
Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Advanced Encryption Standard

Cryptography

School of Engineering and Technology
CQUniversity Australia

Prepared by Steven Gordon on 05 Jan 2022,
aes.tex, r1980

1



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Contents

Overview of AES

Simplified-AES

Simplified-AES Example

AES in OpenSSL

AES in Python

2



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

History of AES

I 1977: DES (56-bit key). NIST published.

I 1991: IDEA, similar to DES, secure but patent issues
I 1999: 3DES (168-bit key). NIST recommended 3DES be used (DES only

for legacy systems)
I 3DES was considered secure (apart from special case attacks)
I But 3DES is very slow, especially in software
I DES and 3DES use 64-bit blocks – larger block sizes required for efficiency

I 1997: NIST called for proposals for new Advanced Encryption Standards
I Proposals made public and evaluations performed

I 2001: Selected Rijndael as the algorithm for AES

3



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Selecting a Winner

I Original NIST criteria:
I Security: effort to cryptoanalyse algorithm, randomness, . . .
I Cost: royalty-free license, computationally efficient, . . .
I Algorithm and implementation characteristics: flexibility (different

keys/blocks, implement on different systems), simplicity, . . .

I 21 candidate algorithms reduced to 5
I Updated NIST evaluation criteria for 5 algorithms:

I General Security
I Software and hardware implementations (needs to be efficient)
I Low RAM/ROM requirements (e.g. for smart cards)
I Ability to change keys quickly
I Potential to use parallel processors

4



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Selecting Rijndael for AES

I Security: good, no known attacks

I Software implementation: fast, can make use of parallel processors

I Hardware implementation: fastest of all candidates

I Low memory requirements: good, except encryption and decryption require
separate space

I Timing and Power analysis attacks: easiest to defend against

I Key flexibility: supports on-the-fly change of keys and different size of
keys/blocks

5



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Overview of AES

I NIST Advanced Encryption Standard, FIPS-197, 2001
I Three variations of same algorithm standardised

I AES-128: 128-bit key, 10 rounds
I AES-192: 192-bit key, 12 rounds
I AES-256: 256-bit key, 14 rounds

I AES uses 128-bit block size for all variations

I S-AES used to understand AES (educational only)

I For details of AES see the Stallings textbook, AES on Wikipedia or the AES
standard from NIST

6

https://www.nist.gov/publications/advanced-encryption-standard-aes
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://www.nist.gov/publications/advanced-encryption-standard-aes
https://www.nist.gov/publications/advanced-encryption-standard-aes


Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Contents

Overview of AES

Simplified-AES

Simplified-AES Example

AES in OpenSSL

AES in Python

7



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Simplified-AES

I Educational purposes only. Mohammad A. Musa , Edward F. Schaefer and
Stephen Wedig (2003) A Simplified AES Algorithm and its Linear and
Differential Cryptanalyses, Cryptologia, 27:2, 148-177, DOI:
10.1080/0161-110391891838

I Input: 16-bit block of plaintext; 16-bit key

I Output: 16-bit block of ciphertext
I Operations:

I Add Key: XOR of a 16-bit key and 16-bit state matrix
I Nibble Substitution: S-Box table lookup that swaps nibbles (4 bits)
I Shift Row: shift of nibbles in a row
I Mix Column: re-order columns
I Rotate Nibbles: swap the nibbles

I 3 rounds (although they don’t contain same operations)

8

S-AES operates on 16-bit blocks, with some operations on 8-bit words and others on 4-bit

nibbles. For example, a 16-bit block is equivalent to two 8-bit words or four 4-bit nibbles.

https://www.tandfonline.com/action/showCitFormats?doi=10.1080/0161-110391891838


Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

S-AES Encryption

add key

nibble substitution

mix columns

shift row

add key

nibble substitution

shift row

add key

Plaintext
P 16 bits

Ciphertext

16 bitsC

round 1

round 2

expand key

expand key

K

Secret key
16 bits

2K

K1

K0

9

The figure on slide 9 shows the overall steps for S-AES and key expansion and encryption. The
key generation takes a 16-bit secret key and expands that into 3 16-bit round keys. The first
round key K0 is simple the original key. The next two round keys, K1 and K2 are generated by
an expansion algorithm. The figure on slide 11 shows that algorithm for K1.

