 for k in range(0,26):

2 pycipher.Caesar(k).decipher("FRUURJVBCANNC")

12

The range function in Python produces values inclusive of the lower limit and exclusive of the

upper limit. That is, from 0 to 25.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Caesar Brute Force Results (text)

0: FRUURJVBCANNC 13: SEHHEWIOPNAAP

1: EQTTQIUABZMMB 14: RDGGDVHNOMZZO

2: DPSSPHTZAYLLA 15: QCFFCUGMNLYYN

3: CORROGSYZXKKZ 16: PBEEBTFLMKXXM

4: BNQQNFRXYWJJY 17: OADDASEKLJWWL

5: AMPPMEQWXVIIX 18: NZCCZRDJKIVVK

6: ZLOOLDPVWUHHW 19: MYBBYQCIJHUUJ

7: YKNNKCOUVTGGV 20: LXAAXPBHIGTTI

8: XJMMJBNTUSFFU 21: KWZZWOAGHFSSH

9: WILLIAMSTREET 22: JVYYVNZFGERRG

10: VHKKHZLRSQDDS 23: IUXXUMYEFDQQF

11: UGJJGYKQRPCCR 24: HTWWTLXDECPPE

12: TFIIFXJPQOBBQ 25: GSVVSKWCDBOOD

13

The results of the brute force are formatted to show the key (it is slightly different from the

Python code output).

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

How many attempts for Caesar brute force? (question)

What is the worst, best and average case of number of attempts to brute force
ciphertext obtained using the Caesar cipher?

14

There are 26 letters in the English alphabet. The key can therefore be one of 26 values, 0 through
to 25. The key of 26 is equivalent to a key of 0, since it will encrypt to the same ciphertext.
The same applies for all values greater than 25. While a key of 0 is not very smart, let’s assume
it is a valid key.

The best case for the attacker is that the first key they try is the correct key (i.e. 1 attempt).

The worst case is the attacker must try all the wrong keys until they finally try the correct key

(i.e. 26 attempts). Assuming the encrypter chose the key randomly, there is equal probability

that the attacker will find the correct key in 1 attempt (1/26), as in 2 attempts (1/26), as in

3 attempts (1/26), and as in 26 attempts (1/26). The average number of attempts can be

calculated as (26+1)/2 = 13.5.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Recognisable Plaintext upon Decryption (assumption)

The decrypter will be able to recognise that the plaintext is correct (and
therefore the key is correct). Decrypting ciphertext using the incorrect key will
not produce the original plaintext. The decrypter will be able to recognise that
the key is wrong, i.e. the decryption will produce unrecognisable output.

15

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Is plaintext always recognisable? (question)

Caesar cipher is using recognisably correct plaintext, i.e. English words. But is
the correct plaintext always recognisable? What if the plaintext was a different
language? Or compressed? Or it was an image or video? Or binary file, e.g.
.exe? Or a set of characters chosen randomly, e.g. a key or password?

16

The correct plaintext is recognisable if it contains some structure. That is, it does not appear

random. It is common in practice to add structure to the plaintext, making it relatively easy

to recognise the correct plaintext. For example, network packets have headers/trailers or error

detecting codes. Later we will see cryptographic mechanisms that can be used to ensure that

the correct plaintext will be recognised. For now, let’s assume it can be.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

How to improve upon the Caesar cipher?

1. Increase the key space so brute force is harder

2. Change the plaintext (e.g. compress it) so harder to recognise structure

17

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Contents

Caesar Cipher

Monoalphabetic Ciphers

Playfair Cipher

Polyalphabetic Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition Techniques

18

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Permutation (definition)

A permutation of a finite set of elements is an ordered sequence of all the
elements of S , with each element appearing exactly once. In general, there are
n! permutations of a set with n elements.

19

The concept of permutation is used throughput cryptography, and shortly we will see in a

monoalphabetic (substitution) cipher.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Permutation (example)

Consider the set S = {a, b, c}. There are six permutations of S :
abc, acb, bac, bca, cab, cba

This set has 3 elements. There are 3! = 3× 2× 1 = 6 permutations.

20

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Monoalphabetic (Substitution) Cipher (definition)

Given the set of possible plaintext letters (e.g. English alphabetc, a–z), a single
permutation is chosen and used to determine the corresponding ciphertext letter.

21

This is a monoalphabetic cipher because only a single cipher alphabet is used per message.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Monoalphabetic (Substitution) Cipher (example)

In advance, the sender and receiver agree upon a permutation to use, e.g.:
P: a b c d e f g h i j k l m n o p q r s t u v w x y z

C: H P W N S K L E V A Y C X O F G T B Q R U I D J Z M

To encrypt the plaintext hello, the agreed upon permutation (or mapping) is
used to produce the ciphertext ESCCF.

22

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Decrypt Monoalphabetic Cipher (exercise)

Decrypt the ciphertext QSWBSR using the permutation chosen in the previous
example.

23

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

How many keys in English monoalphabetic cipher? (question)

How many possible keys are there for a monoalphabetic cipher that uses the
English lowercase letters? What is the length of an actual key?

24

Consider the number of permutations possible. The example used a single permutation chosen

by the two parties.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Brute Force on Monoalphabetic Cipher (exercise)

You have intercepted a ciphertext message that was obtained with an English
monoalphabetic cipher. You have a Python function called:
mono decrypt and check(ciphertext,key)

that decrypts the ciphertext with a key, and returns the plaintext if it is correct,
otherwise returns false. You have tested the Python function in a while loop and
the computer can apply the function at a rate of 1,000,000,000 times per
second. Find the average time to perform a brute force on the ciphertext.

25

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Frequency Analysis Attack (definition)

Find (portions of the) key and/or plaintext by using insights gained from
comparing the actual frequency of letters in the ciphertext with the expected
frequency of letters in the plaintext. Can be expanded to analyse sets of letters,
e.g. digrams, trigrams, n-grams, words.

26

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Relative Frequency of Letters by Norvig

Credit: Letter Counts by Peter Norvig
27

The letter frequencies of the figure above are based on Peter Norvig’s analysis of Google Books

N-Gram Dataset. Norvig is Director of Research at Google. His website has more details on the

analysis.

http://norvig.com/mayzner.html
http://norvig.com/mayzner.html
https://storage.googleapis.com/books/ngrams/books/datasetsv2.html
https://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Relative Frequency of Digrams by Norvig

Credit: Two-Letter Sequence (Bigram) Counts by Peter Norvig

28

http://norvig.com/mayzner.html

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Relative Frequency of N-Grams by Norvig

Credit: N-Letter Sequences (N-grams)” by Peter Norvig

29

http://norvig.com/mayzner.html

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Break a Monoalphabetic Cipher (exercise)

Ciphertext:
ziolegxkltqodlzgofzkgrxetngxzgzithkofeohs

tlqfrzteifojxtlgyltexkofuegdhxztklqfregd

hxztkftzvgkalvoziygexlgfofztkftzltexkoznz

itegxkltoltyytezoctsnlhsozofzgzvghqkzlyo

klzofzkgrxeofuzitzitgkngyeknhzgukqhinofes

xrofuigvdqfnesqlloeqsqfrhghxsqkqsugkozid

lvgkaturtlklqrouozqsloufqzxktlqfrltegfrhk

gcorofurtzqoslgyktqsofztkftzltexkoznhkgz

gegslqsugkozidlqfrziktqzltuohltecokxltlyo

ktvqsslitfetngxvossstqkfwgzizitgktzoeqsq

lhtezlgyegdhxztkqfrftzvgkaltexkoznqlvtssq

ligvziqzzitgknolqhhsotrofzitofztkftzziol

afgvstrutvossitshngxofrtloufofuqfrrtctsgh

ofultexktqhhsoeqzogflqfrftzvgkahkgzgegsl

qlvtssqlwxosrofultexktftzvgkal
30

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Contents

Caesar Cipher

Monoalphabetic Ciphers

Playfair Cipher

Polyalphabetic Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition Techniques

31

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Playfair Matrix Construction (algorithm)

Write the letters of keyword k row-by-row in a 5-by-5 matrix. Do not include
duplicate letters. Fill the remainder of the matrix with the alphabet. Treat the
letters i and j as the same (that is, they are combined in the same cell of the
matrix).

32

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Playfair Matrix Construction (exercise)

Construct the Playfair matrix using keyword australia.

33

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Playfair Encryption (algorithm)

Split the plaintext into pairs of letters. If a pair has identical letters, then insert
a special letter x in between. If the resulting set of letters is odd, then pad with
a special letter x.

Locate the plaintext pair in the Playfair matrix. If the pair is on the same
column, then shift each letter down one cell to obtain the resulting ciphertext
pair. Wrap when necessary. If the plaintext pair is on the same row, then shift to
the right one cell. Otherwise, the first ciphertext letter is that on the same row
as the first plaintext letter and same column as the second plaintext letter, and
the second ciphertext letter is that on the same row as the second plaintext
letter and same column as the first plaintext letter.

Repeat for all plaintext pairs.

34

Playfair decryption uses the same matrix and reverses the rules. That is, move up (instead of

down) if on the same column, move left (instead of right) if on the same row. Finally, the padded

special letters need to be removed. This can be done based upon knowledge of the langauge.

For example, if the intermediate plaintext from decryption is helxlo, then as that word doesn’t

exist, the x is removed to produce hello.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Playfair Encryption (exercise)

Find the ciphertext if the Playfair cipher is used with keyword australia and
plaintext hello.

35

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Does Playfair cipher always map a letter to the same ciphertext
letter? (question)

Using the Playfair cipher with keyword australia, encrypt the plaintext
hellolove.

With the Playfair cipher, if a letter occurs multiple times in the plaintext, will
that letter always encrypt to the same ciphertext letter?

If a pair of letters occurs multiple times, will that pair always encrypt to the
same ciphertext pair?

Is the Playfair cipher subject to frequency analysis attacks?

36

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Contents

Caesar Cipher

Monoalphabetic Ciphers

Playfair Cipher

Polyalphabetic Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition Techniques

37

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Polyalphabetic (Substitution) Cipher (definition)

Use a different monoalphabetic substitution as proceeding through the plaintext.
A key determines which monoalphabetic substitution is used for each
transformation.

38

For example, when encrypting a set of plaintext letters with a polyalphabetic cipher, a monoal-

pabetic cipher with a particular key is used to encrypt the first letter, and then the same monoal-

phabetic cipher is used but with a different key to encrypt the second letter. They key used for

the monoalphabetic cipher is determined by the key (or keyword) for the polyalphabetic cipher.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Examples of Polyalphabetic Ciphers

I Vigenère Cipher: uses Caesar cipher, but Caesar key changes each letter
based on keyword

I Vernam Cipher: binary version of Vigenère, using XOR

I One Time Pad: same as Vigenère/Vernam, but random key as long as
plaintext

39

Selected polyalphabetic ciphers are explained in depth in the following sections.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Contents

Caesar Cipher

Monoalphabetic Ciphers

Playfair Cipher

Polyalphabetic Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition Techniques

40

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Vigenère Cipher (algorithm)

For each letter of plaintext, a Caesar cipher is used. The key for the Caesar
cipher is taken from the Vigenère key(word), progressing for each letter and
wrapping back to the first letter when necessary. Formally, encryption using a
keyword of length m is:

ci = (pi + ki mod m) mod 26

where pi is letter i (starting at 0) of plaintext P, and so on.

41

Simply, Vigenère cipher is just the Caesar cipher, but changing the Caesar key for each letter
encrypted/decrypted. The Caesar key is taken from the Vigenère key. The Vigenère key is not
a single value/letter, but a set of values/letters, and hence referred to as a keyword. Encrypting
the first letter of plaintext uses the first key from the keyword. Encrypting the second letter of
plaintext uses the second key from the keyword. And so on. As the keyword (for convenience)
is usually shorter than the plaintext, once the end of the keyword is reached, we return to the
first letter, i.e. wrap around.

In the formal equation for encryption, i represents letter i (starting at 0) of the plaintext. For

example, if the keyword is 6 letters, when encrypting letter 8 of the plaintext (that is the 9th),

then k2 is used, i.e. the 3rd letter from the keyword.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Vigenère Cipher Encryption (example)

Using the Vigenère cipher to encrypt the plaintext carparkbehindsupermarket
with the keyword sydney produces the ciphertext UYUCEPCZHUMLVQXCIPEYUXIR.
The keyword would be repeated when Caesar is applied:
P: carparkbehindsupermarket

K: sydneysydneysydneysydney

C: UYUCEPCZHUMLVQXCIPEYUXIR

42

Note that the first a in the plaintext transforms to Y, while the second a transforms to E. With

polyalphabetic ciphers, the same plaintext letters do not necessarily always transform to the same

ciphertext letters. Although they may: look at the third a.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Vigenère Cipher Encryption (exercise)

Use Python (or other software tools) to encrypt the plaintext
centralqueensland with the following keys with the Vigenère cipher, and
investigate any possible patterns in the ciphertext: cat, dog, a, giraffe.

43

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Weakness of Vigenère Cipher

I Determine the length of the keyword m
I Repeated n-grams in the ciphertext may indicate repeated n-grams in the

plaintext
I Separation between repeated n-grams indicates possible keyword length m
I If plaintext is long enough, multiple repetitions make it easier to find m

I Treat the ciphertext as that from m different monoalphabetic ciphers
I E.g. Caesar cipher with m different keys
I Break the monoalphabetic ciphers with frequency analysis

I With long plaintext, and repeating keyword, Vigenère can be broken

44

The following shows an example of breaking the Vigenère cipher, although it is not necessary to

be able to do this yourself manually.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Breaking Vigenère Cipher (example)

Ciphertext ZICVTWQNGRZGVTWAVZHCQYGLMGJ has repetition of VTW. That
suggests repetition in the plaintext at the same position, which would be true if
the keyword repeated at the same position.
012345678901234567890123456

ZICVTWQNGRZGVTWAVZHCQYGLMGJ

That is, it is possible the key letter at position 3 is the repated at position 12.
That in turn suggest a keyword length of 9 or 3.
ciphertext ZICVTWQNGRZGVTWAVZHCQYGLMGJ

length=3: 012012012012012012012012012

length=9: 012345678012345678012345678

An attacker would try both keyword lengths. With a keyword length of 9, the
attacker then performs Caesar cipher frequency analysis on every 9th letter.
Eventually they find plaintext is wearediscoveredsaveyourself and keyword
is deceptive.

45

This attack may require some trial-and-error, and will be more likely to be successful when the

plaintext is very long. See the Stallings textbook, from which the example is taken, for further

explanation.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Contents

Caesar Cipher

Monoalphabetic Ciphers

Playfair Cipher

Polyalphabetic Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition Techniques

46

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Vernam Cipher (algorithm)

Encryption is performed as:
ci = pi ⊕ ki

decryption is performed as:
pi = ci ⊕ ki

where pi is the ith bit of plaintext, and so on. The key is repeated where
necessary.

47

The Vernam cipher is essentially a binary form of the Vigenère cipher. The mathematical form

of Vigenère encryption adds the plaintext and key and mods by 26 (where there are 26 possible

charactersd). In binary, there are 2 possible characters, so the equivalnet is to add the plaintext

and key and mod by 2. This identical to the XOR operation.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

XOR (python)

1 >>> def xor(x, y):

2 ... return ’{1:0{0}b}’.format(len(x), int(x, 2) ^ int(y, 2))

3 ...

48

The Python code defines a function called xor that takes two strings representing bits, and

returns a string represent the XOR of those bits. The actual XOR is performed on integers using

the Python hat ôperator. The rest is formatting as strings.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Vernam Cipher Encryption (exercise)

Using the Vernam cipher, encrypt the plaintext 011101010101000011011001
with the key 01011.

49

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Vernam Cipher Encryption (python)

1 >>> xor(’011101010101000011011001’,’010110101101011010110101’)

2 ’001011111000011001101100’

50

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Contents

Caesar Cipher

Monoalphabetic Ciphers

Playfair Cipher

Polyalphabetic Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition Techniques

51

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

One-Time Pad (algorithm)

Use polyalphabetic cipher (such as Vigenère or Vernam) but where the key must
be: random, the same length as the plaintext, and not used multiple times.

52

Essentially, the Vigenère or Vernam become a OTP if the keys are chosen appropriately.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Properties of OTP

I Encrypting plaintext with random key means output ciphertext will be
random
I E.g. XOR plaintext with a random key produces random sequence of bits in

ciphertext

I Random ciphertext contains no information about the structure of plaintext
I Attacker cannot analyse ciphertext to determine plaintext

I Brute force attack on key is ineffective
I Multiple different keys will produce recognisable plaintext
I Attacker has no way to determine which of the plaintexts are correct

I OTP is only known unbreakable (unconditionally secure) cipher

53

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Attacking OTP (example)

Consider a variant of Vigenère cipher that has 27 characters (including a space).
An attacker has obtained the ciphertext:
ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS

Attacker tries all possible keys. Two examples:
k1: pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih

p1: mr mustard with the candlestick in the hall

k2: pftgpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt

p2: miss scarlet with the knife in the library

There are many other legible plaintexts obtained with other keys. No way for
attacker to know the correct plaintext

54

The example shows that even a brute force attack on a OTP is unsuccessful. Even if the attacker

could try all possible keys—the plaintext is 43 characters long and so there are 2743 ≈ 1061 keys—

they would find many possible plaintext values that make sense. The example shows two such

plaintext values that the attacker obtained. Which one is the correct plaintext? They both make

sense (in English). The attacker has no way of knowing. In general, there will be many plaintext

values that make sense from a brute force attack, and the attacker has no way of knowing which

is the correct (original) plaintext. Therefore a brute force attack on a OTP is ineffective.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Summary of OTP

I Only known unbreakable (unconditionally secure) cipher
I Ciphertext has no statistical relationship with plaintext
I Given two potential plaintext messages, attacker cannot identify the correct

message

I But two significant practical limitations:

1. Difficult to create large number of random keys
2. Distributing unique long random keys is difficult

I Limited practical use

55

The practical limittions are significant. The requirement that the key must be as long as the
plaintext, random and never repeated (if it is repeated then the same problems arise as in the
original Vernam cipher) means large random values must be created. But creating a large amount
of random data is actually difficult. Imagine you wanted to use a OTP for encrypting large data
transfers (multiple gigabytes) across a network. Multiple gigabytes of random data must be
generated for the key, which is time consuming (seconds to hours) for some computers. Also,
the key must be exchanging, usually over a network, with the other party in advance. So to
encrypt a 1GB file to need a 1GB random key. Both the key and file must be sent across the
network, i.e. a total of 2GB. This is very inefficient use of the network: a maximum of 50%
efficiency.

Later we will see real ciphers that work with a relatively small, fixed length key (e.g. 128 bits)

and provide sufficient security.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Contents

Caesar Cipher

Monoalphabetic Ciphers

Playfair Cipher

Polyalphabetic Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition Techniques

56

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Transposition vs Substitution

I Substitution: replace one (or more) character in plaintext with another from
the entire possible character set

I Transposition: re-arrange the characters in the plaintext
I The set of characters in the ciphertext is the same as in the plaintext
I Problem: the plaintext frequency statistics are also in the ciphertext

I On their own, transposition techniques are easy to break

I Combining transposition with substitution makes ciphers stronger, and
building block of modern ciphers

57

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Rail Fence Cipher Encryption (definition)

Select a depth as a key. Write the plaintext in diagonals in a zig-zag manner to
the selected depth. Read row-by-row to obtain the ciphertext.

58

The decryption process can easily be derived from the encryption algorithm.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Rail Fence Encryption (exercise)

Consider the plaintext securityandcryptography with key 4. Using the rail
fence cipher, find the ciphertext.

59

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Rows Columns Cipher Encryption (definition)

Select a number of columns m and permutate the integers from 1 to m to be the
key. Write the plaintext row-by-row over m columns. Read column-by-column,
in order of the columns determined by the key, to obtain the ciphertext.

60

Be careful with the decryption process; it is often confusing. Of course it must be the process

such that the original plaintext is produced.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Rows Columns Encryption (exercise)

Consider the plaintext securityandcryptography with key 315624. Using the
rows columns cipher, find the ciphertext.

61

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Rows Columns Multiple Encryption (example)

Assume the ciphertext from the previous example has been encrypted again with
the same key. The resulting ciphertext is YYCPRRCTEOIPDRAHYSGUATXH. Now
let’s view how the cipher has “mixed up” the letters of the plaintext. If the
plaintext letters are numbered by position from 01 to 24, their order (split across
two rows) is:
01 02 03 04 05 06 07 08 09 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

After first encryption the order becomes:
02 08 14 20 05 11 17 23 01 07 13 19

06 12 18 24 03 09 15 21 04 10 16 22

After the second encryption the order comes:
08 23 12 21 05 13 03 16 02 17 06 15

11 19 09 20 14 01 18 04 20 07 24 10

Are there any obviously obversvable patterns?

62

After the first encryption, the numbers reveal a pattern: increasing by 6 within groups of 4. This
is because of the 6 columns and 4 rows. After the second encryption, it is not so obvious to
identify patterns.

