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Chapter 1

Introduction

This book is a collection of definitions, algorithms, examples and notes on cryptography.
This book is work-in-progress. That is, it is incomplete. Content will be added

regularly, so you are encouraged to check for new versions frequently.
This book was created with LATEX, with the PDF book, website and lecture material

generated from the one set of LATEX source files. Links to the lecture slides are included
at the start of each chapter. You can also obtain the lecture slides and LATEX source from
the following directories:

• Slides for presentation, including PDF slides (slides-colour.pdf), PDF hand-
outs including notes (handout-colour.pdf), LibreOffice Impress slides with notes
(slides-colour.odp), Microsoft PowerPoint slides with notes (slides-colour.pptx)
and PDF handouts in black and white for printing (handout-print.pdf). Note
the ODP and PPTX slides only contain images of each slide, so cannot be easily
edited, but can be used in dual screen presentation mode. https://sandilands.
info/crypto/slides/

• LATEX source for the book (including all the .tex, images and style files) as well as
selected examples: https://sandilands.info/crypto/source/

Video
Introduction to Cryptography Study Notes (6 min; Dec 2021)
https://www.youtube.com/watch?v=s7HmFPvw8nc

File: crypto/intro.tex, r1960
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Chapter 2

Cryptography Concepts and
Terminology

This chapter defines key concepts and terminology in cryptography. This would likely
to have been already covered in a subject that introduces computer security (e.g. an
introduction to networking or IT security). Therefore it is quite brief, serving mainly a
refresher and to set the scene for subsequent chapters.

Presentation slides that accompany this chapter can be downloaded in the following
formats: slides only (PDF); slides with notes (PDF, ODP, PPTX).

Video
Cryptography Concepts and Terminology mini-lecture (14 min; Feb 2020)
https://www.youtube.com/watch?v=fx4nGsoum6A

2.1 Security Concepts
There are three broad protections that are considered important when securing informa-
tion systems:

Confidentiality ensures only authorised parties can view information

Integrity ensures information, including identity of sender, is not altered

Availability ensures information accessible to authorised parties when needed

Examples of confidentiality: a file is encrypted so that only authorised party (with a
secret key) can decrypt to read the contents of the file; web traffic sent across Internet is
encrypted so that intermediate users cannot see the web sites and content of web pages
you are visiting.

Examples of integrity: If someone maliciously modifies a message, the receiver can
detect that modification; if someone sends a message pretending to be someone else, the
receiver can detect that it is a different person.

File: crypto/concepts.tex, r1961
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Examples of availability: a web server provides customers ability to buy products;
that web server is available for the customers 24/7 even under malicious attacks.

While Confidentiality, Integrity and Availability (CIA) is commonly referred to, it does
not cover everything. There are other classifications of protections. Often Authentication,
Authorisation and Accounting (AAA) is also referred to as additional protections.

Authentication ensures that the individual is who she claims to be (the authentic or
genuine person) and not an impostor

Authorisation providing permission or approval to use specific technology resources

Accounting provides tracking of events

Example of authentication: check username and password when user logs into system.
Example of authorisation: check that user is authorised to access a particular docu-

ment.
Example of accounting: record logs of who accesses files and provide summary reports.
This book does not attempt to cover everything. The scope is:

• Focus on confidentiality and integrity of information using technical means

• Means of authentication also covered

• Accounting, system availability, policy, etc. are out of scope

• See other subjects or books on “IT Security”, “Network Security Concepts” or
similar

2.2 Cryptography Concepts
Encryption is a key mechanism in cryptography, and often used to provide confidentiality.

• Aim: assure confidential information not made available to unauthorised individuals
(data confidentiality)

• How: encrypt the original data; anyone can see the encrypted data, but only au-
thorised individuals can decrypt to see the original data

• Used for both sending data across network and storing data on a computer system

While encryption is used to provide different services in cryptography, the main service
is confidentiality: keeping data secret. In the following we talk about using encryption for
confidentiality. Later we will see that the same encryption mechanisms can also provide
other services such as authentication, integrity and digital signatures.