S-AES encryption operates on 16-bit blocks of plaintext. To encrypt, there is an initial add

key, and then two rounds, where the 2nd round does not include the mix columns operation.



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

S-AES Decryption

add key

16 bits

16 bits

round 1

round 2

Ciphertext

Plaintext

P

C

inverse nibble sub

add key

inverse mix columns

inverse shift row

inverse shift row

inverse nibble sub

add key

expand key

K

Secret key
16 bits

0K

2K

expand key

K1

10

The figure on slide 10 shows the decryption operations. Note that it is similar to encryption in

reverse, with all operations replaced with their inverse operations. The same round keys are used

as in encryption, but in the opposite order.



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

S-AES Key Generation for Round 1

w 0

w 1

w 0 w 1

split halves

K0 16 bits

8 8

rotate nibble

round

constant

join halves

w w 32

K 16 bits1

nibble substitution

11

The figure on slide 11 shows the key generation operations for generated round key K1. Similar

steps are used to generate K2, where the input is K1 and a different round constant.



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

S-AES State Matrix (definition)

S-AES operates on a 16-bit state matrix, viewed as 4 nibbles[
b0b1b2b3 b8b9b10b11

b4b5b6b7 b12b13b14b15

]
=

[
S0,0 S0,1

S1,0 S1,1

]

12

While S-AES operates on 16-bits at a time, those bits are viewed as a state matrix of 4 nibbles.
Note the matrix is filled columnwise, with the first 8 bits (2 nibbles) in the first column.

The following shows operations based on the state matrix.



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

S-AES Shift Row, Add Key and Rotate Nibbile operations
(definition)

S-AES Shift Row: [
S0,0 S0,1

S1,0 S1,1

]
→
[
S0,0 S0,1

S1,1 S1,0

]
S-AES Add Key: Exclusive OR (XOR)
S-AES Rotate Nibble: swap the two nibbles
S-AES Nibble Substitution: apply S-Box on each nibble
S-AES Round Constant 1: 10000000

S-AES Round Constant 2: 00110000

13

Shift Row swaps the 2nd nibble with the 4th nibble. Add Key is a bitwise XOR. The round
constants are used in the key generation.



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

S-AES S-Boxes (definition)

S-Box considered as a matrix: input used to select row/column; selected element
is output

Input: 4-bit nibble, bit1, bit2, bit3, bit4

bit1bit2 specifies row
bit3bit4 specifies column

encrypt :


1001 0100 1010 1011
1101 0001 1000 0101
0110 0010 0000 0011
1100 1110 1111 0111



decrypt :


1010 0101 1001 1011
0001 0111 1000 1111
0110 0000 0010 0011
1100 0100 1101 1110


14

The left-most 2 bits in a nibble determine the row, and the right-most 2 bits in the nibble

determine the column. The output nibble is based on the S-Box. The Inverse S-Box is used in

decryption.



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

S-AES Mix Columns (definition)

Mix the columns in the state matrix be performing a matrix multiplication.
Mix Columns: [

S ′
0,0 S ′

0,1

S ′
1,0 S ′

1,1

]
=

[
1 4
4 1

] [
S0,0 S0,1

S1,0 S1,1

]
Inverse Mix Columns:[

S ′
0,0 S ′

0,1

S ′
1,0 S ′

1,1

]
=

[
9 2
2 9

] [
S0,0 S0,1

S1,0 S1,1

]
Galois Field GF(24) is used for addition and multiplication operations.