The point is that while a single application of the transposition cipher did not seem to offer

much security (in terms of hiding patterns), adding the second application of the cipher offers

an improvement. This principle of repeated applications of simple operations is used in modern

ciphers.

Cryptography

Classical Ciphers

Caesar Cipher

Monoalphabetic
Ciphers

Playfair Cipher

Polyalphabetic
Ciphers

Vigenère Cipher

Vernam Cipher

One Time Pad

Transposition
Techniques

Summary of Transposition and Substitution Ciphers

I Transposition ciphers on their own offer no practical security

I But combining transposition ciphers with substitution ciphers, and repeated
applications, practical security can be achieved

I Modern symmetric ciphers use multiple applications (rounds) of substitition
and transposition (permutation) operations

63

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Encryption and Attacks

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 04 Jan 2022,
encryption.tex, r1965

1

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Contents

Encryption Building Blocks

Attacks on Encryption

Block Cipher Design Principles

Stream Cipher Design Principles

Example: Brute Force on DES

Example: Brute Force on AES

Example: Meet-in-the-Middle Attack

Example: Cryptanalysis on Triple-DES and AES

2

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Model of Encryption for Confidentiality

3

The figure on slide 3 shows the general model for encrypting for confidentiality that we have

seen previously.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Characterising Ciphers by Number of Keys

Symmetric sender/receiver use same key (single-key, secret-key, shared-key,
conventional)

Public-key sender/receiver use different keys (asymmetric)

4

All ciphers until about the 1960’s were symmetric key ciphers. The encrypter and decrypter used
the same key, i.e. symmetry between the keys. The key must be shared between the two users
and kept secret.

A new form of cryptography was designed in the 1960’s and 1970’s, where the encrypter uses
one key and the decrypter uses a different but related key. The keys are asymmetric. One of the
keys is kept secret, while the other can be disclosed, i.e. made public.

We will focus on symmetric key ciphers initially, and return to public-key ciphers later.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Symmetric Key Encryption for Confidentiality

P

E() D()

KK

C=E(K,P) P=D(K,C)

secret key secret key

Ciphertext PlaintextPlaintext
Encryption Decryption

SharedShared

5

We often use simple mathematical notation to describe the steps. E() is a function that takes two
inputs: key K and plaintext P. It returns ciphertext C as output. E() represents the encryption
algorithm. D() is the decryption algorithm.

Symmetric key encryption is the oldest form of encryption and involves both parties (e.g. sender
and receiver) knowing the same secret key. Plaintext is encrypted with the secret key, and the
ciphertext is decrypted with that secret key. If anyone else (i.e attacker) learns the secret key,
then the system in not secure.

For symmetric key encryption to be secure, the algorithm must be well designed (strong, not

easy to break) and the secret key must be kept secret. AES is an example of a strong algorithm,

and it uses keys of length 128 bits or longer. One of the challenges of symmetric key encryption

is informing the receiver of the secret key in advance: it must be done in a secure manner.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Common Operations in Symmetric Ciphers

Substitution replace one element in plaintext with another

Permutation re-arrange elements (also called transposition)

Product systems multiple stages of substitutions and permutations, e.g. Feistel
network, Substitution Permutation Network (SPN)

6

Symmetric key ciphers are designed around two basic operations: substitution and permutation.
We have seen these operations when looking at classical ciphers. We also saw the principle that
repeating the operations can make a cipher more secure. Modern ciphers are designed using
these two basic operations, but repeated multiple times. For example, perform a substitution
and then permutation, then repeat. The result is a “product system”.

The Feistel network and SPN are two common design principles for modern ciphers and will

be mentioned later when discussing block ciphers like AES and DES.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Characterising Ciphers by Processing Plaintext

Block cipher process one block of elements at a time, typically 64 or 128 bits

Stream cipher process input elements continuously, e.g. 1 byte at a time, by
XOR plaintext with keystream

7

Originally the idea was that block ciphers were suitable for processing large amounts of data
when there were no strict time constraints. Stream ciphers were fast and suitable for real-time
applications. For example, for encrypting real-time voice, as the data (plaintext) is generated,
it needs to be quickly encrypted and then the ciphertext transmitted across a network. By
encrypting only a small amount of plaintext at a time and using the extremely fast XOR operation,
stream ciphers could perform the encryption without introducing significant delay.

However nowadays, the dedicated hardware support for block ciphers like AES, there is not a
significant difference in performance (delay) of block and stream ciphers. Hence we see block
ciphers (in particular, AES) used in scenarios for which stream ciphers were originally designed
for.

We will focus on block ciphers initially, and return to stream ciphers later.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Two Important Symmetric Key Block Ciphers

Data Encryption Standard (DES) Became a US government standard in 1977
and widely used for more than 20 years; key is too short

Advanced Encryption Standard (AES) Standardised a replacement of DES in
1998, and now widely used. Highly recommended for use.

8

While no longer recommended or in widespread use, DES was the first cipher that saw widespread
use. The primary limitation of DES however was the key was eventually subject to a brute force
attack. It was only 56 bits.

While Triple DES, which used the original DES but expanded the key length, was popular for
awhile, a new cipher was needed to perform well in a variety of hardware platforms. AES was
standardised in 1998 and continues to be the recommended symmetric key block cipher for most
applications today. There are no known practical attacks that cannot be defended.

DES and AES are covered in depth later.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Common Symmetric Key Block Ciphers

9

The figure on slide 9 lists common symmetric key encryption block ciphers starting with DES,
through to around the time of AES. Most block ciphers operate on blocks of 64 or 128 bits,
and support a range of key lengths. There are three main design principles: Feistel network or
structure, Substitution Permutation Network, or Lai-Massey.

AES is still highly recommended for most applications. There have been newer proposals since
then, however very few are standards or see wide spread usage. A recent trend is on developing
“lightweight” ciphers that perform well on very small devices, e.g. sensors.

A detailed review of block ciphers is Roberto Avanzi’s “A Salad of Block Ciphers: The

State of the Art in Block Ciphers and their Analysis”, 2017, which is available for free at

https://eprint.iacr.org/2016/1171.pdf

https://eprint.iacr.org/2016/1171.pdf

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Contents

Encryption Building Blocks

Attacks on Encryption

Block Cipher Design Principles

Stream Cipher Design Principles

Example: Brute Force on DES

Example: Brute Force on AES

Example: Meet-in-the-Middle Attack

Example: Cryptanalysis on Triple-DES and AES

10

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Aims and Knowledge of the Attacker

I Study of ciphers and attacks on them is based on assumptions and
requirements
I Assumptions about what attacker knows and can do, e.g. intercept messages,

modify messages
I Requirements of the system/users, e.g. confidentiality, authentication

I Normally assumed attacker knows cipher
I Keeping internals of algorithms secret is hard
I Keeping which algorithm used secret is hard

I Attacker also knows the ciphertext
I Attacker has two general approaches

I “Dumb”: try all possible keys, i.e. brute force
I “Smart”: use knowledge of algorithm and ciphertext/plaintext to discover

unknown information, i.e. cryptanalysis

11

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Worst Case Brute Force Time for Different Keys

Key Key Worst case time at speed:
length space 109/sec 1012/sec 1015/sec

32 232 4 sec 4 ms 4 us
56 256 833 days 20 hrs 72 sec
64 264 584 yrs 213 days 5 hrs
80 280 107 yrs 104 yrs 38 yrs

100 2100 1013 yrs 1010 yrs 107 yrs
128 2128 1022 yrs 1019 yrs 1016 yrs
192 2192 1041 yrs 1038 yrs 1035 yrs
256 2256 1060 yrs 1057 yrs 1054 yrs
26! 288 1010 yrs 107 yrs 104 yrs

12

The table on slide 12 shows, for different key lengths, the time it takes to try every key if a
single computer could make attempts at one of three rates: 109 per second, 1012 per second,
or 1015 per second. There are not necessarily realistic speeds, although roughly represent lower
and upper limits for today’s computing power.

While this table presents the worst case time, in most cases, it is not much different from the
average time. Recall the average time is about half of the worst case time. For a 128 bit key at
1015 decrypts per second, the worst case time is about 1 × 1016 years, and the average time is
about 0.5 × 1016. That is, both about 1016 years. With such large times, cutting the time in
half makes no practical difference.

Note that the last line is for a key for a monoalphabetic English cipher. There are 26! possible
keys which is equivalent to a binary key of about 88 bits.

For comparison, the age of the Earth is approximately 4×109 years and the age of the universe

is approximately 1.3 × 1010 years.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Classifying Attacks Based Upon Information Known

1. Ciphertext Only Attack

2. Known Plaintext Attack

3. Chosen Plaintext Attack

4. Chosen Ciphertext Attack

5. Chosen Text Attack

13

We describe the different attacks in the following.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Ciphertext Only Attack

I Attacker knows:
I encryption algorithm
I ciphertext

I Hardest type of attack

I If cipher can be defeated by this, then cipher is weakest

14

The common assumption is that an attacker knows the encryption algorithm and ciphertext,

and that they had no influence over the choice of ciphertext. This is referred to a ciphertext

only attack. A cipher that is subject to a ciphertext only attack is the weakest of the groups of

attacks we will consider.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Known Plaintext Attack

I Attacker knows:
I encryption algorithm
I ciphertext
I one or more plaintext–ciphertext pairs formed with the secret key

I E.g. attacker has intercept past ciphertext and somehow discovered their
corresponding plaintext

I All pairs encrypted with the same secret key (which is unknown to attacker)

15

In a KPA, the attacker also has access to one or more pairs of plaintext/ciphertext. That is,
assume the ciphertext known, Cknown, was obtained using key Kunknown and plaintext Punknown

(either of which the attacker is trying to find). The attacker also knows at least C1 and P1,
where C1 is the output of encrypting P1 with key Kunknown. That is, the attacker knows a pair
(P1,C1). They may also know other pairs (obtained using the same key Kunknown).

How could an attacker known past plaintext/ciphertext pairs? A simple example is if the
plaintext messages were only valid for a limited time, after which they become public. Such as
coordinates for a public event to take place. Before the event takes place the coordinates are
encrypted and secret. But after the event takes place, while the coordinates were decrypted, the
attacker has learnt the value of the coordinates/plaintext (without knowing the key).

Generally, the more pairs of plaintext/ciphertext known, the easiest it is to defeat a cipher.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Chosen Plaintext Attack

I Attacker knows:
I encryption algorithm
I ciphertext
I plaintext message chosen by attacker, together with its corresponding

ciphertext generated with the secret key

16

In a CPA the attacker is able to select plaintexts to be encrypted and obtain their ciphertext

(but not knowing the key used in the encryption). In such an attack, the attacker may select

plaintext messages that have characteristics that make it easier to break the cipher. Ability to

select plaintext and have it encrypted is common for public key ciphers (since the encryption

key is public but the decryption key is private), which should be designed to be resistant to such

attacks.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Chosen Ciphertext Attack

I Attacker knows:
I encryption algorithm
I ciphertext
I ciphertext chosen by attacker, together with its corresponding decrypted

plaintext generated with the secret key

I Attackers aim is to find the secret key (not the plaintext)

17

In a CCA the attacker chooses a ciphertext, and obtains the corresponding plaintext, in an

attempt to discover a secret key. Note in this attack, the aim is to find the secret key. If the

attacker has a way to obtain plaintext from a chosen ciphertext, then they could simply intercept

ciphertext to find plaintext. A CCA normally involves the attacker tricking a user to decrypt

ciphertext and provide the plaintext.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

General Measures of Security

Unconditionally Secure Ciphertext does not contained enough information to
derive plaintext or key

I One-time pad is only unconditionally secure cipher (but not
very practical)

Computationally Secure If:

I cost of breaking cipher exceeds value of encrypted information
I or time required to break cipher exceeds useful lifetime of

encrypted information
I Hard to estimate value/lifetime of some information
I Hard to estimate how much effort needed to break cipher

18

In theory we would like an unconditionally secure cipher. However in practice, we aim for

computationally secure. Unfortunately it is difficult to measure if a cipher is computationally

secure. For modern ciphers their security is judged based on the known theoretical and practical

attacks (e.g. resistant to CCA or not) as well as the metrics in the following.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Common Metrics for Attacks

Time: usually measured as number of operations, since real time depends
on implementation and computer specifics

I Operations are encrypts or decrypts; ignore other processing
tasks

I E.g. worst case brute force of k-bit key takes 2k (decrypt)
operations

Amount of Memory: temporary data needed to be stored during attack

Known information: number of known plaintext/ciphertext values attacker needs
to know in advance to perform attack

19

While time to break the cipher is the metric of interest, it is usually simplified to number
of operations. For cryptanalysis, successful attacks should take fewer operations than brute
force. That is, an attack that takes more operations the a brute force attack is considered an
unsuccessful attack.

Often attacks requires intermediate values to be stored in memory while performing the attack.
The less memory needed, the better the attack.

As seen in the previous classification, known plaintext, chosen plaintext and chosen ciphertext

attacks all require the attacker to know additional information. The more information necessary

for the attack to be successful, the poorer the attack is. For example, a known plaintext attack

that will be successful if 1,000,000 pairs of plaintext/ciphertext are known, is better than a

known plaintext attack that requires 2,000,000 pairs.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Contents

Encryption Building Blocks

Attacks on Encryption

Block Cipher Design Principles

Stream Cipher Design Principles

Example: Brute Force on DES

Example: Brute Force on AES

Example: Meet-in-the-Middle Attack

Example: Cryptanalysis on Triple-DES and AES

20

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Block Cipher with n bit blocks

I Encrypt a block of plaintext as a whole to produce same sized ciphertext

I Typical block sizes are 64 or 128 bits

I Modes of operation used to apply block ciphers to larger plaintexts

E()

K
k bits

n bits n bits
P C

Plaintext Ciphertext

Key

Encrypt

21

Modes of operation are covered in Chapter ??.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Simple Ideal 2-bit Block Cipher 1

22

The figure on slide 22 is an example of a 2-bit ideal block cipher. The table shows input plaintext

blocks in the left column, different keys in the top row, and the resulting output ciphertext block

in the body of the table. To be used for sending a confidential message, both the sender and

receiver would know the table (e.g. stored in memory on their devices), or some way to calculate

the table) and agree upon the key to use. For a given plaintext block, the sender looks up the

key to find the output ciphertext to send. The receiver looks up the receiver ciphertext in the

column of the key, and the row determines the plaintext.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Encrypt with Ideal Cipher 1 (exercise)

Encrypt the message Tokyo using the above ideal 2-bit block cipher 1 with key
K6.

23

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Issues When Applying Block Ciphers

I Encoding/decoding: independent of block cipher, which operate only in
binary values

I Mode of operation: typically independent of block cipher, which operate
only on a single block

I Repetition of plaintext blocks: undesirable. Make block size larger and use
mode of operation that obscures repetition

I Key space: larger block size needed to allow more keys in ideal block cipher

I Implementing an ideal block cipher: how are they generated? can all values
be stored?

24

The following questions will explore some of these issues further.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Simple Ideal 2-bit Block Cipher 2

25

The figure on slide 25 shows a different 2-bit ideal block cipher. It maps plaintext to ciphertext
in a different order than cipher 1.

This example is just used for illustrative purposes. If you had an ideal block cipher that covered

every permutation of plaintext values, then only a single cipher is needed.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

What is plaintext with key K13, ciphertext 11 with ideal cipher
2? (question)

What is plaintext with key K13, ciphertext 11 with ideal cipher 2?

26

Decryption also involves a lookup. In the column for key K13, identify the ciphertext 11, and

the row indicates the original plaintext 10.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

What is plaintext with key K4, ciphertext 11 with ideal cipher 2?
(question)

What is plaintext with key K4, ciphertext 11 with ideal cipher 2?

27

Same cipher, same ciphertext but different key. However in column of K4 there are two values

of ciphertext 11. So we cannot determine for sure what was the original plaintext: 00 or 10.

This actually is a trick question, since the cipher design is in error. A cipher must be reversible,

so decryption is possible. This is an example of a cipher design error that includes an irreversible

mapping.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Simple Ideal 2-bit Block Cipher 2 (fixed)

28

The figure on slide 28 shows the fixed cipher: it is now reversible, and decryption is possible for

all values of key and ciphertext.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

How many bits are needed to represent the key in cipher 2?
(question)

The example 2-bit ideal block cipher 2 (as well as cipher 1) list 24 different keys
(or mappings from plaintext to ciphertext). How many bits are needed to
represent a key for this cipher?

29

Firstly, why are 24 keys listed? With a 2-bit block, there are 22 = 4 possible blocks, i.e. 00, 01,
10, and 11. There are 4! = 24 different ways to arrange those 4 plaintext blocks to produce
ciphertext, i.e. 24 permutations of the plaintext blocks. A key is used to select the distinct
permutation.

With key length of 1 bit, we can represent 21 = 2 possible keys. With a key length of 2 bits,

we can represent 22 = 4 possible keys. With a key length of 3 bits, we can represent 23 = 8

possible keys. With a key length of 4 bits, we can represent 24 = 16 possible keys. With a key

length of 5 bits, we can represent 25 = 32 possible keys. That is, a key length of 4 bits is not

enough to represent our 24 keys, but a key length of 5 is. Therefore we need a 5-bit key for this

ideal 2-bit block cipher.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

How to reduce repetition of plaintext blocks? (question)

With a 2-bit ideal block cipher, with a long plaintext, many of plaintext blocks
will repeat. This is bad for security (see Modes of Operation). What can you
change in the design of an ideal block cipher that reduces repetition of plaintext
blocks?

30

Increasing the block size for a block cipher will reduce the change of block repetition. Recall
the first example of the 2-bit ideal block cipher encrypting Tokyo. The plaintext was 40-bits,
resulting in 20 blocks. As there are only 22 = 4 different plaintext values, there will be repetition.
On average (if the plaintext was random, which is not likely but it simplifies the analysis), each
plaintext value will be repeated 20/4 = 5 times.

If however a 3-bit ideal block cipher was used, there would be 23 = 8 different plaintext values.
There would be 14 blocks (40/3, with the last block having just 1 bit of plaintext). On average,
each plaintext value will be repeated 14/8, which is less than 2 times.

Increasing to a 4-bit ideal block cipher gives 16 different plaintext values, 10 blocks, and a

possibility there will be no repetition. Of course if the plaintext is much longer than 40 bits,

then repetition is still likely.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Impact of Block Sizes for 80 bit Plaintext

Block size: 4 bits Plaintext block values: 16 Number of blocks: 20

Block size: 3 bits Plaintext block values: 8 Number of blocks: 27

Block size: 2 bits Plaintext block values: 4 Number of blocks: 40

80 bits of plaintext

31

The figure on slide 31 illustrates the impact of different block sizes for an example 80 bit plaintext
(whereas the previous example was a 40 bit plaintext).

Note that with a block size of 3 bits, the last block contains 2 bits of plaintext and 1 bit of

padding. Padding is needed as all blocks must be the same size (since block ciphers operate on

fixed sized blocks). There are different schemes for padding, e.g. bit padding, zero padding and

PKCS7.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

General n-bit Ideal Block Cipher

I n-bit block cipher takes n bit plaintext and produces n bit ciphertext

I 2n possible different plaintext blocks

I Encryption must be reversible (decryption possible)

I Number of permutations of plaintext (and number of keys) is 2n!
I Design trade-offs:

I Large block size to reduce plaintext repetitions (64-bits is good)
I Key space large enough to avoid brute force, but small enough to make

distribution practical
I Small block size to simplify implementation

32

The trade-offs are conflicting, meaning ideal block ciphers are good in theory, but in practice we

need a different design approach.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Ideal 64-bit Block Cipher (exercise)

Consider an ideal 64-bit block cipher. How many different different keys are
possible? How many bits are needed to store a single key? How much space is
required to store the mappings?