Figure 2.1 shows a simple model of system that uses encryption for confidentiality.
Assume two users, A and B, want to communicate confidentially. User A has a plaintext
message to send to B. User A first encrypts that plaintext using a key. The output
ciphertext is sent to user B (e.g. across the Internet). We assume the attacker, user C,
can intercept anything sent – in this case they see the ciphertext. User B receives the
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Figure 2.1: Model of Encryption for Confidentiality

ciphertext and decrypts. If the correct key and algorithm is used, then the output of the
decryption is the original plaintext.

The aim of the attacker is to find the plaintext. They can either do some analysis
of the ciphertext to try to discover the plaintext, or try to find the key (if the attacker
knows key 2, they can decrypt the same as user B).

In symmetric key crypto, Key 1 and Key 2 are identical (symmetry of the keys).
In public key crypto, Key 1 is the public key of B and Key 2 is the private key of B.

(asymmetric of the keys).
Given the above scenario, the important terms in cryptography are:

Plaintext original message

Ciphertext encrypted or coded message

Encryption convert from plaintext to ciphertext (enciphering)

Decryption restore the plaintext from ciphertext (deciphering)

Key information used in cipher known only to sender/receiver

Cipher a particular algorithm (cryptographic system)

Cryptography study of algorithms used for encryption

Cryptanalysis study of techniques for decryption without knowledge of plaintext

Cryptology areas of cryptography and cryptanalysis
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2.3 Cryptography Notation and Terminology
Mathematical notation is often used when describing cryptographic mechanisms, as it is
precise and brief. Table 2.1 summarises the main notation used in this book. For brevity,
single letters are often used to refer to information or operations. However sometimes we
need to change the letter to avoid ambiguity. For example, P often refers to plaintext.
However in public key cryptography we see the letter P used in the public key (PU) and
private key (PR), and so use M to refer to the plaintext (or message).

Operations, such as encryption, decryption and hashes, are written as functions, where
the inputs to the operation are given as parameters within parentheses, and the output of
the operation is assigned to the variable to the left of the equal sign. For encryption and
decryption, the inputs are commonly order as key then data (plaintext or ciphertext).

Subscripts are often used to identify either the information belongs to a particular
user or that the operation uses a specific algorithm. For example, PRA is a private key
that belongs to user A, and KXY is a secret key shared between users X and Y. HMD5(M)
means apply a hash function, specifically the MD5 algorithm.

Symbol Description Example
P Plaintext or message P = D(KAB , C)
M Message or plaintext M = D(PRB , C)
C Ciphertext C = E(KAB , P ) or C = E(PUB , M)
K Secret key, symmetric key
KAB Secret key shared between A and B
E() Encrypt operation E(KAB , P ) or E(PUB , M)
Ecipher() Encrypt operation using cipher EAES(KAB , P )
D() Decrypt operation D(KAB , C) or D(PRB , C)
PUA Public key of user A
PRA Private key of user A
H() Hash operation H(M)
MAC() MAC operation MAC(KAB , M)
XOR, ⊕ Exclusive OR operation A XOR B, A⊕B
h Hash value h = H(M)
|| Concatenate (join) operation A||B

Table 2.1: Common Symbols and Notation
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Chapter 3

Software Tools

This chapter lists common tools referred to within the rest of the book. The purpose is
to make you aware of the tools; not to teach you how to use the tools. While some setup
and basic usage instructions may be given, you can normally find detailed instructions
by searching online, or within the tool help or manual pages.

3.1 Linux and Ubuntu
Almost all of the software-based examples or demonstrations in this book are performed
using a Linux operating system, especially using command-line tools (as opposed to tools
using a graphical user interface).

This book uses the Ubuntu distribution of Linux, although most tools will work
equally well on other distributions (e.g. Red Hat, Fedora, Debian, Slackware).

It is assumed you have access to a Linux command line and having basic knowledge
of common file and directory operations in Linux. My other book Network and Security
in Linux motivates the use of Linux in the field (Chapter 2) and provides an introduction
to the command line (Chapter 4).

The following lists selected command line tools which are normally available in com-
mon Linux distributions.

3.1.1 Hex and Binary Viewer: xxd
We often deal with binary values in cryptography. Therefore it is useful to be able to
view the contents of binary files (as opposed to text files). xxd is one tool that allows
viewing any file as binary or hex (default).