15

S ′ denotes the output from the mixing of columns, e.g. S ′
0,0 = (1×S0,0)+(4×S1,0). Importantly,

the resulting addition and multiplication operations are in Galois Field GF(24). We do not cover
(Galois) fields, however in Number Theory we saw modular arithmetic with mod n where all
operations produced results within 0 to n. This is a simple case of a field, i.e. all operations
produce answers within some finite range. GF(24) means all answers will be within range 0 to
15.

GF(24) addition is equivalent to bitwise XOR. However GF(24) multiplication is more compli-

cated. Therefore, for the purpose of demonstrating S-AES, a simplified view of the mix column

operations with a table lookup for multiplication is shown in the following.



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

S-AES Mix Columns (Simple) (definition)

Mix the columns in the state matrix be performing the following calculations.
Mix Columns:

S ′
0,0 = S0,0 ⊕ (0100× S1,0)

S ′
1,0 = (0100× S0,0)⊕ S1,0

S ′
0,1 = S0,1 ⊕ (0100× S1,1)

S ′
1,1 = (0100× S0,1)⊕ S1,1

Inverse Mix Columns:

S ′
0,0 = (1001× S0,0)⊕ (0010× S1,0)

S ′
1,0 = (0010× S0,0)⊕ (1001× S1,0)

S ′
0,1 = (1001× S0,1)⊕ (0010× S1,1)

S ′
1,1 = (0010× S0,1)⊕ (1001× S1,1)

For multiplication, lookup using The figure on slide 17.
16



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

GF(24) Multiplication Table used in S-AES

17

The figure on slide 17 shows the GF(24) multiplication table in binary. The green column is

used in encryption (Mix Columns) and the two blue columns are used in decryption (Inverse Mix

Columns). For example with encryption, when multiplying a value by 4 (0100 in binary), lookup

the value in the first column (e.g. 0111) and the answer will be in the green column (e.g. 1111).



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Comparing S-AES and AES-128

I S-AES
I 16-bit key, 16-bit plaintext/ciphertext
I 2 rounds: first with all 4 operations, last with 3 operations
I Round key size: 16 bits
I Mix Columns: arithmetic over GF(24)

I AES-128
I 128-bit key, 128-bit plaintext/ciphertext
I 10 rounds: first 9 with all 4 operations, last with 3 operations
I Round key size: 128 bits
I Mix Columns: arithmetic over GF(28)

I Principles of operation are the same

18



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Contents

Overview of AES

Simplified-AES

Simplified-AES Example

AES in OpenSSL

AES in Python

19



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Encrypt with S-AES (exercise)

Show that when the plaintext 1101 0111 0010 1000 is encrypted using
Simplified-AES with key 0100 1010 1111 0101 that the ciphertext obtained is
0010 0100 1110 1100.

20



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Contents

Overview of AES

Simplified-AES

Simplified-AES Example

AES in OpenSSL

AES in Python

21



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

AES Key Generation (exercise)

Generate a shared secret key to be used with AES and share it with another
person.

22



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

AES Encryption (exercise)

Create a message in a plain text file and after using AES, send the ciphertext to
the person you shared the key with.

23



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

AES Decryption (exercise)

Decrypt the ciphertext you received.

24



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

AES Performance Benchmarking (exercise)

Perform speed tests on AES using both the software and hardware
implementations (if available). Compare and discuss the impact of the following
on performance: key length; software vs hardware; different computers (e.g.
compare the performance with another person).

25



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

Contents

Overview of AES

Simplified-AES

Simplified-AES Example

AES in OpenSSL

AES in Python

26



Cryptography

Advanced
Encryption
Standard

Overview of AES

Simplified-AES

Simplified-AES
Example

AES in OpenSSL

AES in Python

AES in Python Cryptography Library

I https://cryptography.io/en/latest/hazmat/primitives/

symmetric-encryption/

27

https://cryptography.io/en/latest/hazmat/primitives/symmetric-encryption/
https://cryptography.io/en/latest/hazmat/primitives/symmetric-encryption/

	Overview of AES
	Simplified-AES
	Simplified-AES Example
	AES in OpenSSL
	AES in Python