33

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Feistel Structure for Block Ciphers

I Ideal block ciphers are not practical

I Feistel proposed applying two or more simple ciphers in sequence so final
result is cryptographically stronger than component ciphers

I n-bit block length; k-bit key length; 2k transformations

I Feistel cipher alternates: substitutions, transpositions (permutations)

I Applies concepts of diffusion and confusion

I Applied in many ciphers today
I Approach:

I Plaintext split into halves
I Subkeys (or round keys) generated from key
I Round function, F , applied to right half
I Apply substitution on left half using XOR
I Apply permutation: interchange to halves

34

For example, with a 64-bit block cipher, there are 264 possible mappings/keys, meaning the key

length is log2(264) = 64 bits.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Diffusion and Confusion

I Diffusion
I Statistical nature of plaintext is reduced in ciphertext
I E.g. A plaintext letter affects the value of many ciphertext letters
I How: repeatedly apply permutation (transposition) to data, and then apply

function

I Confusion
I Make relationship between ciphertext and key as complex as possible
I Even if attacker can find some statistical characteristics of ciphertext, still

hard to find key
I How: apply complex (non-linear) substitution algorithm

35

Diffusion and confusion are concepts introduced by Claude Shannon. See a summary of Shan-

non’s contributions in telecommunications, digital circuits and cryptography in Chapter ??.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Feistel Encryption and Decryption

Credit: Amirki, https://commons.wikimedia.org/wiki/File:Feistel_cipher_diagram_en.svg, CC BY-SA 3.0

36

You don’t need to know the details of the Feistel structure. Just be aware that it is a design

principle used in many block ciphers, including DES.

https://commons.wikimedia.org/wiki/File:Feistel_cipher_diagram_en.svg

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Using the Feistel Structure

I Exact implementation depends on various design features
I Block size, e.g. 64, 128 bits: larger values leads to more diffusion
I Key size, e.g. 128 bits: larger values leads to more confusion, resistance

against brute force
I Number of rounds, e.g. 16 rounds
I Subkey generation algorithm: should be complex
I Round function F : should be complex

I Other factors include fast encryption in software and ease of analysis

I Trade-off: security vs performance

37

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Contents

Encryption Building Blocks

Attacks on Encryption

Block Cipher Design Principles

Stream Cipher Design Principles

Example: Brute Force on DES

Example: Brute Force on AES

Example: Meet-in-the-Middle Attack

Example: Cryptanalysis on Triple-DES and AES

38

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Stream Ciphers

I Encrypts a digital data stream one bit or one byte at a time

I One time pad is example; but practical limitations
I Typical approach for stream cipher:

I Key (K) used as input to bit-stream generator algorithm
I Algorithm generates cryptographic bit stream (ki) used to encrypt plaintext
I ki is XORed with each byte of plaintext Pi

I Users share a key; use it to generate keystream

39

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Stream Cipher Encrypt and Decrypt

c
i
=p

i
k

i

KK

k
i

p
i

p
i

k
i

XOR() XOR()

secret key secret key

Keystream
generation

Keystream

Plaintext

Keystream
generation

Plaintext

Keystream

Ciphertext

Shared Shared

40

The figure on slide 40 illustrates the general operation of a stream cipher encryption and decryp-
tion. The sender uses a shared secret key K and an algorithm to generate effectively a random
stream of bits. This random stream of bits is XORed with the plaintext bits as needed.

The receiver uses the same key and algorithm, which in turn generates the same random stream

of bits. When XORed with the ciphertext, the original plaintext is output.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Key Re-use in Stream Ciphers

I Encrypting two different plaintexts with the same key leads to key re-use
attack
I Attacker intercepts two ciphertexts: C1 = P1 ⊕ k1 and C2 = P2 ⊕ k1
I Properties of XOR: commutative and A⊕ A = 0
I Attacker performs XOR on two ciphertexts
I C1 ⊕ C2 = P1 ⊕ k1 ⊕ P2 ⊕ k1 = P1 ⊕ P2

I Even without knowing P1 or P2, attacker can easily use frequency analysis to
discover both

I Solution: Use additional IV that changes for every encryption

41

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

When can key re-use attack be successful if IV is used?
(question)

If a stream cipher is using a n-bit IV, but the same key, under what conditions is
a key re-use attack possible? Assume the IV increments every time an encrypt
operation is performed.

42

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Contents

Encryption Building Blocks

Attacks on Encryption

Block Cipher Design Principles

Stream Cipher Design Principles

Example: Brute Force on DES

Example: Brute Force on AES

Example: Meet-in-the-Middle Attack

Example: Cryptanalysis on Triple-DES and AES

43

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

DES and Real Brute Force Attacks

I DES is 64-bit block cipher with 56-bit (effective) key length

I Developed in 1977, recommended standard until 1990’s

I Brute force: 256 operations
I Hardware built to perform brute force attack

I 1998: DeepCrack
I 2006: COPACABANA

44

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Paul Kocher and DeepCrack

I Developed by EFF

I Cost less than $US250,000

I 80 × 109 keys/sec

I Solved DES challenge in 56 hours

I See www.cryptography.com and www.eff.org

Credit: Wikimedia, CC0 1.0 Public Domain https://commons.wikimedia.org/wiki/File:Paul_kocher_deepcrack.jpg

45

www.cryptography.com
www.eff.org
https://commons.wikimedia.org/wiki/File:Paul_kocher_deepcrack.jpg

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

COPACABANA by SciEngines, 2006

I Joint effort by SciEngines and German universities
I 120 FPGA, 400 × 106 keys/sec/FPGA
I For comparison, a Pentium 4: 2 × 106 keys/sec
I Brute force DES in 8.6 days
I Cost about $US10,000
I See www.sciengines.com

Credit: Copyright SciEngines GMBH 46

Using the above example, we can roughly estimate what it would cost today to brute force DES.

www.sciengines.com
http://www.sciengines.com/copacobana/

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Can We Estimate Cost Today?

I Moore’s law: computers double speed every 1.5 years

I Alternative: computers halve in cost every 1.5 years

I $US10,000 to brute force DES in 2006

I Cost has halved about 10 times

I Cost to brute force DES in 2020: $10

47

A simplification of Moore’s law is that computers double their speed every 1.5 years. In practice
it is not that simple, but it is a useful rule to estimate the cost of brute force today. It means in
1.5 years time, you could buy a computer that double the speed if a new computer today, and at
the same cost. Alternatively, you could buy a lower specced computer, which is the same speed
as a new computer today, buy half the cost of today’s computer.

Assuming computers halve in cost every 1.5 years, between 2006 and 2020 is 14 years. Over
15 years, there are 10 1.5 year periods, so the cost would halve 10 times. (Again since this is an
estimate, let’s use 15 years instead of 14). If you half $10,000 10 times, you get $9.76. That is,
a $10 computer today can brute force DES in 8.6 days.

As brute force attacks can be parallelised easily, you could spend $100 on 10 computers (or

buy a $100 computer) and break DES in less than a day. DES is not secure against a brute force

attack (and hasn’t been for a long time).

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Contents

Encryption Building Blocks

Attacks on Encryption

Block Cipher Design Principles

Stream Cipher Design Principles

Example: Brute Force on DES

Example: Brute Force on AES

Example: Meet-in-the-Middle Attack

Example: Cryptanalysis on Triple-DES and AES

48

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

RIVYERA S3-5000 by SciEngines, 2013

I Rivyera S3 supported up to 128 Xilinx Spartan-3 FPGAs

I Approx $100 per FPGA (XCS5000)
I AES-128 Brute Force

I 500 × 106 keys per sec
I 4 × 106 keys per mW

I Biclique Attack
I 945 × 106 keys per sec
I 7.3 × 106 keys per mW

Credit: Copyright SciEngines GMBH

49

FPGA are essentially computer processors programmed for a specific task, in this case, decrypting
with AES very fast. For about $12,800 a RIVYERA could decrypt AES-128 at a rate of 500×106

keys per second.

A known plaintext attack on AES is called the Biclique attack. The RIVYERA implementation

of the Biclique attack could decrypted AES-128 at a rate of 945× 106 keys per sec, about twice

that of a brute force.

http://www.sciengines.com/copacobana/

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Breaking AES-128 in 2020

I AES-128 has key space of 2128

I 2013: $US12,800 for 5 × 108 k/s

I Assume: computers double speed every 1.5 years
I 2020: Increase by 25 = 32; 1.6 × 1010 k/s

I $12,800: 6.7 × 1020 years
I $12,800,000: 6.7 × 1017 years
I $12,800,000,000: 6.7 × 1014 years

I Biclique attack about 2 to 4 times faster, but requires 288 known
plaintext/ciphertext pairs

I In 2035, cost $12,800,000,000 to brute force AES-128 in 670,000,000,000
years

50

Applying the same logic from analysis of DES brute force and Moore’s law (i.e. every 1.5 years

halve cost or double speed), we can perform a rough analysis of the cost/time to break AES-128.

The numbers (dollars, years) are so large such that even if the approximations are incorrect by a

factor of 1,000,000,000 (e.g. reducing 1014 years to 100, 000 years, then it is still impossible to

break AES-128.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Contents

Encryption Building Blocks

Attacks on Encryption

Block Cipher Design Principles

Stream Cipher Design Principles

Example: Brute Force on DES

Example: Brute Force on AES

Example: Meet-in-the-Middle Attack

Example: Cryptanalysis on Triple-DES and AES

51

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Double Encryption Concept

I Encrypt plaintext with one key, then encrypt output with another key

X=E(K
1
,P)

X=E(K
1
,P) C=E(K

2
,E(K

1
,P))

C=E(K
2
,E(K

1
,P)) D() D()

KK2

P E() E()

2KK1

P

SharedShared

DecryptIntermediate

secret key 2 secret key 1

CiphertextPlaintext

SharedShared

Encrypt EncryptIntermediate

secret key 1 secret key 2

Ciphertext PlaintextDecrypt

Double Decryption

Double Encryption

I Advantage: doubles the key length
I Single version of cipher has k-bit key
I Double version of cipher uses two different k-bit keys
I Worst case brute force: 22k

I Advantage: uses an existing cipher
I Disadvantage: doubles the processing time
I Problem: double encryption is subject to meet-in-the-middle attack

52

Double encryption was a (naive) option for extending the key length of DES. It effectively would
double the key length from 56 bits to 112 bits. A new cipher would not have to be designed or
analysed, and existing software/hardware implementations could be used.

But a meet-in-the-middle attack makes Double-DES (or double encryption on any block cipher)

insecure.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Meet-in-the-Middle Attack

I Double Encryption where key K is k-bits: C = E(K2,E(K1,P))

I Say X = E(K1,P) = D(K2,C)
I Attacker knows two plaintext, ciphertext pairs (Pa,Ca) and (Pb,Cb)

1. Encrypt Pa using all 2k values of K1 to get multiple values of X
2. Store results in table and sort by X
3. Decrypt Ca using all 2k values of K2

4. As each decryption result produced, check against table
5. If match, check current K1,K2 on Cb. If Pb obtained, then accept the keys

I With two known plaintext, ciphertext pairs, probability of successful attack
is almost 1

I Encrypt/decrypt operations required: ≈ 2 × 2k (twice as many as single
encryption)

53

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Example 5-bit Block Cipher

54

The figure on slide 54 shows an example 5-bit block cipher with a 3-bit key. To encrypt, look in
the left column to find the row of the plaintext, then look for the column corresponding to the
key. The intersection of row and column gives the ciphertext.

This example block cipher is used in the Meet-in-the-Middle attack exercise.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Meet-in-the-Middle Attack (exercise)

The figure on slide 54 shows an example 5-bit block cipher, referred to as Bob’s
Cipher. A double version of Bob’s cipher, called Double-Bob, was used by two
users to exchange multiple encrypted messages using the same 6-bit secret key.
You have obtained the plaintext/ciphertext pairs of two of those messages:
(P1,C1) = (01101, 11111) and (P2,C2) = (11001, 11011). Using a
meet-in-the-middle attack, find the secret key.

55

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Triple Encryption Concept

I Different variations:
I Use 2 keys, e.g. Triple-DES 112 bits
I Use 3 keys, e.g. Triple-DES 168 bits

Y=E(K
2
,E(K

1
,P))P E()

K1

E()

3K2

E()X=E(K
1
,P) C=E(K

3
,E(K

2
,E(K

1
,P)))

K

Plaintext

Shared

Encrypt Intermediate

secret key 1

Triple Encryption (EEE)

Intermediate Ciphertext

Shared

Encrypt

secret key 3secret key 1
Shared

Encrypt

P E()

K1

E()

3KK2

D()X=E(K
1
,P) C=E(K

3
,D(K

2
,E(K

1
,P)))Y=D(K

2
,E(K

1
,P))

Plaintext

Shared

Encrypt Intermediate

secret key 1

Triple Encryption (EDE)

Intermediate Ciphertext

Shared

Encrypt

secret key 3secret key 1
Shared

Decrypt

I Why E-D-E? To be compatible with single DES:

C = E(K1,D(K1,E(K1,P))) = E(K1,P)

I Problem: 3 times slower than single DES

56

The figure on slide 56 shows the concept of Triple Encryption, where two different keys are used.
This effectively doubles the key strength compared to the original cipher. Another variation (not
shown) would be to use three different keys, effectively tripling the key strength.

Note that if you use the same key for each step, then because of the E-D-E approach, this

reverts to the original cipher. That is, if you use Triple-DES but use the same key in each

step, this reverts to (single) DES. The benefit of this is that you can have an implementation of

Triple-DES (which is built on the implementations of DES), and allow the user to choose a key

to suit their needs: 1 key for DES, 2 keys for 112-bit security, 3 keys for 168-bit security.

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Contents

Encryption Building Blocks

Attacks on Encryption

Block Cipher Design Principles

Stream Cipher Design Principles

Example: Brute Force on DES

Example: Brute Force on AES

Example: Meet-in-the-Middle Attack

Example: Cryptanalysis on Triple-DES and AES

57

Cryptography

Encryption and
Attacks

Encryption
Building Blocks

Attacks on
Encryption

Block Cipher
Design Principles

Stream Cipher
Design Principles

Example: Brute
Force on DES

Example: Brute
Force on AES

Example:
Meet-in-the-Middle
Attack

Example:
Cryptanalysis on
Triple-DES and
AES

Cryptanalysis of Triple-DES and AES

Cipher Method Key Required resources:
space Time Memory Known data

DES Brute force 256 256 - -
3DES MITM 2168 2111 256 22

3DES Lucks 2168 2113 288 232

AES 128 Biclique 2128 2126.1 28 288

AES 256 Biclique 2256 2254.4 28 240

I Known data: chosen pairs of (plaintext, ciphertext)

I Lucks: S. Lucks, Attacking Triple Encryption, in Fast Software Encryption, Springer, 1998

I Biclique: Bogdanov, Khovratovich and Rechberger, Biclique Cryptanalysis of the Full
AES, in ASIACRYPT2011, Springer, 2011

58

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

Data Encryption Standard

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 04 Jan 2022,
des.tex, r1966

1

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

Contents

Overview of the Data Encryption Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

2

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

Data Encryption Standard

I Symmetric block cipher

I 56-bit key, 64-bit input block, 64-bit output block

I Developed in 1977 by NIST; designed by IBM (Lucifer) with input from
NSA

I Principles used in other ciphers, e.g. 3DES, IDEA

3

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

Contents

Overview of the Data Encryption Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

4

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

Simplified DES

I Input (plaintext) block: 8-bits

I Output (ciphertext) block: 8-bits

I Key: 10-bits

I Rounds: 2

I Round keys generated using permutations and left shifts

I Encryption: initial permutation, round function, switch halves

I Decryption: Same as encryption, except round keys used in opposite order

5

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

S-DES Key Generation and Encryption

IP

f

SW

f

−1
IP

K

K

LS1 LS1

P10

P8

LS2 LS2

P8

Plaintext

Secret key

Ciphertext

K 10 bits

8 bitsP

C 8 bits

K1

K2

8

8

right 5left 5

5 5

8

8

8

8

5 5

55

6

The figure on slide 6 shows the key generation and encryption steps of S-DES. Key generation,
shown on the left, is used to generate round keys and is the same algorithm when used for both
encryption and decryption. That is, the encrypter and decrypter will generate the exact same
round keys.

The encrypter started with a shared secret key 10 bits long and 8 bits of plaintext. Two
sub-keys, or round keys, K1 and K2 are generated using the key generation steps, which involve
Permutations and Left Shifts.

Encryption applies an Initial Permutation, then a round function fk (with details to be shown

shortly), SWaps the two halves of the 8 bit output, then reapplies the round function, but using

the 2nd round key as input. Encryption ends with the inverse of the Initial Permutation.

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

S-DES Key Generation and Decryption

IP

f

SW

f

−1
IP

K

K

K1

K2

LS1 LS1

P10

P8

LS2 LS2

P8

Secret key
K 10 bits

8 bits

8 bits

right 5left 5

5 5

8

8

8

8

5 5

55

Ciphertext

Plaintext

P

C

8

8

7

The figure on slide 7 shows the key generation and decryption. Decryption is in fact identical to

encryption, except the round keys are used in the opposite order. That is, for encryption round

key K1 is used first, then round key K2. For decryption, K2 is used first and then K1.

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

S-DES Round Function Details

K1

8

K1

8

LS1 LS1

P10

P8

LS2

P8

Plaintext

Secret key

Ciphertext

K 10 bits

8 bitsP

C 8 bits

K2

8

right 5left 5

5 5

8

8

8

8

5 5

55

IP

f

SW

f

−1IP

K

K

LS2

EP

S0 S1

P4

left 4 right 4

4 4

4

44

8

2 2

f
K

4

8

The figure on slide 8 shows the details of the round function, fk . Note that the same steps are
applied in the 2nd round, but instead K2 is used as the round key. Operations include Expand
and Permutate, XOR, S-boxes and a Permutation of 4 bits. The 8 bits output (left half and
right half) are then input the the SWap block (swapping the two halves).

Definitions of the permutations and S-boxes follow.

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

S-DES Permutations (definition)

Permutations used in S-DES:
P10 (permutate)
Input : 1 2 3 4 5 6 7 8 9 10

Output: 3 5 2 7 4 10 1 9 8 6

P8 (select and permutate)
Input : 1 2 3 4 5 6 7 8 9 10

Output: 6 3 7 4 8 5 10 9

P4 (permutate)
Input : 1 2 3 4

Output: 2 4 3 1

EP (expand and permutate)
Input : 1 2 3 4

Output: 4 1 2 3 2 3 4 1

IP (initial permutation)
Input : 1 2 3 4 5 6 7 8

Output: 2 6 3 1 4 8 5 7
9

As an example, permutation P4 takes a 4-bit input and produces a 4-bit output. The 1st bit
of the input becomes the 4th bit of the output. The 2nd bit of the input becomes the 1st bit
of the output. The 3rd bit of the input becomes the 3rd bit of the output. The 4th bit of the
input becomes the 1st bit on the output.

The permutations are fixed. That is they are always these exact permutations, and known by

the encrypter, decrypter and attacker.

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

Other Operations in S-DES

I LS-1: left shift by 1 position

I LS-2: left shift by 2 positions

I IP−1: inverse of IP, such that X = IP−1(IP(X))

I SW: swap the halves

I fK : a round function using round key K

I F: internal function in each round

10

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

S-DES S-Boxes (definition)

S-Box considered as a matrix: input used to select row/column; selected element
is output

4-bit input: bit1, bit2, bit3, bit4

bit1bit4 specifies row (0, 1, 2 or 3 in decimal)
bit2bit3 specifies column

S0 =

01 00 11 10
11 10 01 00
00 10 01 11
11 01 11 10

 S1 =

00 01 10 11
10 00 01 11
11 00 01 00
10 01 00 11

11

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

Encrypt with S-DES (exercise)

Show that when the plaintext 01110010 is encrypted using S-DES with key
1010000010 that the ciphertext obtained is 01110111.

12

1. Rearrange K using P10: 1000001100

2. Left shift by 1 position both the left and right halves: 00001 11000

3. Rearrange the halves with P8 to produce K1: 10100100

4. Left shift by 2 positions the left and right halves: 00100 00011

5. Rearrange the halves with P8 to produce K2: 01000011

1. Apply the initial permutation, IP, on P: 10101001

2. Assume the input from step 1 is in two halves, L and R: L=1010, R=1001

3. Expand and permutate R using E/P: 11000011

4. XOR input from step 3 with K1: 10100100 XOR 11000011 = 01100111

5. Input left halve of step 4 into S-Box S0 and right halve into S-Box S1:

5.1 For S0: 0110 as input: b1, b4 for row, b2, b3 for column
5.2 Row 00, column 11 → output is 10
5.3 For S1: 0111 as input:
5.4 Row 01, column 11 → output is 11

6. Rearrange outputs from step 5 (1011) using P4: 0111

7. XOR output from step 6 with L from step 2: 0111 XOR 1010 = 1101

8. Now we have the output of step 7 as the left half and the original R as the right half.
Swap the halves and move to round 2: 1001 1101

9. E/P with right half: E/P(1101) = 11101011

10. XOR output of step 9 with K2: 11101011 XOR 01000011 = 10101000

11. Input to S-Boxes:

11.1 For S0, 1010
11.2 Row 10, column 01 → output is 10
11.3 For S1, 1000
11.4 Row 10, column 00 → output is 11

12. Rearrange output from step 11 (1011) using P4: 0111

13. XOR output of step 12 with left halve from step 8: 0111 XOR 1001 = 1110

14. Input output from step 13 and right halve from step 8 into inverse IP

14.1 Input is: 1110 1101

14.2 Output is: 01110111

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

S-DES Summary

I Educational encryption algorithm

I S-DES expressed as functions:

ciphertext = IP−1(fK2(SW(fK1(IP(plaintext)))))

plaintext = IP−1(fK1(SW(fK2(IP(ciphertext)))))

I Brute force attack on S-DES is easy since only 10-bit key

I If know plaintext and corresponding ciphertext, can we determine key? Very
hard

15

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

S-DES Compared to Real DES

I S-DES vs DES

I Block size: 8 bits vs 64 bits

I Rounds: 2 vs 16

I IP: 8 bits vs 64 bits

I F: 4 bits vs 32 bits

I S-Boxes: 2 vs 8

I Round key: 8 bits vs 48 bits

16

The following section presents the details of DES. This is primarily for reference (or as evidence

of the similarities and differences with S-DES). You are not expected to know the details of the

DES operations.