To demonstrate, let’s first create a plaintext file called demo.txt:

$ echo -n "This is a super secret message. " > demo.txt
$ ls -l demo.txt
-rw-r--r-- 1 sgordon sgordon 32 Dec 5 17:58 demo.txt

While your output of the ls command may be different it should show 32, meaning
the file size is 32 bytes (note the text contains 32 characters, including the space at the
end; the -n option means no new line character is added).

File: crypto/tools.tex, r1962

11
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We can view the text file with cat:

$ cat demo.txt
This is a super secret message. $

The command prompt does not start on a new line since our text file does not finish
with a new line character.

Now let’s look at the file in hex and then binary format (using the -b option):

$ xxd demo.txt
00000000: 5468 6973 2069 7320 6120 7375 7065 7220 This is a super
00000010: 7365 6372 6574 206d 6573 7361 6765 2e20 secret message.
$ xxd -b demo.txt
00000000: 01010100 01101000 01101001 01110011 00100000 01101001 This i
00000006: 01110011 00100000 01100001 00100000 01110011 01110101 s a su
0000000c: 01110000 01100101 01110010 00100000 01110011 01100101 per se
00000012: 01100011 01110010 01100101 01110100 00100000 01101101 cret m
00000018: 01100101 01110011 01110011 01100001 01100111 01100101 essage
0000001e: 00101110 00100000 .

By default, xxd shows three pieces of information per line of output:

1. The address, in hex, of first byte on the line

2. The hex (or binary) values, with some spacing to ease the readability

3. The ASCII character (if it is printable) for the corresponding byte. A dot is shown
if the ASCII character is not printable (e.g. the DELete or ESCape characters).

xxd has a variety of command line options, which are well described in the man
page. For example, to show 8 bytes per line (column size), group into 2 sets of 4 bytes,
displaying a length just the first 16 bytes:

$ xxd -c 8 -g 4 -l 16 demo.txt
00000000: 54686973 20697320 This is
00000008: 61207375 70657220 a super

Combined with other commands, such as cut and grep, you can extract information
of interest. For example, show the binary representation of the first 64 bytes of the file
/bin/ls, 8 bytes per line:

$ xxd -b -l 64 -c 8 -g 8 /bin/ls | cut -d " " -f 2
0111111101000101010011000100011000000010000000010000000100000000
0000000000000000000000000000000000000000000000000000000000000000
0000001100000000001111100000000000000001000000000000000000000000
0101000001011000000000000000000000000000000000000000000000000000
0100000000000000000000000000000000000000000000000000000000000000
1010000000000011000000100000000000000000000000000000000000000000
0000000000000000000000000000000001000000000000000011100000000000
0000100100000000010000000000000000011100000000000001101100000000
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3.1.2 Arbitrary Precision Calculator: bc
No doubt you have access to a software calculator on your computer or phone, or even
a traditional calculator on your desk. While these calculators are convenient, they often
make approximations when dealing with very large numbers. An arbitrary precision
calculator will give exact answers, no matter how big numbers are. Several important
ciphers in cryptography rely on calculations with big numbers, so it is nice to have
an arbitrary precision calculator available. In Linux, bc is a command-line arbitrary
precision calculator.

The following shows an example of starting bc in Linux, and then performing normal
arithmetic operations.

$ bc
bc 1.07.1
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006, 2008, 2012-2017 Free

Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type ‘warranty’.
<kbd>1␣+␣2</kbd>
3
<kbd>20␣-␣13</kbd>
7
<kbd>7␣*␣6␣+␣2</kbd>
44
<kbd>7␣*␣(6␣+␣2)</kbd>
56
<kbd>56␣/␣8</kbd>
7
<kbd>54␣/␣10</kbd>
5

Note that the last division gives the quotient as the answer, not a fraction. By default,
fractions are not used, but can easily be enabled by setting the scale parameter as follows:

scale=2
54/10
5.40

Exponentiation is also supported using the “hat” or “carat” operator:

10^2
100
2^3
8

Modular arithmetic (Section 5) is commonly used in cryptography. The mod operator
is the percent sign (be sure to set the scale back to 0 first):

scale=0
13 % 10
3
7 * 6 % 10
2
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The real use of bc in this book comes when performing operators on large num-
bers. As bc is an arbitrary precision calculator, it will perform any calculation without
approximating (although beware, some calculations will take a long time).