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

Contents

Overview of the Data Encryption Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

17

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

General DES Encryption Algorithm

18

The figure on slide 18 shows the overall steps in DES encryption. The details of each block are

shown in the following.

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

Initial Permutation Tables for DES

19

The figure on slide 19 shows the initial permutation and it’s inverse. The table is read row-by-

row. So the 58th input bit becomes the 1st output bit. The 50th input bit becomes the 2nd

output bit. And the 7th input bit becomes the 64th output bit.

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

Calculation of F(R,K)

20

The figure on slide 20 shows the details of a single round of encruption, i.e. the round function.

Similar to S-DES, it takes the right half, applies an expand and permutate (E), XOR with the

round key, applies S-Boxes, and then a final permutate (P).

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

Permutation Tables for DES

21

The figure on slide 21 shows E and P which are used within a round of DES.

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

Definition of DES S-Boxes 1 to 4

22

The figure on slide 22 shows the first 4 S-Boxes. Each S-Box takes a 6 bit input. The first and

last bit are used to determine the row, and the middle 4 bits determine the column. The result

is a decimal values within the range 0 to 15, which determines the 4 bit output. See https:

//en.wikipedia.org/wiki/DES_supplementary_material for an example of reading the

S-Boxes.

https://en.wikipedia.org/wiki/DES_supplementary_material
https://en.wikipedia.org/wiki/DES_supplementary_material

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

Definition of DES S-Boxes 5 to 6

23

The figure on slide 23 shows the last 4 S-Boxes.

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

DES Permutated Choice 1 and 2

24

The figure on slide 24 shows the Permutated Choices used in key generation.

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

DES Key Generation Schedule

25

The figure on slide 25 shows the overall key generation steps.

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

DES Schedule of Left Shifts in Key Generation

26

The figure on slide 26 shows the schedule of left shifts indicating how many bits are shifted left

when a Left Shift is applied in each round for key generation.

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

Contents

Overview of the Data Encryption Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

27

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

DES Encryption in OpenSSL

I Encrypt a file with a password using the enc operation

I Generate a random key using the rand operation

I Disable padding (with exact plaintext correct size)

I Encrypt with key and IV using enc operation

I View binary data (e.g. ciphertext) with xxd

28

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

DES Key Generation (exercise)

Generate a shared secret key to be used with DES and share it with another
person.

29

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

DES Encryption (exercise)

Create a message in a plain text file and after using DES, send the ciphertext to
the person you shared the key with.

30

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

DES Decryption (exercise)

Decrypt the ciphertext you received.

31

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

Contents

Overview of the Data Encryption Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

32

Cryptography

Data Encryption
Standard

Overview of the
Data Encryption
Standard (DES)

Simplified-DES

Details of DES

DES in OpenSSL

DES in Python

AES in Python Cryptography Library

I cryptography.io/en/latest/hazmat/primitives/symmetric-encryption/

33

https://cryptography.io/en/latest/hazmat/primitives/symmetric-encryption/

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Advanced Encryption Standard

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 04 Jan 2022,
aes.tex, r1967

1

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Contents

Overview of AES

Simplified-AES

Simplified-AES Example

AES in OpenSSL

AES in Python

2

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

History of AES

I 1977: DES (56-bit key). NIST published.

I 1991: IDEA, similar to DES, secure but patent issues
I 1999: 3DES (168-bit key). NIST recommended 3DES be used (DES only

for legacy systems)
I 3DES was considered secure (apart from special case attacks)
I But 3DES is very slow, especially in software
I DES and 3DES use 64-bit blocks – larger block sizes required for efficiency

I 1997: NIST called for proposals for new Advanced Encryption Standards
I Proposals made public and evaluations performed

I 2001: Selected Rijndael as the algorithm for AES

3

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Selecting a Winner

I Original NIST criteria:
I Security: effort to cryptoanalyse algorithm, randomness, . . .
I Cost: royalty-free license, computationally efficient, . . .
I Algorithm and implementation characteristics: flexibility (different

keys/blocks, implement on different systems), simplicity, . . .

I 21 candidate algorithms reduced to 5
I Updated NIST evaluation criteria for 5 algorithms:

I General Security
I Software and hardware implementations (needs to be efficient)
I Low RAM/ROM requirements (e.g. for smart cards)
I Ability to change keys quickly
I Potential to use parallel processors

4

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Selecting Rijndael for AES

I Security: good, no known attacks

I Software implementation: fast, can make use of parallel processors

I Hardware implementation: fastest of all candidates

I Low memory requirements: good, except encryption and decryption require
separate space

I Timing and Power analysis attacks: easiest to defend against

I Key flexibility: supports on-the-fly change of keys and different size of
keys/blocks

5

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Overview of AES

I NIST Advanced Encryption Standard, FIPS-197, 2001
I Three variations of same algorithm standardised

I AES-128: 128-bit key, 10 rounds
I AES-192: 192-bit key, 12 rounds
I AES-256: 256-bit key, 14 rounds

I AES uses 128-bit block size for all variations

I S-AES used to understand AES (educational only)

I For details of AES see the Stallings textbook, AES on Wikipedia or the AES
standard from NIST

6

https://www.nist.gov/publications/advanced-encryption-standard-aes
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://www.nist.gov/publications/advanced-encryption-standard-aes
https://www.nist.gov/publications/advanced-encryption-standard-aes

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Contents

Overview of AES

Simplified-AES

Simplified-AES Example

AES in OpenSSL

AES in Python

7

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Simplified-AES

I Educational purposes only. Mohammad A. Musa , Edward F. Schaefer and
Stephen Wedig (2003) A Simplified AES Algorithm and its Linear and
Differential Cryptanalyses, Cryptologia, 27:2, 148-177, DOI:
10.1080/0161-110391891838

I Input: 16-bit block of plaintext; 16-bit key

I Output: 16-bit block of ciphertext
I Operations:

I Add Key: XOR of a 16-bit key and 16-bit state matrix
I Nibble Substitution: S-Box table lookup that swaps nibbles (4 bits)
I Shift Row: shift of nibbles in a row
I Mix Column: re-order columns
I Rotate Nibbles: swap the nibbles

I 3 rounds (although they don’t contain same operations)

8

S-AES operates on 16-bit blocks, with some operations on 8-bit words and others on 4-bit

nibbles. For example, a 16-bit block is equivalent to two 8-bit words or four 4-bit nibbles.

https://www.tandfonline.com/action/showCitFormats?doi=10.1080/0161-110391891838

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

S-AES Encryption

add key

nibble substitution

mix columns

shift row

add key

nibble substitution

shift row

add key

Plaintext
P 16 bits

Ciphertext

16 bitsC

round 1

round 2

expand key

expand key

K

Secret key
16 bits

2K

K1

K0

9

The figure on slide 9 shows the overall steps for S-AES and key expansion and encryption. The
key generation takes a 16-bit secret key and expands that into 3 16-bit round keys. The first
round key K0 is simple the original key. The next two round keys, K1 and K2 are generated by
an expansion algorithm. The figure on slide 11 shows that algorithm for K1.

S-AES encryption operates on 16-bit blocks of plaintext. To encrypt, there is an initial add

key, and then two rounds, where the 2nd round does not include the mix columns operation.

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

S-AES Decryption

add key

16 bits

16 bits

round 1

round 2

Ciphertext

Plaintext

P

C

inverse nibble sub

add key

inverse mix columns

inverse shift row

inverse shift row

inverse nibble sub

add key

expand key

expand key

K

Secret key
16 bits

0K

K1

2K

10

The figure on slide 10 shows the decryption operations. Note that it is similar to encryption in

reverse, with all operations replaced with their inverse operations. The same round keys are used

as in encryption, but in the opposite order.

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

S-AES Key Generation for Round 1

w 0 w 1

w 0

w 1

nibble substitution

rotate nibble

round

constant

split halves

K0 16 bits

join halves

w w 32

K 16 bits1

8 8

11

The figure on slide 11 shows the key generation operations for generated round key K1. Similar

steps are used to generate K2, where the input is K1 and a different round constant.

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

S-AES State Matrix (definition)

S-AES operates on a 16-bit state matrix, viewed as 4 nibbles[
b0b1b2b3 b8b9b10b11

b4b5b6b7 b12b13b14b15

]
=

[
S0,0 S0,1

S1,0 S1,1

]

12

While S-AES operates on 16-bits at a time, those bits are viewed as a state matrix of 4 nibbles.
Note the matrix is filled columnwise, with the first 8 bits (2 nibbles) in the first column.

The following shows operations based on the state matrix.

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

S-AES Shift Row, Add Key and Rotate Nibbile operations
(definition)

S-AES Shift Row: [
S0,0 S0,1

S1,0 S1,1

]
→
[
S0,0 S0,1

S1,1 S1,0

]
S-AES Add Key: Exclusive OR (XOR)
S-AES Rotate Nibble: swap the two nibbles
S-AES Nibble Substitution: apply S-Box on each nibble
S-AES Round Constant 1: 10000000

S-AES Round Constant 2: 00110000

13

Shift Row swaps the 2nd nibble with the 4th nibble. Add Key is a bitwise XOR. The round
constants are used in the key generation.

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

S-AES S-Boxes (definition)

S-Box considered as a matrix: input used to select row/column; selected element
is output

Input: 4-bit nibble, bit1, bit2, bit3, bit4

bit1bit2 specifies row
bit3bit4 specifies column

encrypt :

1001 0100 1010 1011
1101 0001 1000 0101
0110 0010 0000 0011
1100 1110 1111 0111

decrypt :

1010 0101 1001 1011
0001 0111 1000 1111
0110 0000 0010 0011
1100 0100 1101 1110

14

The left-most 2 bits in a nibble determine the row, and the right-most 2 bits in the nibble

determine the column. The output nibble is based on the S-Box. The Inverse S-Box is used in

decryption.

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

S-AES Mix Columns (definition)

Mix the columns in the state matrix be performing a matrix multiplication.
Mix Columns: [

S ′
0,0 S ′

0,1

S ′
1,0 S ′

1,1

]
=

[
1 4
4 1

] [
S0,0 S0,1

S1,0 S1,1

]
Inverse Mix Columns:[

S ′
0,0 S ′

0,1

S ′
1,0 S ′

1,1

]
=

[
9 2
2 9

] [
S0,0 S0,1

S1,0 S1,1

]
Galois Field GF(24) is used for addition and multiplication operations.

15

S ′ denotes the output from the mixing of columns, e.g. S ′
0,0 = (1×S0,0)+(4×S1,0). Importantly,

the resulting addition and multiplication operations are in Galois Field GF(24). We do not cover
(Galois) fields, however in Number Theory we saw modular arithmetic with mod n where all
operations produced results within 0 to n. This is a simple case of a field, i.e. all operations
produce answers within some finite range. GF(24) means all answers will be within range 0 to
15.

GF(24) addition is equivalent to bitwise XOR. However GF(24) multiplication is more compli-

cated. Therefore, for the purpose of demonstrating S-AES, a simplified view of the mix column

operations with a table lookup for multiplication is shown in the following.

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

S-AES Mix Columns (Simple) (definition)

Mix the columns in the state matrix be performing the following calculations.
Mix Columns:

S ′
0,0 = S0,0 ⊕ (0100× S1,0)

S ′
1,0 = (0100× S0,0)⊕ S1,0

S ′
0,1 = S0,1 ⊕ (0100× S1,1)

S ′
1,1 = (0100× S0,1)⊕ S1,1

Inverse Mix Columns:

S ′
0,0 = (1001× S0,0)⊕ (0010× S1,0)

S ′
1,0 = (0010× S0,0)⊕ (1001× S1,0)

S ′
0,1 = (1001× S0,1)⊕ (0010× S1,1)

S ′
1,1 = (0010× S0,1)⊕ (1001× S1,1)

For multiplication, lookup using The figure on slide 17.
16

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

GF(24) Multiplication Table used in S-AES

17

The figure on slide 17 shows the GF(24) multiplication table in binary. The green column is

used in encryption (Mix Columns) and the two blue columns are used in decryption (Inverse Mix

Columns). For example with encryption, when multiplying a value by 4 (0100 in binary), lookup

the value in the first column (e.g. 0111) and the answer will be in the green column (e.g. 1111).

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Comparing S-AES and AES-128

I S-AES
I 16-bit key, 16-bit plaintext/ciphertext
I 2 rounds: first with all 4 operations, last with 3 operations
I Round key size: 16 bits
I Mix Columns: arithmetic over GF(24)

I AES-128
I 128-bit key, 128-bit plaintext/ciphertext
I 10 rounds: first 9 with all 4 operations, last with 3 operations
I Round key size: 128 bits
I Mix Columns: arithmetic over GF(28)

I Principles of operation are the same

18

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Contents

Overview of AES

Simplified-AES

Simplified-AES Example

AES in OpenSSL

AES in Python

19

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Encrypt with S-AES (exercise)

Show that when the plaintext 1101 0111 0010 1000 is encrypted using
Simplified-AES with key 0100 1010 1111 0101 that the ciphertext obtained is
0010 0100 1110 1100.

20

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Contents

Overview of AES

Simplified-AES

Simplified-AES Example

AES in OpenSSL

AES in Python

21

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

AES Key Generation (exercise)

Generate a shared secret key to be used with AES and share it with another
person.

22

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

AES Encryption (exercise)

Create a message in a plain text file and after using AES, send the ciphertext to
the person you shared the key with.

23

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

AES Decryption (exercise)

Decrypt the ciphertext you received.

24

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

AES Performance Benchmarking (exercise)

Perform speed tests on AES using both the software and hardware
implementations (if available). Compare and discuss the impact of the following
on performance: key length; software vs hardware; different computers (e.g.
compare the performance with another person).

25

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Contents

Overview of AES

Simplified-AES

Simplified-AES Example

AES in OpenSSL

AES in Python

26

Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

AES in Python Cryptography Library

I https://cryptography.io/en/latest/hazmat/primitives/

symmetric-encryption/

27

https://cryptography.io/en/latest/hazmat/primitives/symmetric-encryption/
https://cryptography.io/en/latest/hazmat/primitives/symmetric-encryption/

Cryptography

Pseudorandom
Number

Generators

Pseudorandom Number Generators

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 13 Feb 2020,
prng.tex, r1769

1

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

Block Cipher Modes of Operation

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 23 Dec 2021,
modes.tex, r1949

1

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

Contents

Block Ciphers with Multiple Blocks

Electronic Code Book

Cipher Block Chaining Mode

Cipher Feedback Mode

Output Feedback Mode

Counter Mode

XTS-AES

2

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

How Do Block Ciphers Encrypt Arbitrary Length Plaintext?

I Block cipher: operates on fixed length b-bit input to produce b-bit
ciphertext

I What about encrypting plaintext longer than b bits?
I Naive approach: Break plaintext into b-bit blocks (padding if necessary)

and apply cipher on each block independently
I ECB

I Security issues arise:
I Repetitions of input plaintext blocks produces repetitions of output ciphertext

blocks
I Repetitions (patterns) in ciphertext are bad!

I Different modes of operation have been developed

I Tradeoffs between security, performance, error handling and additional
features (e.g. include authentication)

3

We will not cover each mode of operation in detail, but rather present them so you are aware of

some of the common modes. For more technical details of some of these modes of operation,

including discussion of padding, error propagation and the use of initialisation vectors, see NIST

Special Publication 800-38A Recommendations for Block Cipher Modes of Operation: Methods

and Techniques. Additional (newer) modes of operation are in the NIST SP 800-38 series, such

as 800-38C CCM, 800-38D GCM and 800-38E XTS-AES.

https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://csrc.nist.gov/publications/detail/sp/800-38c/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38e/final

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

Contents

Block Ciphers with Multiple Blocks

Electronic Code Book

Cipher Block Chaining Mode

Cipher Feedback Mode

Output Feedback Mode

Counter Mode

XTS-AES

4

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

ECB Summary

I Each block of 64 plaintext bits is encoded independently using same key

I Typical applications: secure transmission of single values (e.g. encryption
key)

I Problem: with long message, repetition in plaintext may cause repetition in
ciphertext

5

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

ECB Encryption

Credit: Wikimedia https://commons.wikimedia.org/wiki/File:ECB_encryption.svg, public domain

6

https://commons.wikimedia.org/wiki/File:ECB_encryption.svg

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

ECB Decryption

Credit: Wikimedia https://commons.wikimedia.org/wiki/File:ECB_decryption.svg, public domain

7

https://commons.wikimedia.org/wiki/File:ECB_decryption.svg

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

Contents

Block Ciphers with Multiple Blocks

Electronic Code Book

Cipher Block Chaining Mode

Cipher Feedback Mode

Output Feedback Mode

Counter Mode

XTS-AES

8

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

CBC Summary

I Input to encryption algorithm is XOR of next 64-bits plaintext and
preceding 64-bits ciphertext

I Typical applications: General-purpose block-oriented transmission;
authentication

I Initialisation Vector (IV) must be known by sender/receiver, but secret from
attacker

9

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

CBC Encryption

Credit: Wikimedia https://commons.wikimedia.org/wiki/File:CBC_encryption.svg, public domain

10

https://commons.wikimedia.org/wiki/File:CBC_encryption.svg

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

CBC Decryption

Credit: Wikimedia https://commons.wikimedia.org/wiki/File:CBC_decryption.svg, public domain

11

https://commons.wikimedia.org/wiki/File:CBC_decryption.svg

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

Contents

Block Ciphers with Multiple Blocks

Electronic Code Book

Cipher Block Chaining Mode

Cipher Feedback Mode

Output Feedback Mode

Counter Mode

XTS-AES

12

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

CFB Summary

I Converts block cipher into stream cipher
I No need to pad message to integral number of blocks
I Operate in real-time: each character encrypted and transmitted immediately

I Input processed s bits at a time

I Preceding ciphertext used as input to cipher to produce pseudo-random
output

I XOR output with plaintext to produce ciphertext

I Typical applications: General-purpose stream-oriented transmission;
authentication

13

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

CFB Encryption

Credit: Wikimedia https://commons.wikimedia.org/wiki/File:CFB_encryption.svg, public domain

14

https://commons.wikimedia.org/wiki/File:CFB_encryption.svg

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

CFB Decryption

Credit: Wikimedia https://commons.wikimedia.org/wiki/File:CFB_decryption.svg, public domain

15

https://commons.wikimedia.org/wiki/File:CFB_decryption.svg

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

Contents

Block Ciphers with Multiple Blocks

Electronic Code Book

Cipher Block Chaining Mode

Cipher Feedback Mode

Output Feedback Mode

Counter Mode

XTS-AES

16

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

OFB Summary

I Converts block cipher into stream cipher

I Similar to CFB, except input to encryption algorithm is preceding
encryption output

I Typical applications: stream-oriented transmission over noisy channels (e.g.
satellite communications)

I Advantage compared to OFB: bit errors do not propagate

I Disadvantage: more vulnerable to message stream modification attack

17

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

OFB Encryption

Credit: Wikimedia https://commons.wikimedia.org/wiki/File:OFB_encryption.svg, public domain

18

https://commons.wikimedia.org/wiki/File:OFB_encryption.svg

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

OFB Decryption

Credit: Wikimedia https://commons.wikimedia.org/wiki/File:OFB_decryption.svg, public domain

19

https://commons.wikimedia.org/wiki/File:OFB_decryption.svg

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

Contents

Block Ciphers with Multiple Blocks

Electronic Code Book

Cipher Block Chaining Mode

Cipher Feedback Mode

Output Feedback Mode

Counter Mode

XTS-AES

20

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

CTR Summary

I Converts block cipher into stream cipher

I Each block of plaintext XORed with encrypted counter

I Typical applications: General-purpose block-oriented transmission; useful for
high speed requirements

I Efficient hardware and software implementations

I Simple and secure

21

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

CTR Encryption

Credit: Wikimedia https://commons.wikimedia.org/wiki/File:CTR_encryption_2.svg, public domain

22

https://commons.wikimedia.org/wiki/File:CTR_encryption_2.svg

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

CTR Decryption

Credit: Wikimedia https://commons.wikimedia.org/wiki/File:CTR_decryption_2.svg, public domain

23

https://commons.wikimedia.org/wiki/File:CTR_decryption_2.svg

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

Contents

Block Ciphers with Multiple Blocks

Electronic Code Book

Cipher Block Chaining Mode

Cipher Feedback Mode

Output Feedback Mode

Counter Mode

XTS-AES

24

Cryptography

Block Cipher
Modes of
Operation

Block Ciphers with
Multiple Blocks

Electronic Code
Book

Cipher Block
Chaining Mode

Cipher Feedback
Mode

Output Feedback
Mode

Counter Mode

XTS-AES

Encryption for Stored Data with XTS-AES

I XTS-AES designed for encrypting stored data (as opposed to transmitted
data)

I Overcomes potential attack on CBC whereby one block of the ciphertext is
changed by the attacker, and that change does not affect all other blocks

I See Stallings Chapter 6.7 for details and differences to transmitted data
encryption

25

Cryptography

Public Key
Cryptography

Concepts of Public
Key Cryptography

Public Key Cryptography

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 21 Dec 2021,
public.tex, r1944

1

Cryptography

Public Key
Cryptography

Concepts of Public
Key Cryptography

Contents

Concepts of Public Key Cryptography

2

Cryptography

Public Key
Cryptography

Concepts of Public
Key Cryptography

Public Key vs Symmetric Key

I Symmetric Key Encryption
I Same key used for encryption and decryption
I Key is randomly generated (e.g. by sender)
I Problem: How does receiver securely obtain secret key?

I Public (or asymmetric) key encryption
I Two different, but mathematically related keys
I One key (public) for encryption, another key (private) for decryption
I Since encrypt key is public, key exchange is not a problem
I Ciphers designed around math problems
I Problem: Performance: much, much slower than symmetric

3

With symmetric key encryption, assume the sender generates a random key. The receiver of the
encrypted data must also know that key in order to decrypt the data. But how does the receiver
learn the key? If the sender sends the key unencrypted then an attacker can learn the key and it
is no longer secret. If the sender encrypts the key, then the same problem arises: how do they
get the second key (which is used to encrypt the first key) to the receiver?

Public key encryption can solve this problem, as we will see in the following slides.

Symmetric key encryption has been the main form of cryptography for a long time. It wasn’t

until the 1960’s and 1970’s that public key cryptography was designed.

Cryptography

Public Key
Cryptography

Concepts of Public
Key Cryptography

Public and Private Keys

I Every user has their own key pair: (PU, PR)
I Keys are generated using known algorithm (they are not chosen randomly like

symmetric keys)

I Public key, PU
I Available to everyone, e.g. in email signature, on website, in newspaper

I Private key, PR
I Secret, known only by owner, e.g. access restricted file on computer

I Ciphers: if encrypt with one key in the pair, can only successfully decrypt
with the other key in the pair

4

Consider all the students in the class. With public key crypto, each student would generate their
own key pair. They could tell everyone their public key (e.g. yell it out in class, print on the
screen and show), but they must keep their private key secret. Note that the keys are related: an
algorithm is used to generate them (they are not randomly chosen like symmetric key encryption
secret keys). That algorithm must be designed such that it is practically impossible for someone
to find the private key if they know the public key.

The encryption/decryption algorithms in public key crypto are designed such that if you encrypt
plaintext with one key in the pair, then you can only successfully decrypt the ciphertext if using
the other key from that pair. For example, if you encrypt a message with the public key of Steve,
then you can only decrypt the ciphertext if you know the private key of Steve.

Some public key ciphers also work in the other direction: if you encrypt a message with the

private key of Steve, then you can only decrypt the ciphertext if you know the public key of

Steve. We will see this in digital signatures.

Cryptography

Public Key
Cryptography

Concepts of Public
Key Cryptography

Confidentiality with Public Key Crypto

M=D(PR B,C)

PU B

C=E(PU
B

,M)M

PR B

D()E()

Ciphertext PlaintextPlaintext
Encryption Decryption

Public key Private key

I User A is sender, user B is receiver

I Encrypt using receivers public key, PUB

I Decrypt using receivers private key, PRB

I Only B has PRB , therefore only B can successfully decrypt → confidentiality

5

This assumes User A (on the left) already knows the public key of user B. Since it is PUBLIC

there is no problem with A knowing B’s public key. However in practice, there are problems with

A being sure that the public key does indeed belong to B (maybe it is someone pretending to be

B). We don’t cover that here, but in the chapter on digital certificates we will see this issue (of

knowing who’s public key it is) be addressed.

Cryptography

Public Key
Cryptography

Concepts of Public
Key Cryptography

Why Does Public Key Crypto Work?

I Public key ciphers consist of:
I Key generation algorithm
I Encryption algorithm
I Decryption algorithm

I Designed around computationally hard mathematical problems
I Very hard to solve without key, i.e. trapdoor functions

I Finding prime factors of large integers
I Solving logarithms in modulo arithmetic
I Solving logarithms on elliptic curves

6

The details of the algorithms are covered in subsequent chapters.

Cryptography

Public Key
Cryptography

Concepts of Public
Key Cryptography

Public Key Crypto Examples

I RSA (Rivest Shamir Adleman)
I Security depends on difficult to factor large integers
I Widely used for digital signatures

I Diffie-Hellman
I Security depends on difficult to solve logarithms in modulo arithmetic
I Widely used for secret key exchange

I Elliptic Curve
I Security depends on difficulty to solve logarithms on elliptic curve
I Newer, used in signatures and key exchange
I Smaller keys is benefit

7

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

RSA

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 22 Dec 2021,
rsa.tex, r1945

1

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

Contents

RSA Algorithm

Analysis of RSA

Implementations of RSA

RSA in OpenSSL

RSA in Python

2

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

RSA Public Key Algorithm

I Created Ron Rivest, Adi Shamir and Len Adleman in 1978

I Formed RSA Security (company) in 1982 to commercialise products

I Most widely used public-key algorithm

I RSA is a block cipher: plaintext and ciphertext are integers

3

As we will see, the plaintext and ciphertext are integers. Any data can be represented in binary,
and then split into blocks, where each block is taken as an input to RSA.

More information about Rivest, Shamir and Adleman is given in Chapter ??.

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

The RSA Algorithm for Encryption

I Step 1: Users generated RSA key pairs using RSA Key Generation Algorithm

I Step 2: Users exchange public key

I Step 3: Sender encrypts plaintext using RSA Encryption Algorithm

I Step 4: Receiver decrypts ciphertext using RSA Decryption Algorithm

4

The following will show the algorithms used in steps 1, 3 and 4. For now we assume the users can
exchange public keys, noting that public keys do not need to be kept secret. For example, one
method to exchange public keys over a network is to simply email the public key, unencrypted.
It doesn’t matter if an attacker intercepts the public key, since, by definition, it is public to
everyone.

Later we will see that the exchange of public keys is in fact harder than it seems.

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

RSA Key Generation (algorithm)

Each user generates their own key pair

1. Choose primes p and q

2. Calculate n = pq

3. Select e: gcd(φ(n), e) = 1, 1 < e < φ(n)

4. Find d ≡ e−1 (mod φ(n))

The user keeps p, q and d private. The values of e and n can be made public.

I Public key of user, PU = {e, n}
I Private key of user PR = {d , n}

5

Note that the private key includes both d and n, however the same n is also included in the

public key. So while n is included in the private key, it is not actually private. This describes the

conceptual view of the RSA public and private key. Implementations of RSA may store additional

information in the keys, especially the private key.

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

RSA Key Generation (exercise)

Assume user A chose the primes p = 17 and q = 11. Find the public and private
keys of user A.

6

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

RSA Encryption and Decryption (algorithm)

Encryption of plaintext M, where M < n:

C = Me mod n

Decryption of ciphertext C :

M = Cd mod n

7

Note the conceptual simplicity of the encryption and decryption algorithms, compared to DES

and AES. Also note that the decryption algorithm is in fact identical to encryption—it is only

the variable names that have changed.

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

Requirements of the RSA Algorithm

1. Successful decryption: Possible to find values of e, d , n such that
Med mod n = M for all M < n

2. Successful decryption: Encryption with one key of a key pair (e.g. PU) can
only be successfully decrypted with the other key of the key pair (e.g. PR)

3. Computational efficiency: Easy to calculate Me mod n and Cd mod n for all
values of M < n

4. Secure: Infeasible to determine d or M from known information e, n and C

5. Secure: Infeasible to determine d or M given known plaintext, e.g. (M1,C1)

8

We will not show how RSA meets these requirements yet (it is covered in more depth later), but
RSA does indeed meet these requirements.

The 1st requirement is that if a message is encrypted, then the decryption of the resulting
ciphertext will produce the original message.

The 2nd requirement is that you can only use keys in the same key pair; using the wrong key
will produce incorrect results.

The 3rd requirement is that users can easily perform the encrypt and decrypt operations. By
“easily” we mean within reasonable time (i.e. seconds, not thousands of years).

The 4th requirement is that an attacker cannot find the private value d or the message.
The 5th requirement is that, even if the attacker knows old plaintext values and the corre-

sponding ciphertext (which was obtained using the same key pair), they should not be able to
find d or M.

Looking at the algorithms it is not immediately obvious how the security requirements are met.

That is because, for example, the encryption algorithm is an equation with 4 variables (C , M, e,

n), of which 3 are known to the attacker. Why can’t the attacker re-arrange the equation and

find the value of the unknown variable C? We will see some analysis of the security later.

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

Ordering of RSA Keys

I RSA encryption uses one key of a key pair, while decryption must use the
other key of that same key pair

I RSA works no matter the order of the keys
I RSA for confidentiality of messages

I Encrypt using the public key of receiver
I Decrypt using the private key of receiver

I RSA for authentication of messages
I Encrypt using the private key of the sender (called signing)
I Decrypt using the public key of the sender (called verification)

I In practice, RSA is primarily used for authentication, i.e. sign and verifying
messages

9

Why does confidentiality work? Since the receiver is the only user that knows their private key,
then they are the only user that can decrypt the ciphertext.

Why does authentication work? Since the sender is the only user that knows their private key,

then they are the only user that can sign the message/plaintext. And the receiver can verify it

came from that user if the signature decrypts successful with the sender’s public key.

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

RSA used for Confidentiality

M=D(PR B,C)

PU B

C=E(PU
B

,M)M

PR B

D()E()

Ciphertext PlaintextPlaintext
Encryption Decryption

Public key Private key

10

The figure on slide 10 shows RSA used to provide confidentiality of the message M. User A is

on the left and user B is on the right. The operations E() and D() correspond to the encrypt

and decrypt algorithms of RSA, respectively. User A encrypts the message using user B’s public

key, PUB . The ciphertext is sent to user B. User B then decrypts using their own private key,

PRB .

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

RSA used for Authentication

M

PU A

D()E()

PR A

C=E(PR
A

,M) M=D(PU A,C)

Ciphertext PlaintextPlaintext
Encryption Decryption

Private key Public key

11

The figure on slide 11 shows RSA used to provide authentication of the message M. The

operations E() and D() correspond to the encrypt and decrypt algorithms of RSA, respectively,

however they are more commonly referred to as signing and verification operations, respectively.

User A encrypts/signs the message using their own private key, PRA. The ciphertext/signed

message is sent to user B. User B then decrypts/verifies using user A’s public key, PUA.

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

RSA Encryption for Confidentiality (exercise)

Assume user B wants to send a confidential message to user A, where that
message, M is 8. Find the ciphertext that B will send A.

12

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

RSA Decryption for Confidentiality (exercise)

Show that user A successfully decrypts the ciphertext.

13

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

Contents

RSA Algorithm

Analysis of RSA

Implementations of RSA

RSA in OpenSSL

RSA in Python

14

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

Why Does RSA Decryption Work?

I Encryption involves taking plaintext and raise to power e

I Decryption involves taking previous value and raise to a different power d

I Decryption must produce the original plaintext, that is:

(Me)d mod n = M for all M < n

I This is true of if e and d are relatively prime

I Choose primes p and q, and calculate:

n = pq
1 < e < φ(n)
ed ≡ 1 (mod φ(n)) or d ≡ e−1 (mod φ(n))

15

Here we see why the key generation algorithm is designed as it is. Decryption will only work

(that is, produce the original plaintext) if the top equation is true. Note that Med = Med . So

the condition is that if you take the plaintext M and raise it to the power ed then the answer

must be the original M (in mod n). For this to be true, e and d must be chosen appropriately—it

will not work for just any value of e and d . Using Euler’s theorem it can be shown that it will

be true if e and d are multiplicative inverses of each other in mod φ(n).

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

Parameter Selection in RSA Key Generation

I Note: modular exponentiation is slow when using large values
I Choosing e

I Values such as 3, 17 and 65537 are popular: make exponentiation faster
I Small e vulnerable to attack; solution is to add random padding to each M

I Choosing d
I Small d vulnerable to attack
I But large d makes decryption slow

I Choosing p and q
I p and q must be very large primes
I Choose random odd number and test if its prime (probabilistic test)

16

As we saw in the exercise, key generation involves selecting values for p, q and e (where e
influences the value of d as it is the multiplicative inverse).

As e is a public value, a small value can be selected (since a brute force is not relevant; the
attacker already knows it) and in fact, many users can use the same value as each other. For
example, OpenSSL defaults to using e = 216 + 1 = 65537 for all keypairs generated. That is, by
default everyone using OpenSSL to generate keypairs will have the same value of e. This value
is small, meaning encryption is reasonable fast.

As d is the multiplicative inverse of e, a small e means d will be large. This is good, because d
must be kept private; large values are not subject to brute force attack. But it makes decryption
slow, since it involves Md , which is often taking one very large number M and raising to the
power of another very large number d . We will see later there are algorithms that can speed up
the decryption process.

The primes p and q should be chosen randomly (again, they are private, so should be hard for

an attacker to guess). A common approach is to choose a large odd number and then check

if it is prime. There are primality testing algorithms that can either prove the number selected

is prime, or give high confidence that it is prime (i.e. probabilistic test). When RSA is used for

signatures—it’s most common use—probabilistic testing is sufficient (it is faster than testing for

provable primes).

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

Security of RSA

I Brute-Force attack: choose large d (but makes algorithm slower)
I Mathematical attacks:

1. Factor n into its two prime factors
2. Determine φ(n) directly, without determining p or q
3. Determine d directly, without determining φ(n)

I Factoring n is considered fastest approach; hence used as measure of RSA
security

I Timing attacks: practical, but countermeasures easy to add (e.g. random
delay). 2 to 10% performance penalty

I Chosen ciphertext attack: countermeasure is to use padding (Optimal
Asymmetric Encryption Padding)

17

The three mathematical attacks require the attacker to solve computationally hard problems.

That is, when large values are used,

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

Progress in Factorisation

I Factoring n into primes p and q is considered the easiest attack
I Some records by length of n:

I 1991: 330 bits (100 digits)
I 2003: 576 bits (174 digits)
I 2005: 640 bits (193 digits)
I 2009: 768 bits (232 digits), 1020 operations, 2000 years on single core 2.2

GHz computer
I 2019: 795 bits (240 digits), 900 core years

I Improving at rate of 5–20 bits per year

I Typical length of n: 1024 bits, 2048 bits, 4096 bits

18

In the 1990’s and 2000’s, the RSA Challenge tasked researchers with factoring integers of various
sizes. The numbers reported on this slide are mainly from successful attempts at the RSA
Challenge.

The rate of improvement of integer factorisation, varies depending on where you consider the
starting year. In any case, RSA keys of 2048 bits are considered secure for the near future.

We don’t cover quantum computers and cryptography here. While it is important for the

future, in 2018 the largest reported integer factored into primes using a quantum computer was

4088459, that is 22 bits. While in theory quantum computers will be able to make integer

factorisation much easier (make RSA insecure), in practice there is a long way to go.

https://en.wikipedia.org/wiki/RSA_numbers
https://arxiv.org/pdf/1805.10478.pdf

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

Contents

RSA Algorithm

Analysis of RSA

Implementations of RSA

RSA in OpenSSL

RSA in Python

19

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

Recommended or Typical RSA Parameters

I RSA Key length: 1024, 2048, 3072 or 4096 bits
I Refers to the length of n
I 2048 and above are recommended

I p and q are chosen randomly; about half as many bits as n

I e is small, often constant; e.g. 65537

I d is calculated; about same length as n

I For detailed recommendations see NIST FIPS 186 Digital Signature
Standard

20

As an example, with a RSA 1024 bit key, length of p and q will be about 512 bits, and the length
of n will be 1024 bits. e could be 65537 which is 17 bits, and d will be approximately 1024 bits.

FIPS 186 provides details of the implementation of RSA to meet US government standards. It

includes specific algorithms to use and some recommended values. It also sets requirements for

selecting random primes.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

Decryption with Large d is Slow

I Modular arithmetic, especially exponentiation, can be slow with very large
numbers (1000’s of bits)

I Use properties of modular arithmetic to simplify calculations, e.g.

[(a mod n)× (b mod n)] mod n = (a× b) mod n

I Also Euler’s theorem and Chinese Remainder Theorem can simplify
calculations

I Decryption is significantly slower than encryption since d is very large

I Implementations of RSA often store and use intermediate values to speed
up decryption

21

While there are methods to speed up decryption in RSA (see the next slide), it is still significantly

slower than encryption in practice.

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

RSA Implementation Example

I Encryption:
C = Me mod n

I Decryption:
M = Cd mod n

I Modulus, n of length b bits

I Public exponent, e

I Private exponent, d

I Prime1, p, and Prime2, q

I Exponent1, dp = d (mod p − 1)

I Exponent2, dq = d (mod q − 1)

I Coefficient, qinv = q−1 (mod p)

I Private values: PR = {n, e, d , p, q, dp, dq, qinv}
I Public values: PU = {n, e}

22

We see the parameters used within OpenSSL. p, q, n, e and d are normal. However dp, dq and
qinv are intermediate values introduced and stored as part of the private key. They are used to
speed up the decryption calculation. The decryption algorithm is split into multiple steps using
these intermediate values, such that it is significant faster than if using a single step. However
the end result is still the same.

While you don’t need to know what the intermediate steps are, it is useful to know that these

intermediate values exist, as you will see them when using RSA in practice (e.g. generating keys

with OpenSSL).

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

Contents

RSA Algorithm

Analysis of RSA

Implementations of RSA

RSA in OpenSSL

RSA in Python

23

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

RSA Key Generation (exercise)

Generate your own RSA key pair using the OpenSSL genpkey command.
Extract your public key and then exchange public key’s with another person (or
if you want to do it on your own, generate a second key pair).

24

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

RSA Signing (exercise)

Create a message in a file, sign that message using the dgst command, and
then send the message and signature to another person.

25

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

RSA Verification (exercise)

Verify the message you received.

26

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

RSA Performance Test (exercise)

Using the OpenSSL speed command, compare the performance of RSA
encrypt/sign operation against the RSA decrypt/verify operation.

27

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

Contents

RSA Algorithm

Analysis of RSA

Implementations of RSA

RSA in OpenSSL

RSA in Python

28

Cryptography

RSA

RSA Algorithm

Analysis of RSA

Implementations of
RSA

RSA in OpenSSL

RSA in Python

RSA in Python Cryptography Library

I https:

//cryptography.io/en/latest/hazmat/primitives/asymmetric/

29

https://cryptography.io/en/latest/hazmat/primitives/asymmetric/
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/

Cryptography

Diffie–Hellman
Key Exchange

Diffie–Hellman
Key Exchange
Algorithm

Analysis of DHKE

Man-in-the-Middle
Attack on DHKE

Implementations of
DHKE

Diffie–Hellman in
OpenSSL

DHKE in Python

Diffie–Hellman Key Exchange

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 20 Feb 2020,
dh.tex, r1798

1

Cryptography

Diffie–Hellman
Key Exchange

Diffie–Hellman
Key Exchange
Algorithm

Analysis of DHKE

Man-in-the-Middle
Attack on DHKE

Implementations of
DHKE

Diffie–Hellman in
OpenSSL

DHKE in Python

Contents

Diffie–Hellman Key Exchange Algorithm

Analysis of DHKE

Man-in-the-Middle Attack on DHKE

Implementations of DHKE

Diffie–Hellman in OpenSSL

DHKE in Python

2

Cryptography

Diffie–Hellman
Key Exchange

Diffie–Hellman
Key Exchange
Algorithm

Analysis of DHKE

Man-in-the-Middle
Attack on DHKE

Implementations of
DHKE

Diffie–Hellman in
OpenSSL

DHKE in Python

Diffie–Hellman Key Exchange

I Diffie and Hellman proposed public key cryptosystem in
1976
I Motivation: solve the problem of how to exchange

secret keys for symmetric key crypto
I Proposed protocol for exchanging secrets using public

keys
I Merkle also contributed to the idea; sometimes called

Diffie–Hellman-Merkle key exchange

I DHKE is algorithm for exchanging secret key (not for
secrecy of data)
I E.g. two users want to use symmetric key crypto, but

need to first exchange a secret key

I Based on discrete logarithms
I Easy to calculate exponential modulo a prime
I Infeasible to calculate inverse, i.e. discrete logarithm

3

It is important to note that DHKE is a “key exchange” protocol. The
purpose is for two users to exchange a secret key. Once a secret key has
been exchanged with DHKE, the two users can then use that secret key
for other purposes (e.g. for encrypting data using AES).

If you do not know what a discrete logarithm is, it is worth refreshing

your knowledge in number theory from Chapter ??.

Cryptography

Diffie–Hellman
Key Exchange

Diffie–Hellman
Key Exchange
Algorithm

Analysis of DHKE

Man-in-the-Middle
Attack on DHKE

Implementations of
DHKE

Diffie–Hellman in
OpenSSL

DHKE in Python

Diffie–Hellman Key Exchange (algorithm)

One-time setup. A and B agree upon public values prime p
and generator g , where g < p and g is a primitive root of p.
Protocol.

1. A: select private PRA < p

2. A: calculate public PUA = gPRA mod p

3. A → B: send PUA

4. B: select private PRB < p

5. B: calculate public PUB = gPRB mod p

6. B: calculate secret KB = PUPRB
A mod p

7. B → A: send PUB

8. A: calculate secret KA = PUPRA
B mod p

Result. KA = KB is the shared secret value

4

The values p and g are either agreed upon in advance, or selected by one
user and sent to the other in the first message. Both values are public; the
attacker is assumed to know them.