2^10
1024
2^100
1267650600228229401496703205376
2^1000
10715086071862673209484250490600018105614048117055336074437503883703\
51051124936122493198378815695858127594672917553146825187145285692314\
04359845775746985748039345677748242309854210746050623711418779541821\
53046474983581941267398767559165543946077062914571196477686542167660\
429831652624386837205668069376
2^10000000
...

While there are faster algorithms than what bc uses, it can be used for modular
exponentiation.

29401^19231
11791936741673782277951361412655628509750802626058442595065879112837\
30645660979602186783941907308557893020948598603221372351480244103370\
...
27540919410894776657722419140083914356072020143002078956241640716425\
878094269792146304397724529078575760209188791401
29401^19231 % 37669
35694

To exit bc, type quit:

quit

To perform (normal) logarithms, you need to start bc using the -l option to load the
math library. Then the l() function can be used to calculate the natural logarithm, or
find the logarithm in any base. Although be careful with the scale.

$ bc -l
bc 1.07.1
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006, 2008, 2012-2017 Free

Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type ‘warranty’.
<kbd>l(2.718)</kbd>
.99989631572895196894
<kbd>l(100)/l(10)</kbd>
2.00000000000000000000
<kbd>l(32)/l(2)</kbd>
5.00000000000000000004
<kbd>l(1024)/l(2)</kbd>
10.00000000000000000010

Discrete logarithms are not directly supported in bc.



3.1. LINUX AND UBUNTU 15

3.1.3 Random Numbers
Random numbers are important for creating shared secret keys (as well as other use in
other cryptographic operations). There are different ways to generate a random value
in Linux. Two approaches are demonstrated in the following; a third approach is to use
OpenSSL (introduced in Section 3.2 and demonstrated in Section 3.2.4.

Generating Random Numbers with Bash

The Bash shell has a built-in random number generator, which is accessed from the shell
variable $RANDOM. It uses a Linear Congruential Generator (LCG) to return a value
between 0 and 32,767. This is not a cryptographically strong Pseudo Random Number
Generator (PRNG) and should not be used to create keys.

$ echo $RANDOM
4086
$ echo $RANDOM
11809
$ echo $RANDOM
6018

To see the details of the LCG algorithm used, look in the Bash source code; after
downloading and unpacking the source, look in the file variables.c, search for the
function brand. You can also see that the seed is based on the current time and process
ID.

Generating Random Numbers with /dev/urandom

The Linux kernel has a pseudo-device /dev/urandom which is considered cryptograph-
ically strong PRNG for most applications. The device produces a continuous stream
of random bytes, so while it is possible to view the stream in real-time using cat, it is
common to pipe the output to select a specific number of bytes in an easy to read format.
We can use xxd to do this.

First grab 8 Bytes, output in binary:

$ cat /dev/urandom | xxd -l 8 -b
0000000: 10000111 11110111 01001101 10011100 01111110 10110110 ..M.~.
0000006: 01010110 11010001

If we want 16 Bytes of hex output:

$ cat /dev/urandom | xxd -l 16 -g 16
00000000: 75619f0688497b213c5db43d49210c4d ua...I{!<].=I!.M

A little bit of text processing will return just the random value (omitting the other
output produced by xxd). Let’s use cut to grab the 2nd field, considering the output as
space separated/delimited:

$ cat /dev/urandom | xxd -l 16 -g 16 | cut -d " " -f 2
313be197c436bebf074a2da3599a0ce0

http://ftp.gnu.org/gnu/bash/
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Read the man pages for an explanation of the Linux kernel random number source
device /dev/urandom and the related /dev/random. The section 7 man page gives an
overview, while the section 4 man page gives more technical details on the two devices.

$ man -S7 random
$ man -S4 urandom

3.1.4 Hash Functions

Linux usually includes several commands for applying common hash functions on data.
These are the “sum” commands, i.e. used for calculating checksums. The following com-
mands demonstrate applications of the hash functions MD5, SHA1 and SHA2 (256).