When two users need to exchange a shared secret, one of them initiates

the protocol. User A and B actually perform the same steps, but just with

different values. First a private value PR is randomly selected. Then a

public value PU is calculated. Both users exchange their public PU values

(and the attacker may learn them). Finally, both users calculate their

private values K based on their own PR and received PU. The values and

calculations are designed such that the K calculated by each user will be

the same. K is the shared secret key.

Cryptography

Diffie–Hellman
Key Exchange

Diffie–Hellman
Key Exchange
Algorithm

Analysis of DHKE

Man-in-the-Middle
Attack on DHKE

Implementations of
DHKE

Diffie–Hellman in
OpenSSL

DHKE in Python

Diffie–Hellman Key Exchange (exercise)

Assume two users, A and B, have agreed to use DHKE with
prime p = 19 and generator g = 10. Assuming A randomly
chose private PRA = 7 and B randomly chose private
PRB = 8, find the shared secret key.

5

Cryptography

Diffie–Hellman
Key Exchange

Diffie–Hellman
Key Exchange
Algorithm

Analysis of DHKE

Man-in-the-Middle
Attack on DHKE

Implementations of
DHKE

Diffie–Hellman in
OpenSSL

DHKE in Python

Contents

Diffie–Hellman Key Exchange Algorithm

Analysis of DHKE

Man-in-the-Middle Attack on DHKE

Implementations of DHKE

Diffie–Hellman in OpenSSL

DHKE in Python

6

Cryptography

Diffie–Hellman
Key Exchange

Diffie–Hellman
Key Exchange
Algorithm

Analysis of DHKE

Man-in-the-Middle
Attack on DHKE

Implementations of
DHKE

Diffie–Hellman in
OpenSSL

DHKE in Python

Requirements of DHKE

1. Same shared secret: KA and KB must be identical

2. Computational efficiency: Easy to calculate PU and K

3. Secure: Infeasible to determine PR or K from known
values
I Attacker knows 3 public values in PUA = gPRA mod p
I Must be practically impossible to find the 4th value PRA

7

While we don’t show it here, it can easily be proved that DHKE will produce
the same value of K for both users.
Modular exponentiation, while slow with big numbers, is easy to calculate,

i.e. can be achieved in less than seconds.

The inverse operation of modular exponentiation, referred to as a discrete

logarithm, is hard to calculate. With large enough values, it is considered

impossible to calculate.

Cryptography

Diffie–Hellman
Key Exchange

Diffie–Hellman
Key Exchange
Algorithm

Analysis of DHKE

Man-in-the-Middle
Attack on DHKE

Implementations of
DHKE

Diffie–Hellman in
OpenSSL

DHKE in Python

Prove Identical Keys in DHKE (question)

Prove that user A and user B will always calculate the same
shared secret key in DHKE. That is, prove that KA = KB .

8

Cryptography

Diffie–Hellman
Key Exchange

Diffie–Hellman
Key Exchange
Algorithm

Analysis of DHKE

Man-in-the-Middle
Attack on DHKE

Implementations of
DHKE

Diffie–Hellman in
OpenSSL

DHKE in Python

Brute Force Attack on PR in DHKE (question)

Assuming you have intercepted PUA = 15 from the DHKE
exercise, how would you perform a brute force attack to find
PRA? How could such a successful brute force attack be
prevented in practice?

9

Cryptography

Diffie–Hellman
Key Exchange

Diffie–Hellman
Key Exchange
Algorithm

Analysis of DHKE

Man-in-the-Middle
Attack on DHKE

Implementations of
DHKE

Diffie–Hellman in
OpenSSL

DHKE in Python

Discrete Logarithm Attack in DHKE (exercise)

Assuming a brute force attack is not possible, write an
equation that the attacker would have to solve to find PRA.

10

Cryptography

Diffie–Hellman
Key Exchange

Diffie–Hellman
Key Exchange
Algorithm

Analysis of DHKE

Man-in-the-Middle
Attack on DHKE

Implementations of
DHKE

Diffie–Hellman in
OpenSSL

DHKE in Python

Discrete Logarithm is Computationally Hard
Problem

I Discrete Logarithm Problem:

given g , p and g x mod p, find x

I For certain values of p, considered computationally hard

I p is a safe prime, i.e. p = 2q + 1 where q is a large
prime

I p is very large, usually at least 1024 bits

I 2016: Discrete logarithm with 768 bit prime p was
solved within 5300 core years on 2.2GHz Xeon E5-2660
processor

I Considered harder to solve than equivalent integer
factorisation
I 768 bit integer factored in 2000 core years

11

https://eprint.iacr.org/2017/067

Cryptography

Diffie–Hellman
Key Exchange

Diffie–Hellman
Key Exchange
Algorithm

Analysis of DHKE

Man-in-the-Middle
Attack on DHKE

Implementations of
DHKE

Diffie–Hellman in
OpenSSL

DHKE in Python

Contents

Diffie–Hellman Key Exchange Algorithm

Analysis of DHKE

Man-in-the-Middle Attack on DHKE

Implementations of DHKE

Diffie–Hellman in OpenSSL

DHKE in Python

12

Cryptography

Diffie–Hellman
Key Exchange

Diffie–Hellman
Key Exchange
Algorithm

Analysis of DHKE

Man-in-the-Middle
Attack on DHKE

Implementations of
DHKE

Diffie–Hellman in
OpenSSL

DHKE in Python

MITM Attack on DHKE (exercise)

Consider the “Diffie–Hellman Key Exchange” exercise where
user A chooses PRA = 7 and B chooses PRB = 8. Show
how a MITM can be performed such that an attacker Q can
decrypt any communications between A and B that use the
secret shared between A and B.

13

Cryptography

Diffie–Hellman
Key Exchange

Diffie–Hellman
Key Exchange
Algorithm

Analysis of DHKE

Man-in-the-Middle
Attack on DHKE

Implementations of
DHKE

Diffie–Hellman in
OpenSSL

DHKE in Python

Contents

Diffie–Hellman Key Exchange Algorithm

Analysis of DHKE

Man-in-the-Middle Attack on DHKE

Implementations of DHKE

Diffie–Hellman in OpenSSL

DHKE in Python

14

Cryptography

Diffie–Hellman
Key Exchange

Diffie–Hellman
Key Exchange
Algorithm

Analysis of DHKE

Man-in-the-Middle
Attack on DHKE

Implementations of
DHKE

Diffie–Hellman in
OpenSSL

DHKE in Python

Selecting Public Parameters p and g

I Some (older) communication protocols defined a fixed
value of p and g
I All clients and servers use the same values

I Newer protocols allow for an exchange of values (e.g. a
Group Exchange protocol)

I Example fixed value in older versions of SSH
(diffie-hellman-group1-sha1 using Oakley Group 2)

p = 21024 − 2960 − 1 + 264 × (2894 × π + 129093)

g = 2

p is 1024 bits in length

15

As p and q are public and known to the attacker, using the same values

all the time should not be a problem. Exchanging values involves extra

communication overhead and also processing overhead. However following

the principle of changing keys frequently to give an attacker less chance to

compromise them, many protocols now support the ability to change the

public parameters.

https://tools.ietf.org/html/rfc4253##page-23
https://tools.ietf.org/html/rfc2409##page-22

Cryptography

Diffie–Hellman
Key Exchange

Diffie–Hellman
Key Exchange
Algorithm

Analysis of DHKE

Man-in-the-Middle
Attack on DHKE

Implementations of
DHKE

Diffie–Hellman in
OpenSSL

DHKE in Python

Contents

Diffie–Hellman Key Exchange Algorithm

Analysis of DHKE

Man-in-the-Middle Attack on DHKE

Implementations of DHKE

Diffie–Hellman in OpenSSL

DHKE in Python

16

Cryptography

Diffie–Hellman
Key Exchange

Diffie–Hellman
Key Exchange
Algorithm

Analysis of DHKE

Man-in-the-Middle
Attack on DHKE

Implementations of
DHKE

Diffie–Hellman in
OpenSSL

DHKE in Python

Contents

Diffie–Hellman Key Exchange Algorithm

Analysis of DHKE

Man-in-the-Middle Attack on DHKE

Implementations of DHKE

Diffie–Hellman in OpenSSL

DHKE in Python

17

Cryptography

Diffie–Hellman
Key Exchange

Diffie–Hellman
Key Exchange
Algorithm

Analysis of DHKE

Man-in-the-Middle
Attack on DHKE

Implementations of
DHKE

Diffie–Hellman in
OpenSSL

DHKE in Python

DHKE in Python Cryptography Library

I https://cryptography.io/en/latest/hazmat/

primitives/asymmetric/

18

https://cryptography.io/en/latest/hazmat/primitives/asymmetric/
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/

Cryptography

Elliptic Curve
Cryptography

Overview of
Elliptic Curve
Cryptography

Applications of
Elliptic Curve
Cryptography

Elliptic Curve
Cryptography in
OpenSSL

Elliptic Curve Cryptography

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 23 Dec 2021,
elliptic.tex, r1949

1

Cryptography

Elliptic Curve
Cryptography

Overview of
Elliptic Curve
Cryptography

Applications of
Elliptic Curve
Cryptography

Elliptic Curve
Cryptography in
OpenSSL

Contents

Overview of Elliptic Curve Cryptography

Applications of Elliptic Curve Cryptography

Elliptic Curve Cryptography in OpenSSL

2

Cryptography

Elliptic Curve
Cryptography

Overview of
Elliptic Curve
Cryptography

Applications of
Elliptic Curve
Cryptography

Elliptic Curve
Cryptography in
OpenSSL

Elliptic Curve (definition)

An elliptic curve is defined by:

y2 = x3 + ax + b

(with some constraints of constants a and b)

3

The constraints on a and b specify the relationship between the values, i.e. you cannot necessarily

choose any values. We will not go into that detail here.

Cryptography

Elliptic Curve
Cryptography

Overview of
Elliptic Curve
Cryptography

Applications of
Elliptic Curve
Cryptography

Elliptic Curve
Cryptography in
OpenSSL

Elliptic Curve for y 2 = x3 − 3x + 5

Credit: Generated based on MIT Licensed code by Fang-Pen Lin

4

The figure on slide 4 shows an example elliptic curve where a = −3 and b = 5, plotted for x

values from -4 to 4. An elliptic curve always mirrors itself about the horizontal (red) axis.

https://github.com/fangpenlin/elliptic-curve-explained/blob/master/elliptic-curve.ipynb

Cryptography

Elliptic Curve
Cryptography

Overview of
Elliptic Curve
Cryptography

Applications of
Elliptic Curve
Cryptography

Elliptic Curve
Cryptography in
OpenSSL

Addition Operation with an Elliptic Curve (definition)

Select two points on the curve, A and B, and draw a straight line through them.
The line will intersect with the curve at a third point, R (and no other points).
The horizontal inverse of point R, is defined as the addition of A and B.

A + B = −R

5

See the following figure for an example of this concept. Note the points, A, B, R and -R are just

(x , y) coordinates.

Cryptography

Elliptic Curve
Cryptography

Overview of
Elliptic Curve
Cryptography

Applications of
Elliptic Curve
Cryptography

Elliptic Curve
Cryptography in
OpenSSL

Addition Operation on Elliptic Curve

Credit: Generated based on MIT Licensed code by Fang-Pen Lin

6

The figure on slide 6 shows the concept of addition. Adding the points A and B results in the
point shown as A+B. There is always a third point that intersects the curve on the line between
A and B, and there is always an inverse of this point.

Note that we could continue the addition. For example, with A+B, add another point C, to

arrive at a new point A+B+C. And so on.

https://github.com/fangpenlin/elliptic-curve-explained/blob/master/elliptic-curve.ipynb

Cryptography

Elliptic Curve
Cryptography

Overview of
Elliptic Curve
Cryptography

Applications of
Elliptic Curve
Cryptography

Elliptic Curve
Cryptography in
OpenSSL

Self Addition on Elliptic Curve

Credit: Generated based on MIT Licensed code by Fang-Pen Lin

7

The figure on slide 7 shows the self addition of point P. When adding a single point P to itself,
the line that intersects P is chosen as the line tangent to P. So P+P = 2P.

We can continue to add P.

https://github.com/fangpenlin/elliptic-curve-explained/blob/master/elliptic-curve.ipynb

Cryptography

Elliptic Curve
Cryptography

Overview of
Elliptic Curve
Cryptography

Applications of
Elliptic Curve
Cryptography

Elliptic Curve
Cryptography in
OpenSSL

P + 2P on Elliptic Curve

Credit: Generated based on MIT Licensed code by Fang-Pen Lin

8

The figure on slide 8 shows P + 2P = 3P. Then we can add P again to get 4P and so on.

https://github.com/fangpenlin/elliptic-curve-explained/blob/master/elliptic-curve.ipynb

Cryptography

Elliptic Curve
Cryptography

Overview of
Elliptic Curve
Cryptography

Applications of
Elliptic Curve
Cryptography

Elliptic Curve
Cryptography in
OpenSSL

NP on Elliptic Curve

Credit: Generated based on MIT Licensed code by Fang-Pen Lin

9

The figure on slide 9 shows NP. In this example N=13. That is, we start with point P, and add

P twelve times, resulting in the point 13P.

https://github.com/fangpenlin/elliptic-curve-explained/blob/master/elliptic-curve.ipynb

Cryptography

Elliptic Curve
Cryptography

Overview of
Elliptic Curve
Cryptography

Applications of
Elliptic Curve
Cryptography

Elliptic Curve
Cryptography in
OpenSSL

How is Point Addition used in Elliptic Curve Cryptography?

I User chooses a point P (global public parameter)

I User chooses a large, random N (private key)
I User calculates NP (public key)

I Easy, since there is a shortcut (described shortly)

I Challenge for attacker: given NP, find N
I Computationally hard for large N

10

As with other public key systems, elliptic curve cryptography relies on the fact that it is easy for
the user to generate the public and private key, but practically impossible for an attacker to find
the private key from the public key.

Why is that the case? So far we said NP is found by adding P N − 1 times, that is, takes
N − 1 addition operations. So an attacker could simply start with P, and keep adding P until
they get an answer of NP. Now the know how many additions, i.e. the private value N.

However if N is large enough the attackers method will be practically impossible. And for the

user to generate NP when they know N, there is a shortcut that is practically achievable.

Cryptography

Elliptic Curve
Cryptography

Overview of
Elliptic Curve
Cryptography

Applications of
Elliptic Curve
Cryptography

Elliptic Curve
Cryptography in
OpenSSL

Shortcut for Calculating NP

I Assume N is large, e.g. 256-bit random number

I Naive point addition: P + P + P + P + . . . + P + P (2256 − 1 additions)
I Shortcut algorithm for point addition:

I Calculate P, P + P = 2P = 21P, 2P + 2P = 4P = 22P,
4P + 4P = 8P = 23P, . . . , 2255P (255 additions)

I Write N as binary expansion, e.g.:
I N = 233 = 27 + 26 + 25 + 23 + 20

I NP = 27P + 26P + 25P + 23P + 20P
I In this example, there are 4 point additions
I Maximum number of point additions for 256-bit N is 255

I Calculate NP using the binary expansion
I Maximum number of point additions for 256-bit N: 255 + 255 = 510

11

In summary, knowing the b-bit value N, the user needs to perform about 2 × b point additions.

This is easy. But the attacker, who doesn’t know N, must perform about 2b point additions,

which is practically impossible.

Cryptography

Elliptic Curve
Cryptography

Overview of
Elliptic Curve
Cryptography

Applications of
Elliptic Curve
Cryptography

Elliptic Curve
Cryptography in
OpenSSL

Elliptic Curve with Modular Arithmetic

I The above discussed a normal elliptic curve

I But to ensure all values contained within finite coordinate space, modular
arithmetic is used

I y2 mod p = (x3 + ax + b) mod p

I p is a prime number

12

The figures and examples given previously shown an elliptic curve without modular arithmetic.

But in elliptic curve cryptography, modular arithmetic occurs. The same principles, and reasoning

why it is hard for the attacker, still apply. The plots of the elliptic curve in modular arithmetic

look different however—they now have distinct points in a finite coordinate space. Search online

for examples.

Cryptography

Elliptic Curve
Cryptography

Overview of
Elliptic Curve
Cryptography

Applications of
Elliptic Curve
Cryptography

Elliptic Curve
Cryptography in
OpenSSL

Contents

Overview of Elliptic Curve Cryptography

Applications of Elliptic Curve Cryptography

Elliptic Curve Cryptography in OpenSSL

13

Cryptography

Elliptic Curve
Cryptography

Overview of
Elliptic Curve
Cryptography

Applications of
Elliptic Curve
Cryptography

Elliptic Curve
Cryptography in
OpenSSL

Applications of ECC

I Secret key exchange, e.g. ECDH, ECMQV

I Digital signatures, e.g. ECDSA, EC-KCDSA

I Public key encryption, e.g. ECIES, PSEC

14

The most common applications are for secret key exchange, especially with ECDH, and digital

signatures with ECDSA. We will look at ECDH in the following.

Cryptography

Elliptic Curve
Cryptography

Overview of
Elliptic Curve
Cryptography

Applications of
Elliptic Curve
Cryptography

Elliptic Curve
Cryptography in
OpenSSL

Elliptic Curve Diffie-Hellman Key Exchange (algorithm)

Assume users A and B have EC key pairs: PUA = NP, PRA = N, PUB = MP,
PRB = M.

1. User A calculates secret SA = N · PUB = NMP using shortcut point
addition.

2. User B calculates secret SB = M · PUA = MNP using shortcut point
addition.

15

Diffie-Hellman key exchange can be used using ECC so that both users obtain a shared secret
over an insecure channel. Users agree on a public point P. They generate their own keypairs,
where the private key is some large random number, and the public key is that number times P.
Note that in the key generation, each user can use the shortcut to calculate NP or MP.

Assume the users exchange public keys. They then use their own private key multiplied by the
other’s public key. Again, the shortcut point addition can be used. Both will arrive at the same
point (coordinate), i.e. NMP = MNP. This is the shared secret.

An attacker that knows the public keys and initial point P has to find either N or M. If those

numbers are large enough, this is practically impossible.

Cryptography

Elliptic Curve
Cryptography

Overview of
Elliptic Curve
Cryptography

Applications of
Elliptic Curve
Cryptography

Elliptic Curve
Cryptography in
OpenSSL

Choosing Parameters for ECC

I Parameters for ECC are usually standardised
I Base point, P (also referred to as generator, G)
I Curve parameters, a and b
I Prime, p
I Other parameters also included

I Common curves (see also https://safecurves.cr.yp.to/):
I NIST FIPS 186: P-256, P-384 and 13 others
I SECG: secp160k1, secp160r1, . . . (NIST curves are a subset)
I ANSI X9.62: prime192, prime256, . . .
I Other curves: Curve25519, Brainpool

16

SECG in SEC 2 defined a large set of curves. The NIST curves were a subset of the SEC 2

curves. NSA Suite B curves are a subset of NIST curves.

https://safecurves.cr.yp.to/
https://csrc.nist.gov/Projects/elliptic-curve-cryptography
https://www.secg.org/

Cryptography

Elliptic Curve
Cryptography

Overview of
Elliptic Curve
Cryptography

Applications of
Elliptic Curve
Cryptography

Elliptic Curve
Cryptography in
OpenSSL

Contents

Overview of Elliptic Curve Cryptography

Applications of Elliptic Curve Cryptography

Elliptic Curve Cryptography in OpenSSL

17

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Hash Functions and MACs

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 23 Dec 2021,
hash.tex, r1951

1

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Contents

Informal Overview of Hashes and MACs

Introduction to Hash Functions

Properties of Cryptographic Hash Functions

Introduction to Message Authentication Codes

2

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Hash Functions and MACs

I Hash functions
I Takes message as input and returns short, unique and random-looking output
I Different inputs will produce different outputs
I Also called: MDC, unkeyed hash function
I Output called: hash (h), digital fingerprint, imprint, message digest
I h = H(M)

I MAC1
I Takes message and a secret key as input and returns short, unique and

random-looking output
I Different inputs (key and/or data) will produce different outputs
I Also called: keyed hash function
I Output called: tag (t), code or MAC
I t = MAC (K ,M)

3

Chapter 9 of the Handbook of Applied Cryptography explains the different classifications of hash
functions.

Also note that our focus is on cryptographic purposes of hashes and MACs. They have other,

non-crypto applications, e.g. hash functions for caching. To be more precise we should refer to

cryptographic hash functions, however for brevity we often just refer to hash functions.

http://cacr.uwaterloo.ca/hac/

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Commonly Required Security Properties

I Pre-image resistance (one-way)
I Given the output (hash/tag), attacker cannot find the input message

I Second pre-image resistance (weak collision resistance)
I Given one message, attacker cannot find another message with same output

(hash/tag)

I Collision resistance (strong collision resistance)
I Attacker cannot find any two messages that produce same output (hash/tag)

4

Note that there is different terminology used for the properties. The names in parentheses are
an alternative form.

The first two properties are similar from a security perspective: most algorithms that have

one property also have the other. However the third property of (strong) collision resistance is

harder to provide. That is, some algorithms may have the first two properties, but not the third

of (strong) collision resistance.

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Security Properties for Selected Applications

I Digital signature (public key crypto + hash)
I preimage, 2nd preimage, collision resistance (if attacker can perform chosen

message attack)

I Message authentication with symmetric key encryption and hash
I none

I Message authentication with MAC only
I preimage, 2nd preimage, collision resistance (if attacker can perform chosen

message attack)

I Message authentication using hash only
I Assumes an authentic channel, where delivery of hash is trusted
I 2nd preimage resistant

I Password storage with hash
I preimage resistant

5

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Contents

Informal Overview of Hashes and MACs

Introduction to Hash Functions

Properties of Cryptographic Hash Functions

Introduction to Message Authentication Codes

6

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Hash Functions for Cryptography

I Hash function or algorithm H():
I Input: variable-length block of data M
I Output: fixed-length, small, hash value, h, where h = H(M)
I Another name for hash value is digest
I Output hash values should be evenly distributed and appear random

I A secure, cryptographic hash function is practically impossible to:
I Find the original input given the hash value
I Find two inputs that produce the same hash value

7

A hash function is an algorithm that usually takes any sized input, like a file or a message, and

produces a short (e.g. 128 bit, 512 bit) random looking output, the hash value. If you apply the

hash function on the same input, you will always get the exact same hash value as output. In

practice, if you apply the hash function on two different inputs, you will get two different hash

values as output.

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Applications of Hash Functions

I Message authentication

I Digital signatures

I Storing passwords

I Signatures of data for malicious behaviour detection (e.g. virus, intrusion)

I Generating pseudorandom number

8

Hash functions are important in many areas of security. They are typically used to create a finger-

print/signature/digest of some input data, and then later that fingerprint is used to identify if the

data has been changed. However they also have uses for hiding original data (storing passwords)

and generating random data. Different applications may have slightly different requirements

regarding the security (and performance) properties of hash functions.

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Design Approaches for Hash Functions

Based on Block Ciphers Well-known and studied block ciphers are used with a
mode of operation to produce a hash function. Generally, less
efficient than customised hash functions.

Based on Modular Arithmetic Similar motivation as to basing on block ciphers,
but based on public key principles. Output length can be any
value. Precautions are needed to prevent attacks that exploit
mathematical structure.

Customised Hash Functions Functions designed for the specific purpose of
hashing. Disadvantage is they haven’t been studied as much as
block ciphers, so harder to design secure functions.

9

Designing hash functions based on existing cryptographic primitives is advantageous in that

existing knowledge and implementations can be re-used. However as more time has been spent

studying customised hash functions, they are now the approach of choice due to their security

and efficiency.

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Selected Cryptographic Hash Functions

Credit: ECRYPT CSA Algorithms, Key Size and Protocols Report, 2018

10

The figure on slide 10 shows selected hash functions, classified for legacy or future use. It

is taken from the ECRYPT-CSA 2018 report on Algorithms, Key Sizes and Protocols. The

authors classified hash functions as legacy, meaning secure for near future, and future, meaning

secure for medium term. It includes history hash functions no longer recommended, such as

MD5, RIPEMD-128 and SHA-1. There are many other hash functions. Wikipedia has a nice

comparison.

https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://www.ecrypt.eu.org/csa/index.html
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://en.wikipedia.org/wiki/Comparison_of_cryptographic_hash_functions
https://en.wikipedia.org/wiki/Comparison_of_cryptographic_hash_functions

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Contents

Informal Overview of Hashes and MACs

Introduction to Hash Functions

Properties of Cryptographic Hash Functions

Introduction to Message Authentication Codes

11

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Pre-image of a Hash Value (definition)

For hash value h = H(x), x is pre-image of h. As H is a many-to-one mapping,
h has multiple pre-images. If H takes a b-bit input, and produces a n-bit hash
value where b > n, then each hash value has 2b−n pre-images.

12

A hash function takes a single input and produces a single output. The output is the hash value

and the input is the pre-image of that hash value.

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Hash Collision (definition)

A collision occurs if x 6= y and H(x) = H(y). Collisions are undesirable in
cryptographic hash functions.

13

We will show shortly that collisions should be practically impossible to be found by an attacker.

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Number of Collisions (exercise)

If H1 takes fixed length 200-bit messages as input, and produces a 80-bit hash
value as output, are collisions possible?

14

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Requirements of Cryptographic Hash Functions

Variable input size: H can be applied to input block of any size

Fixed output size: H produces fixed length output

Efficiency: H(x) relatively easy to compute (practical implementations)

Pseudo-randomness: Output of H meets standard tests for pseudo-randomness

Properties: Satisfies one or more of the properties: Pre-image Resistant,
Second Pre-image Resistant, Collision Resistant

15

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Pre-image Resistant Property (definition)

For any given h, it is computationally infeasible to find y such that H(y) = h.
Also called the one-way property.

16

Informally, it is hard to inverse the hash function. That is, given the output hash value, find the

original input message.

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Second Pre-image Resistant Property (definition)

For any given x , it is computationally infeasible to find y 6= x with H(y) = H(x).
Also called weak collision resistant property.

17

To break this property, the attacker is trying to find a collision. That is, two input messages

x and y that produce the same output hash value. Importantly, the attacker cannot choose x .

They are given x and must find a different message y that produces a collision.

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Collision Resistant Property (definition)

It is computationally infeasible to find any pair (x , y) such that H(x) = H(y).
Also called strong collision resistant property.

18

To break this property, again the attacker is trying to find a collision. However in this case the

attacker has the freedom to find any messages x and y that produce a collision. This freedom

makes it easier for the attacker to perform an attack against this property than against the

Second Pre-image Resistant property.

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Brute Force Attacks on Properties

I Pre-image and Second Pre-image Attack
I Find a y that gives specific h; try all possible values of y
I With b-bit hash code, effort required proportional to 2b

I Collision Resistant Attack
I Find any two messages that have same hash values
I Effort required is proportional to 2b/2

I Due to birthday paradox, easier than pre-image attacks

19

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Brute Force Attack on Hash Function (exercise)

Consider a hash function to be selected for use for digital signatures. Assume an
attacker has compute capabilities to calculate 1012 hashes per second and is
prepared to wait for approximately 10 days for a brute attack. Find the minimum
hash value length that the hash function should support, such that a brute force
is not possible.

20

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Contents

Informal Overview of Hashes and MACs

Introduction to Hash Functions

Properties of Cryptographic Hash Functions

Introduction to Message Authentication Codes

21

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Unkeyed and Keyed Hash Functions

I Hash functions have no secret key
I Can be referred to as unkeyed hash function
I Also called Modification Detection Code

I A variation is to allow a secret key as input, in addition to the message
I h = H(K ,M)
I Keyed hash function or Message Authentication Code (MAC)

I Hashes and MACs can be used for message authentication, but hashes also
used for multiple other purposes

I MACs are more common for authentication messages

22

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Design Approaches for MACs

Based on Block Ciphers CBC-MAC, OMAC, PMAC,

Customised MACs MAA, MD5-MAC, UMAC, Poly1305

Based on Hash Functions HMAC

23

The motivation for different design approaches is similar to that for hash function design ap-

proaches.

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Computation Resistance of MAC (definition)

Given one or more text-tag pairs, [xi ,MAC(K , xi)], computationally infeasible to
compute any text-tag pair [y ,MAC(K , y)], for a new input y 6= xi

24

Assume an attacker has intercepted messages (text) and the corresponding MACs (tags). They

have i such text-tag pairs. Now there is a new message y . It should be practically impossible

for the attacker to find the corresponding tag of y , that is, MAC(K , y).

Cryptography

Hash Functions
and MACs

Informal Overview
of Hashes and
MACs

Introduction to
Hash Functions

Properties of
Cryptographic
Hash Functions

Introduction to
Message
Authentication
Codes

Security of MACs

I Brute Force Attack on Key

Attacker knows [x1,T1] where T1 = MAC (K , x1)Key size of k bits: brute
force on key, 2kBut . . . many tags match T1For keys that produce tag T1, try
again with [x2,T2]Effort to find K is approximately 2k

IIIIII Brute Force Attack on MAC value

For xm, find Tm without knowing KSimilar effort required as one-way/weak
collision resistant property for hash functionsFor n bit MAC value length,
effort is 2n

IIII Effort to break MAC: min(2k , 2n)

25

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Authentication and Data Integrity

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 23 Dec 2021,
auth.tex, r1951

1

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Contents

Aims of Authentication

Authentication with Symmetric Key Encryption

Authentication with Hash Functions

Authentication with MACs

Digital Signatures

2

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Attacks on Information Transfer

1. Disclosure: encryption

2. Traffic analysis: encryption

3. Masquerade: message authentication

4. Content modification: message authentication

5. Sequence modification: message authentication

6. Timing modification: message authentication

7. Source repudiation: digital signatures

8. Destination repudiation: digital signatures

3

We have cover encryption primarily from the perspective of preventing disclosure attacks, i.e.

providing confidentiality. Now we will look at preventing/detecting masquerade, modification and

repudiation attacks using authentication techniques. Note that we consider digital signatures as

a form of authentication.

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Aims of Authentication

I Receiver wants to verify:

1. Contents of the message have not been modified (data authentication)
2. Source of message is who they claim to be (source authentication)

I Different approaches available:
I Symmetric Key Encryption
I Hash Functions
I Message Authentication Codes (MACs)
I Public Key Encryption (i.e. Digital Signatures)

4

We will cover these different approaches in the following sections.

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Contents

Aims of Authentication

Authentication with Symmetric Key Encryption

Authentication with Hash Functions

Authentication with MACs

Digital Signatures

5

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Symmetric Encryption for Authentication

M
E()

K

C=E(K,M)

K

M=D(K,C)
D()

Message
DecryptEncrypt

secret key
Shared

Ciphertext

secret key
Shared

Message

6

The figure on slide 6 shows symmetric key encryption used for confidentiality. On the left is the
sender A, and on the right is the receiver B. In the middle (between the dashed lines) is the
information sent from A to B. Only B (and A) can recover the plaintext. However in some cases
this also provides:

� Source Authentication: A is only other user with key; B knows it must have come from A

� Data Authentication: successfully decrypted implies data has not been modified

The source and data authentication assumes that the decryptor (B) can recognise that the result

of the decryption, i.e. the output plaintext, is correct.

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Recognising Correct Plaintext in English (question)

B receives ciphertext (supposedly from A, using shared secret key K):
DPNFCTEJLYONCJAEZRCLASJTDQFY

B decrypts with key K to obtain plaintext:
SECURITYANDCRYPTOGRAPHYISFUN

Was the plaintext encrypted with key K (and hence sent by A)? Is the
ciphertext received the same as the ciphertext sent by A?

7

The typical answer for above is yes, the plaintext was sent by A and nothing has been modified.

This is because the plaintext “makes sense”. Our knowledge of most ciphers (using the English

language) is that if the wrong key is used or the ciphertext has been modified, then decrypting

will produce an output that does not make sense (not a combination of English words).

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Recognising Correct Plaintext in English (question)

B receives ciphertext (supposedly from A, using shared secret key K):
QEFPFPQEBTOLKDJBPPXDBPLOOVX

B decrypts with key K to obtain plaintext:
FTUEUEFTQIDAZSYQEEMSQEADDKM

Was the plaintext encrypted with key K (and hence sent by A)? Is the
ciphertext received the same as the ciphertext sent by A?

8

Based on the previous argument, the answer is no. Or more precise, either the plaintext was not

sent by A, or the ciphertext was modified along the way. This is because the plaintext makes no

sense, and we were expected it to do so.

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Recognising Correct Plaintext in Binary (question)

B receives ciphertext (supposedly from A, using shared secret key K):
0110100110101101010110111000010

B decrypts with key K to obtain plaintext:
0101110100001101001010100101110

Was the plaintext encrypted with key K (and hence sent by A)? Is the
ciphertext received the same as the ciphertext sent by A?

9

This is harder. We cannot make a decision without further understanding of the expected

structure of the plaintext. What are the plaintext bits supposed to represent? A field in a packet

header? A portion of a binary file? A random key? Without further information, the receiver

does not know if the plaintext is correct or not. And therefore does not know if the ciphertext

was sent by A and has not been modified.

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Recognising Correct Plaintext

I Many forms of information as plaintext can be recognised at correct

I However not all, and often not automatically

I Authentication should be possible without decryptor having to know
context of the information being transferred

I Authentication purely via symmetric key encryption is insufficient
I Solutions:

I Add structure to information, such as error detecting code
I Use other forms of authentication, e.g. MAC

10

We will see some of the alternatives in the following sections.

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Contents

Aims of Authentication

Authentication with Symmetric Key Encryption

Authentication with Hash Functions

Authentication with MACs

Digital Signatures

11

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Authentication by Hash and then Encrypt

M rx

h rx

M rx

KAB KAB

E(KAB ,M||H(M))

M

H()

E()

M||H(M) diff fail

same pass

|| D()

H()
H(M) H()

Compare

12

The figure on slide 12 shows a scheme where the hash function is used to add structure to the
message. Again, user A and B are on the left and right, respectively. The inputs (message and
secret key) and operations are shown in blue. The green values are used to refer to intermediate
values. In the middle in red is the information sent from A to B.

At the receiver, the “received” message and hash are denoted with a subscript rx. In the normal
case (no attack or error), the received values will be identical to the sent values, i.e. Mrx = M.
However if an attack takes place, then it is possible the sent and received values differ.

When the receiver decrypts, they will be able to determine if the plaintext is correct by comparing

the hash of the message component with the stored hash value. This is one method of addressing

the problem of using just symmetric key encryption on its own for authentication. This scheme

provides confidentiality of the message and authentication.

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Authentication by Encrypting a Hash

KABKAB

E(K
AB

,H(M))

AB ,H(M))M||E(K

diff fail

same passM rxH()

h rx

M

H() E()

H(M)

||
H()

D()

Compare

13

The figure on slide 13 shows a different scheme where only the hash value is encrypted. The

receiver can verify that nothing has been changed. This scheme provides authentication, but

does not attempt to provide confidentiality. This is useful in reducing any computation overhead

when confidentiality is not required.

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Attack of Authentication by Encrypting a Hash (exercise)

If a hash function did not have the Second Preimage Resistant property, then
demonstrate an attack on the scheme in The figure on slide 13.

14

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Authentication with Hash of a Shared Secret

KAB

h rx

KAB

H(M||K
AB

)

diff fail

same pass

M||H(M||K AB)

M

M||K
AB

|| || H()

|| H()

Compare

15

The figure on slide 15 shows a scheme the provides authentication, but without using any

encryption. Avoiding encryption can be desirable in very resource constrained environments. S

is a secret value shared by A and B. Concatenating the secret with the message, and then

hashing the result, allows the receiver the verify the plaintext is correct, and keeps the secret

confidential.

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Attack of Authentication with Hash of Shared Secret (exercise)

If a hash function did not have the Preimage Resistant property, then
demonstrate an attack on the scheme in The figure on slide 15.

16

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Contents

Aims of Authentication

Authentication with Symmetric Key Encryption

Authentication with Hash Functions

Authentication with MACs

Digital Signatures

17

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Authentication with only MACs

diff fail

same pass

KAB

AB
,M)MAC(K

KAB

MAC(K
AB

,M
rx

)

t
rx

M||MAC(K AB ,M)

M

||

MAC()

MAC()
Compare

18

The figure on slide 18 shows a scheme where authentication is provided using only a MAC. That
is, encryption is not used.

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Authentication using Encryption and a MAC

I Common to what both confidentiality and authentication (data integrity)

I MACs have advantage over hashes in that if encryption is defeated, then
MAC still provides integrity

I But two keys must be managed: encryption key and MAC key

I Recommended algorithms used for encryption and MAC are independent

I Three general approaches (following definitions), referred to as
authenticated encryption

19

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Encrypt-then-MAC (definition)

The sender encrypts the message M with symmetric key encryption, then applies
a MAC function on the ciphertext. The ciphertext and the tag are sent, as
follows:

E(K1,M)||MAC(K2,E(K1,M))

Two independent keys, K1 and K2, are used.

20

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

MAC-then-Encrypt (definition)

The sender applies a MAC function on the plaintext, appends the result to the
plaintext, and then encrypt both. The ciphertext is sent, as follows:

E(K1,M||MAC(K2,M))

21

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Encrypt-and-MAC (definition)

The sender encrypts the plaintext, as well ass applying a MAC function on the
plaintext, then combines the two results. The ciphertext joined with tag are
sent, as follows:

E(K1,M)||MAC(K2,M)

22

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Recommended Approach for Authenticated Encryption

I There are small but important trade-offs between encrypt-then-MAC,
MAC-then-encrypt and encrypt-and-MAC

I Potential attacks on each, especially if a mistake in applying them

I Generally, encrypt-then-MAC is recommended, but are cases against it
I Some discussion of issues:

I Chapter 9.6.5 of Handbook of Cryptography
I Moxie Marlinspike
I StackExchange
I Section 1 and 2 of Authenticated Encryption by J Black

I Other authenticated encryption approaches incorporate authenticate into
encryption algorithm
I AES-GCM, AES-CCM, ChaCha20 and Poly1305

23

It is worth reading some of the discussion about the three approaches.

http://cacr.uwaterloo.ca/hac/
https://moxie.org/blog/the-cryptographic-doom-principle/
https://crypto.stackexchange.com/questions/202/should-we-mac-then-encrypt-or-encrypt-then-mac
https://www.cs.colorado.edu/~jrblack/papers/ae.pdf

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Contents

Aims of Authentication

Authentication with Symmetric Key Encryption

Authentication with Hash Functions

Authentication with MACs

Digital Signatures

24

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Digital Signatures

I Authentication has two aims:
I Authenticate data: ensure data is not modified
I Authenticate users: ensure data came from correct user

I Symmetric key crypto, MAC functions are used for authentication
I But cannot prove which user created the data since two users have the same

key

I Public key crypto for authentication
I Can prove that data came from only 1 possible user, since only 1 user has the

private key

I Digital signature
I Encrypt hash of message using private key of signer

25

A digital signature has the same purpose of a handwritten signature: to prove that a document
(or message or file) is approved by and originated from one particular person. If a message
is signed, the signer cannot claim they did not sign it (since they are the only person that
could create the signature). Similar, someone cannot pretend to be someone else, since they
cannot create that other persons signature. Of course handwritten signatures are imprecise and
sometimes forgeable. Digital signatures are much more secure, making it practically impossible
for someone to forge a signature or modify a signed document without it being noticed.

In practice, a digital signature of a message is created by first calculating a hash of that
message, and then encrypting that hash value with the private key of the signer. The signature
is then attached to the message.

The hash function is not necessary for security, but makes signatures practical (the signature

is short fixed size, no matter how long the message is).

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Digital Signatures in Practice

I User A has own key pair: (PUA,PRA)
I Signing

I User A signs a message by encrypting hash of message with own private key:
S = E (PRA,H(M))

I User attaches signature S to message M and sends to user B

I Verification
I User B verifies a message by decrypting signature with signer’s public key:

h = D(PUA,S)
I User B then compares hash of received message, H(M), with decrypted h; if

identical, signature is verified

26

Cryptography

Authentication
and Data Integrity

Aims of
Authentication

Authentication
with Symmetric
Key Encryption

Authentication
with Hash
Functions

Authentication
with MACs

Digital Signatures

Digital Signature Example

27

Cryptography

Key Distribution
and Management

Recommended Key
Sizes

Key Distribution and Management

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 04 Jan 2022,
keys.tex, r1969

1

Cryptography

Key Distribution
and Management

Recommended Key
Sizes

Contents

Recommended Key Sizes

2

Cryptography

Key Distribution
and Management

Recommended Key
Sizes

Comparing Key Lengths Across Symmetric and Public Key
Algorithms

I Various governments, standardisation organisations and researchers have
analysed security level of cryptographic mechanisms

I Provide recommendations for:
I Ciphers to use
I Key lengths or hash lengths
I Security level

I BlueKrypt website summarises recommendations: www.keylength.com
I E.g. from NIST, German BSI, NSA, ECRYPT project, . . .

I ECRYPT-CSA Project 2018 report on Algorithms, Key Size and Protocols
(PDF)

3

The BlueKrypt website summarises recommendations from various organisations. You should
visit the website and explore the different recommendations. While there are differences, you
can get an approximate idea of the key lengths that should be used.

The ECRYPT-CSA project is one effort to compare algorithms. The PDF report gives a

comprehensive summary of different cryptographic mechanisms, analysis of specific algorithms,

and recommendations.

https://www.keylength.com/
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf

Cryptography

Key Distribution
and Management

Recommended Key
Sizes

Recommend Key Lengths from ECRYPT-CSA 2018

Credit: BlueKrypt www.keylength.com, CC-BY-SA 3.0

4

The figure on slide 4 shows recommended key (or hash) lengths, in bits, for symmetric key
algorithms (e.g. AES), public key algorithms based on factoring a modulus (e.g. RSA), public
key algorithms based on solving discrete logarithms (e.g. the secret key and modulus/group
length in Diffie-Hellman), public key algorithms based on elliptic curve cryptography, and hash
functions.