$ cat demo.txt
This is a super secret message. $
$ md5sum demo.txt
7899f47eb650b40ae9156f6664304281 demo.txt
$ sha1sum demo.txt
87992f407ab94d05f64131db482067f9ffe42044 demo.txt
$ sha256sum demo.txt
12e38182116f070ef1a4d8961692787aa57add87d5496c4daf402279bc71c0b6 demo.txt

You can write the hash value to a file, and then use that file to perform a check:

$ sha256sum demo.txt > demo.sha256
$ cat demo.sha256
12e38182116f070ef1a4d8961692787aa57add87d5496c4daf402279bc71c0b6 demo.txt
$ sha256sum -c demo.sha256
demo.txt: OK

A change to the file should result in failure of the check (if the hash is not recomputed):

$ cat demo.txt
This is a super secret message. $
$ echo -n "This is a super secret message! " > demo.txt
$ sha256sum -c demo.sha256
demo.txt: FAILED
sha256sum: WARNING: 1 computed checksum did NOT match

You can also use OpenSSL (Section 3.2) to apply hash functions.

3.1.5 Bash Scripts

A useful advantage of the (Linux) command line is that it is easy to write a series of
commands into a file, and then running them all by executing the file. This file is called
a script. Once you have a basic grasp of the line command line (see Chapter 4 of my
other book Network and Security in Linux), you can then start writing scripts to automate
tasks. The basics of scripting, with many examples, is covered in Chapter 6 of my other
book Network and Security in Linux.

https://sandilands.info/nsl/
https://sandilands.info/nsl/
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3.2 OpenSSL

3.2.1 Overview of OpenSSL
https://www.openssl.org/ is a program and library that supports many different crypto-
graphic operations, including:

• Symmetric key encryption

• Public/private key pair generation

• Public key encryption

• Hash functions

• Certificate creation

• Digital signatures

• Random number generation

While the primary purpose of OpenSSL is as a library, i.e. you write software that calls
OpenSSL to perform cryptographic operations for your software, it also is a standalone
program with a command-line interface. While we only use the standalone program, once
you are familiar with it, you should be able to use the library.

OpenSSL supports different operations or commands, with the name of the command
following openssl. For example, to perform symmetric key encryption the command is
enc and on the command line you run:

$ openssl enc

Each of the operations supported by OpenSSL have a variety of options, such as
input/output files, algorithms, algorithm parameters and formats. To start learning the
details of OpenSSL, read the man page, i.e. man openssl. You’ll soon learn that each of
the operations (or commands) have their own man pages. For example, the operation of
symmetric key encryption is enc, which is described in man enc.

There are other websites that give an overview of OpenSSL operations, as well as
programming with the API. Check them out for more details.

3.2.2 Common Operations
OpenSSL takes an operation or command as first input, and that command may have
it’s own set of parameters. Parameters are usually specified starting with a dash (-). To
see all the commands available, use the help command:

$ openssl help
Standard commands
asn1parse ca ciphers cms
...

Message Digest commands (see the ‘dgst’␣command␣for␣more␣details)
blake2b512␣␣␣␣␣␣␣␣blake2s256␣␣␣␣␣␣␣␣gost␣␣␣␣␣␣␣␣␣␣␣␣␣␣md4

http://www.madboa.com/geek/openssl/
https://help.ubuntu.com/community/OpenSSL
http://www.ibm.com/developerworks/linux/library/l-openssl/index.html
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...

Cipher␣commands␣(see␣the␣‘enc’ command for more details)
aes-128-cbc aes-128-ecb aes-192-cbc aes-192-ecb
...

In reverse order:

Cipher commands perform symmetric key encryption

Message Digest commands apply hash functions

Standard commands provide a variety of operations related to public key generation
and key management

For cipher and message digest commands, you can read the common format in the
man pages man enc and man dgst, respectively. Most of the standard commands have
their own man page, e.g. man rsa, man x509. Note that there are sometimes multiple
commands that can be used to perform the same cryptographic operation. For example,
you can generate Rivest Shamir Adleman cipher (RSA) key pairs using either genrsa
or genpkey commands. This is mainly for compatibility reasons, that is, over time new
commands have been added and the old command maintained.

Some common commands you will see in this book include:

• enc for symmetric key encryption

• genpkey for generating public/private key pairs

• pkey for processing and output keys from key pairs

• dgst for hashes, signatures and verification

3.2.3 Listing Ciphers and Algorithms
To see the (symmetric key) ciphers and (hash functions or) digests supported by your
version of OpenSSL, you can use the list command. OpenSSL distinguishes between
the algorithms and the commands used to call those algorithms. The following shows the
version of OpenSSL, then lists algorithms and commands for ciphers and digests.