Three different levels of security are given: legacy, current (near-term) and future (long-term).

Current or future levels of security should be used, although legacy levels may still be secure for

some cases.

https://www.keylength.com/

Cryptography

Digital Certificates

Digital Certificates

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 19 Feb 2020,
cert.tex, r1792

1

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Quantum Computing and Cryptography

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 04 Jan 2022,
quantum.tex, r1971

1

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Contents

Quantum Computing

Quantum Algorithms

Issues in Quantum Computing

Quantum Cryptography

Cryptography in the Quantum Era

2

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Quantum Technology (definition)

Emerging technologies that build upon concepts of quantum physics, especially
superposition and entanglement. Includes quantum computing and quantum
cryptography.

3

Note that before quantum physics we had “classical” physics. Similar, we will differentiate
between quantum computers and classical computers (those that we know and use everyday).
Also, roughly, quantum physics and quantum mechanics means the same thing in this discussion,
and we refer to quantum-mechanical systems.

To arrive at an explanation of a quantum computer, as well as quantum cryptography, we

will step through some of the basic principles/ideas. First we will look at how information is

represented in

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

bit (definition)

Binary digit, 0 or 1, as the basic unit of information in classical computers. For
example stored as electric charges in capacities or with magnets in hard disks.
Communicated with electrical or optical pulses. A bit has two states: 0 or 1.

4

A bit is defined, in an informal manner, just for reference.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

qubit (definition)

Quantum bit has states represented in a quantum-mechanical system. The state
of a qubit is a vector. A qubit has two basis states, |0〉 and |1〉, but many
possible states in between. Often represented using subatomic particles such as
electrons or photons.

5

The key distinguishing feature of qubits compared to bits is that qubits have many possible
states, not just 0 and 1.

The notation used is not so important here; it is just a short way that we can identify the two

basis states which are similar to bit 0 and bit 1. We will see next how the qubit is expressed

when in the “in between” states.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Quantum Superposition (definition)

Any two (or more) quantum states can be added together to form another
quantum state. That result is a superposition of the original states.

6

Superposition is a concept seen in other systems, but quantum superposition is the main concept

that delivers powerful innovations with quantum computers.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

qubit Superposition (example)

Basis state |0〉 is like bit 0. Basis state |1〉 is like bit 1. The state 0.6|0〉 + 0.8|1〉
is an example of a superposition of the two basis states, and forms another state
of the qubit. Another example state is 0.866|0〉 + 0.5|1〉. In general, a
superposition state is α|0〉 + β|1〉, where α2 + β2 = 1.

7

You may think of the concept as superposition as follows. A classical bit has the value 0 or 1.
A qubit has the value of 0 or 1, or a value that is both 0 and 1 at the same time.

An important point is that the weights, α and β, can be controlled. This is the key part of

how qubits are used in calculations, as next we see that measuring a qubit returns 0 or 1 with

some probability.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

The Measurement Problem (definition)

Measuring a qubit gives the bit 0 with probability α2 and bit 1 with probability
β2. After measurement the qubit enters (collapses into) the basis state.

8

There are two important issues about measuring a qubit. First, the result will either be 0 or 1.
However when the qubit is in a superposition state of α|0〉+β|1〉, then we don’t know in advance
which value will be output from the measurement. But we do know that with probability α2 it
will be bit 0 and with probability β2 it will be bit 1. By controlling the weights, α and β, we
can increase the probability that a useful output will be measured.

The other issue is that upon measurement, the qubit reverts to one of the basis states. It will

no longer be a superposition of states.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Quantum Entanglement (definition)

Pair of particles are dependent on each other, meaning the quantum state of one
particle impacts on the other.

9

Quantum entanglement is another concept, which you may hear about when referring to quantum
communications and quantum teleportation. We will not cover it in any depth here, but present
a simple example in the following.

Entanglement can be achieved for example by firing a laser at a crystal that causes two photons

to split but be entangled.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

qubit Entanglement (example)

If 2 qubits are entangled, then if one qubit is measured to be 0, then the other
qubit will also be measured to be 0 (and similar if measured as 1).

10

Experiments have had qubits entangled over distances of 10’s of kilometres.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Quantum Computation (informal) (definition)

A quantum computation starts with a set of qubits, modifies their states to
perform some intended calculation, and then measures the result.

11

This definition of quantum computation is quite vague. How are the states of the qubits mod-

ified? Using logic gates to form circuits. One point to note is that at the end the result is

measured. As noted before, measuring a quantum system will return some binary value with

some probability and collapes any superpositions. This means that any speed up to be potentially

be obtained by quantum computing needs to be done before the measurement.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Classical Computer Circuits (definition)

Circuits in classical computers are built from logic gates, such as AND, NOT,
OR, XOR, NAND and NOR.

12

Note that AND and NOT gates are the universal set: everything else can be built from them.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Quantum Computer Circuits (definition)

Circuits in quantum computers are built from quantum logic gates. Single-bit
gates include NOT, Hadamard, Phase and Shift gates; two-bit gates include
Controlled NOT and SWAP; as well as 3-qubit Toffoli and Fredkin gates. Not all
quantum gates have analagous operation with classical gates.

13

A single-bit gate takes a single qubit as input and produces a single qubit as output.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Quantum Computer (definition)

A (digital) quantum computer is built from a set of quantum logic gates, i.e.
quantum circuits, and is said to perform quantum computation on qubits. An
analog quantum computer also operates on qubits, but rather than using logic
gates, using concepts of quantum simulation and quantum annealing.

14

We are only covering a digital quantum computer. The topics of quantum simulation and

quantum annealing are not covered here.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Contents

Quantum Computing

Quantum Algorithms

Issues in Quantum Computing

Quantum Cryptography

Cryptography in the Quantum Era

15

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Quantum Register (definition)

A quantum register is a set of n qubits. With a classical 2-bit register, there are
four possible states: 00, 01, 10 and 11. A quantum 2-bit register can be in all
four states at one time, as it is a superposition of the four states:
α|00〉 + β|01〉 + γ|10〉 + δ|11〉. Measuring the register will return one of the four
states, with probability depending on the weights.

16

For example, if the two qubits are constructed so that β = 0 and δ = 0, and α = γ = 1/
√

2,

then there is 50% probability of measuring 00 and 50% probability of measuring 10. There is no

chance of measuring 01 or 11.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Quantum Parallelism (definition)

Consider a circuit that takes x as input and returns f (x) as output. Normally,
passing in an input, sees the function applied once, and one output produced.
Using quantum gates, such as a Fredkin gate, if x is a quantum register with a
superposition of states, it is passed as input and the function is applied once.
But the function operates on all of the states of the quantum register, returning
output that contains information about the function applied to all states.

17

The parallelism that can be achieved is the promising feature of quantum computing. The

following example aims to illustrate the idea.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Classical Function (example)

Consider the function f (x) = 3x mod 8. Assume we want to calculate all
possible answers for x = 0, 1, 2, . . . , 7. With a classical computer we would have
a 3-bit input to a circuit that calculates f (x), i.e. performs the modular
multiplication. To find all possible answers we would calculate f (0) = 0,
f (1) = 3, f (2) = 6, f (3) = 1, f (4) = 4, f (5) = 7, f (6) = 2, and f (7) = 5. The
function/circuit is applied 8 times.

18

The above example used decimal values, but also consider their binary values, i.e. the function

is applied to 8 values: 000, 001, 010, 011, 100, 101, 110 and 111.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Quantum Function (example)

Now consider the same function, f (x) = 3x mod 8, but implemented with a
quantum circuit. We initialise a quantum register with 3 qubits. This register is
in a superposition of 8 states at once: 000, 001, 010, 011, 100, 101, 110 and
111. The quantum register is input to the circuit. The output register will have
3 qubits in a superposition that contains all 8 answers. By applying the
function/circuit only once, we obtain an output that has information about all 8
answers. This represents a speedup of a factor of 8 compared to the classical
example!

19

While this a contrived example with many real flaws, it aims to demonstrate that quantum
parallelism is achieved by the fact that the quantum calculation is one all states of the quantum
register, rather than just a single value as in classical computing.

You should already recognise a problem with the above example. While the output quantum

register contains qubits in a superposition that contains information about all 8 answers, when

we measure the output register we get just one of those answers with some probability, i.e. the

measurement problem. If the probabilities were all equal, i.e. 12.5%, then when we measure the

output we would get a value of 000 with probability 12.5%. If we did it again, we may get 011

with probability 12.5%. So the answer is essentialy useless to us; we’d need to calculate 8 times,

resulting in the same effort as a classical computer. Quantum algorithms are designed so that

the weights/probabilities of the output do give the “correct” answer with high probability.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Quantum Algorithm (definition)

A quantum algorithms are usually a combination of classical
algorithms/computations and quantum computations. First pre-processing is
performed using classical techniques. Then the input quantum register is
prepared, a quantum calculation performed, and output quantum register is
measured. There may be some post-processing of the result with classical
techniques. If the result is as desired, then exit, otherwise repeat the process.
Repetition is usually needed due to both errors in quantum calculations and the
probabilistic nature of the result.

20

The main point to note is that “quantum” algorithms actually are a hybrid of classical algorithms

and quantum calculations.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Grover’s Search Algorithm (definition)

Consider a database of N unstructured data items (e.g. not sortable). Search is
performed by applying a boolean function on input that returns true if correct
answer. Classical search takes O(N) applications of function. Grover’s quantum
search algorithm takes O(

√
N) applications of function.

21

Grover’s search algorithm can be used for a brute-force attack. For example with a symmetric key

cipher, assume we have a function that decrypts the ciphertext and returns true of the obtained

plaintext is correct.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Worst Case Brute Force Attempts with Classical and Quantum
Algorithms

Key length [bits] Classical Quantum

64 264
√

264 = 232

128 2128
√

2128 = 264

256 2256
√

2256 = 2128

512 2512
√

2512 = 2256

22

The table on slide 22 shows worst case number of attempts a brute-force attack on a key , using

either a classical algorithm or Grover’s quantum search algorithm. Note that
√

2N = 2N/2. While

the quantum algorithm produces a significant speedup, with regards to protecting symmetric key

ciphers against brute force attacks using quantum computers, an easy solution is to double the

key length. That is, if a 128-bit key was recommended as secure against brute force attacks using

today’s classical computers, then to be secure against brute force attacks with future quantum

computers, use a 256-bit key. While using a double length key incurs a performance drop for

AES, it is not so substantial that makes AES too slow to use, and does not require a new

algorithm design.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Integer Factorisation with General Number Field Sieve
(definition)

Given an integer N, find its prime factors. A general number field sieve on
classical computer takes subexponential time, about 2O(N1/3).

23

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Integer Factorisation with Schor’s Algorithm (definition)

Given an integer N, find its prime factors. Shor’s algorithm on a quantum
computer takes polynominal time, about logN.

24

The paper A Blueprint For Building a Quantum Computer by Rodney Van Meter and Clare

Horsman, published in Communications of the ACM, October 2013, has compared the speeds

for specific implementations of algorithms on classical and quantum computers. Note that the

following results are mainly theoretical, estimating the performance based on several actual

measurements with smaller numbers.

http://doi.acm.org/10.1145/2494568

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Scaling the classical number field sieve (NFS) vs. Shor’s
quantum algorithm for factoring

Credit: Figure 1 from A Blueprint For Building a Quantum Computer by Van Meter and Horsman, Communications of the ACM, Oct

2013. Copyright by Van Meter and Horsman and ACM.

25

The figure on slide 25 shows estimated time to factor a L-bit number. The number field sieve on
the solid black line is using a classical computer. The cross on that line is for the point of L=768
bits and 3300 CPU years. The NIST recommended key length is L=2048 bits. The lines labelled
with Shor are using a quantum computer. The four lines for Shor are different algorithms and
architectures, as well as different quantum clock speeds (1Hz vz 1MHz).

One way to read the figure is to look at the number of bits that can be factored in 1 year. A

1GHz classical computer using number field sieve could factor a 500 bit number. A quantum

computer using Shor’s algorithm and with a 1 Hz clock could factor a 80 bit number. But with

a 1 MHz clock it could factor a 8000 bit number.

http://doi.acm.org/10.1145/2494568

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Likelihood quantum computers significant threat to public-key
cryptosystems

Credit: Quantum Threat Timeline Report, Michele Mosca and Marco Piani, from evolutionQ and the Global Risk Institute, 2019.

26

The figure on slide 26, from the Quantum Threat Timeline Report, shows the opinions of 22

quantum computing experts. Most think quantum computing will not be a threat to public-key

cryptosystems in the next 5 years, and more than half, also in the next 10 years. Almost all

think there is a 50% or greater chance that quantum computing will threaten RSA in the next

20 years.

https://globalriskinstitute.org/publications/quantum-threat-timeline/
https://globalriskinstitute.org/publications/quantum-threat-timeline/

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Contents

Quantum Computing

Quantum Algorithms

Issues in Quantum Computing

Quantum Cryptography

Cryptography in the Quantum Era

27

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Decoherence in Quantum Computing (definition)

In their coherent state, qubits are described as a superposition of states. The
loss of coherence (i.e. decoherence) means the qubits revert to their “classical”
basis states. They no longer exhibit the unique quantum properties.
Decoherence times vary for different system; for example IBM quantum
computers about 100 µs.

28

Increasing the time that qubits can hold their coherent state is one practical aim of quantum

computing. See the T2 column in the Quantum Computing Report for example values.

https://quantumcomputingreport.com/scorecards/qubit-quality/

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Errors in Quantum Computing (definition)

Errors frequently occur due to various reasons including: decay of individual
qubits; environmental defects that impact multiple qubits; interference between
qubits and other systems; accidental measurement of qubits; and even loss of
qubits. Significant research effort is on designing error correcting schemes.

29

Error correcting schemes introduce an overhead, and one concern is that the overhead needed

to deal with errors may mean quantum computing does not produce significant advantages over

classical computing.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Quantum error rates vs qubits and intended direction of Google
Quantum Research

Credit: Google Research, A Preview of Bristlecone, Google’s New Quantum Processor

30

The figure on slide 30, taken from A Preview of Bristlecone, Google’s New Quantum Processor by

Google Quantum AI Lab, illustrates the conceptual relationship between error rates and qubits.

The error correction threshold indicates error rates below this are needed for error correction to

work.

https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Cooling (definition)

For qubits to maintain coherence, quantum circuits need to be very cold,
approaching 0 Kelvin or -273 C.

31

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Quantum Computers in Practice

I For more detailed comparison see the Quantum Computing Report

I Google: Sycamore 53-qubit (2019)

I IBM: 5- and 16-qubit machines available for free; 20-qubit machine
available via cloud; 53-qubit machine (2019)

I Rigetti: Aspen-7 28-qubits (2019)

I D-Wave systems: 2000Q has 2048-qubits, however using different
technology (quantum annealing) that cannot be used to solve Shor’s
algorithm

32

https://quantumcomputingreport.com/scorecards/qubit-count/
https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html
https://www.ibm.com/blogs/research/2020/01/quantum-volume-32/
https://rigetti.com/
https://www.dwavesys.com/

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Contents

Quantum Computing

Quantum Algorithms

Issues in Quantum Computing

Quantum Cryptography

Cryptography in the Quantum Era

33

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Quantum Cryptography (definition)

Quantum cryptography refers to techniques that apply principles of quantum
systems to build cryptographic mechanisms. The most widely technique is
quantum key distribution. Others approaches often involve agreements between
parties that do not trust each other.

34

Note that while quantum computers can be used to break cryptographic mechanisms (e.g. using

Schor’s algorothm), quantum cryptography is separate topic of quantum systems that is about

creating cryptographic mechanisms. Quantum cryptographic mechanisms will use quantum com-

puters.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Quantum Key Distribution (informal) (definition)

The aim of QKD is for two parties to exchange a secret key (similar to DHKE).
A chooses random bits, as well as corresponding random modification of states
(called sending basis). Applied together using a fixed scheme, A generates and
sends photons in quantum states. B chooses own random measuring basis and
measures the photons. A then informs B their sending basis, and allowing B to
recognise which of the measured photons to consider (i.e. those where the
measuring basis and sending basis match). B uses the resulting bits as a secret
key, however only after confirming with A that there are no errors in the key
(e.g. sending a challenge encrypted with the key).

35

For a formal explanation of QKD, with an example see: https://www.cse.wustl.edu/~jain/

cse571-07/ftp/quantum/ or the original paper on one scheme BB84 at https://doi.org/

10.1016/j.tcs.2014.05.025.

https://www.cse.wustl.edu/~jain/cse571-07/ftp/quantum/
https://www.cse.wustl.edu/~jain/cse571-07/ftp/quantum/
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1016/j.tcs.2014.05.025

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Example of BB84 Quantum Key Distribution

Credit: Bennett and Brassard, Quantum cryptography: Public key distribution and coin tossing, Theoretical Computer Science, Dec 2014,

Copyright Elsevier.

36

The figure on slide 36 is taken from the original 1984 article by Bennet and Brassard, which was

re-published by Elsevier in the journal Theoretical Computer Science in 2014. BB84 is a scheme

still used for quantum key distribution. The paper, in section III, has a nice explanation of the

protocol.

https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1016/j.tcs.2014.05.025

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

QKD security (informal) (definition)

An attacker C tries to learn the secret key between A and B, without A or B
knowing. Therefore the attacker has to measure the photons sent by A.
However, as the photons are a superposition of states, when C measures them,
they are changed. As a result, B will receive changed photons, and when they
check the secret key with A, the check will fail.

37

The security of quantum key distribution depends on that measurement problem, i.e. that mea-

suring a quantum superposition state, changes the state. The attacker cannot measure the

communications between A and B without changing the communications. It is easy for A and

B to recognise if the communications have been changed.

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Contents

Quantum Computing

Quantum Algorithms

Issues in Quantum Computing

Quantum Cryptography

Cryptography in the Quantum Era

38

Cryptography

Quantum
Computing and
Cryptography

Quantum
Computing

Quantum
Algorithms

Issues in Quantum
Computing

Quantum
Cryptography

Cryptography in
the Quantum Era

Post-Quantum Cryptography

I NIST Post-Quantum Cryptography project called for proposals on
quantum-resistant public key cryptography algorithms
I Digital signatures, public-key encryption, key exchange
I 69 submissions in round 1 (2017)
I 26 algorithms in round 2 (2019)
I 7 finalists in round 3 (2020)
I Plan to standardise in 2022/2023

I Open Quantum Safe has open-source software for prototyping
quantum-resistant cryptography, including forks of OpenSSL, OpenSSH and
OpenVPN

39

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
https://openquantumsafe.org/

	Security Concepts
	Cryptography Concepts
	Cryptography Notation and Terminology
	Binary Values
	Counting
	Permutations and Combinations
	Probability
	Collisions
	Divisibility and Primes
	Modular Arithmetic
	Fermat's and Euler's Theorems
	Discrete Logarithms
	Computationally Hard Problems
	Caesar Cipher
	Monoalphabetic Ciphers
	Playfair Cipher
	Polyalphabetic Ciphers
	Vigenère Cipher
	Vernam Cipher
	One Time Pad
	Transposition Techniques
	Encryption Building Blocks
	Attacks on Encryption
	Block Cipher Design Principles
	Stream Cipher Design Principles
	Example: Brute Force on DES
	Example: Brute Force on AES
	Example: Meet-in-the-Middle Attack
	Example: Cryptanalysis on Triple-DES and AES
	Overview of the Data Encryption Standard (DES)
	Simplified-DES
	Details of DES
	DES in OpenSSL
	DES in Python
	Overview of AES
	Simplified-AES
	Simplified-AES Example
	AES in OpenSSL
	AES in Python
	Block Ciphers with Multiple Blocks
	Electronic Code Book
	Cipher Block Chaining Mode
	Cipher Feedback Mode
	Output Feedback Mode
	Counter Mode
	XTS-AES
	Concepts of Public Key Cryptography
	RSA Algorithm
	Analysis of RSA
	Implementations of RSA
	RSA in OpenSSL
	RSA in Python
	Diffie–Hellman Key Exchange Algorithm
	Analysis of DHKE
	Man-in-the-Middle Attack on DHKE
	Implementations of DHKE
	Diffie–Hellman in OpenSSL
	DHKE in Python
	Overview of Elliptic Curve Cryptography
	Applications of Elliptic Curve Cryptography
	Elliptic Curve Cryptography in OpenSSL
	Informal Overview of Hashes and MACs
	Introduction to Hash Functions
	Properties of Cryptographic Hash Functions
	Introduction to Message Authentication Codes
	Aims of Authentication
	Authentication with Symmetric Key Encryption
	Authentication with Hash Functions
	Authentication with MACs
	Digital Signatures
	Recommended Key Sizes
	Quantum Computing
	Quantum Algorithms
	Issues in Quantum Computing
	Quantum Cryptography
	Cryptography in the Quantum Era