$ openssl version
OpenSSL 1.1.1 11 Sep 2018
$ openssl list -cipher-algorithms
AES-128-CBC
AES-128-CBC-HMAC-SHA1
...
SM4-ECB
SM4-OFB
$ openssl list -cipher-commands
aes-128-cbc aes-128-ecb aes-192-cbc aes-192-ecb
aes-256-cbc aes-256-ecb aria-128-cbc aria-128-cfb
aria-128-cfb1 aria-128-cfb8 aria-128-ctr aria-128-ecb
aria-128-ofb aria-192-cbc aria-192-cfb aria-192-cfb1
aria-192-cfb8 aria-192-ctr aria-192-ecb aria-192-ofb
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aria-256-cbc aria-256-cfb aria-256-cfb1 aria-256-cfb8
aria-256-ctr aria-256-ecb aria-256-ofb base64
bf bf-cbc bf-cfb bf-ecb
bf-ofb camellia-128-cbc camellia-128-ecb camellia-192-cbc
camellia-192-ecb camellia-256-cbc camellia-256-ecb cast
cast-cbc cast5-cbc cast5-cfb cast5-ecb
cast5-ofb des des-cbc des-cfb
des-ecb des-ede des-ede-cbc des-ede-cfb
des-ede-ofb des-ede3 des-ede3-cbc des-ede3-cfb
des-ede3-ofb des-ofb des3 desx
rc2 rc2-40-cbc rc2-64-cbc rc2-cbc
rc2-cfb rc2-ecb rc2-ofb rc4
rc4-40 seed seed-cbc seed-cfb
seed-ecb seed-ofb sm4-cbc sm4-cfb
sm4-ctr sm4-ecb sm4-ofb

openssl list -digest-algorithms
RSA-MD4 => MD4
RSA-MD5 => MD5
...
ssl3-sha1 => SHA1
whirlpool
$ openssl list -digest-commands
blake2b512 blake2s256 gost md4
md5 rmd160 sha1 sha224
sha256 sha3-224 sha3-256 sha3-384
sha3-512 sha384 sha512 sha512-224
sha512-256 shake128 shake256 sm3

3.2.4 Random Number Generation with OpenSSL

Section 3.1.3 shows different ways to generate random numbers in Linux. OpenSSL has
its own PRNG which is also considered cryptographically strong. This is accessed using
the rand command and specifying the number of bytes to generate. To get hex output,
use the -hex option:

$ openssl rand -hex 8
89978d4960720a750f35d569bcf28494

You can also output to a file and view the file with xxd:

$ openssl rand -out rand1.bin 8
$ ls -l rand1.bin
-rw-rw-r-- 1 sgordon sgordon 8 Jul 31 15:14 rand1.bin
$ xxd rand1.bin
0000000: 7d12 162f 1a18 c331 }../...1
$ xxd -b -g 8 -c 8 rand1.bin | cut -d " " -f 2
0111110100010010000101100010111100011010000110001100001100110001

On Linux, the OpenSSL rand command normally uses output from /dev/urandom to
seed (initialise) it’s PRNG. Read the man page for more information.
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3.3 Python
Python (www.python.org) is a programming language that is seeing increasing use in
networking applications that require cryptography. We use it for examples in this book
as it is relatively quick to pick up and start building prototype applications with custom
or existing cryptographic mechanisms.

Like most programming languages, including Java, PHP and C++, libraries are avail-
able that already implement common cryptographic mechanisms; you can focus your
efforts on developing applications, not implementing encryption ciphers and hash algo-
rithms. However there is currently no single standard cryptography library for Python;
several are available. In this book we use the cryptography package, as introduced
in Section 3.3.1. Another common library, not used in this book, is based on PyNaCL
(https://pynacl.readthedocs.io/), which is based on libsodium and NaCL.

To use classical ciphers, the PyCipher package is used, which is introduced in Sec-
tion 3.3.2.

3.3.1 Cryptography Package
For installation and quick usage guide, see https://cryptography.io/.

3.3.2 PyCipher Package
To learn some of the concepts and approaches used by current encryption algorithms
(ciphers), it can be useful to first study how some of the original, simpler ciphers work
(e.g. Caesar cipher, Playfair, Vigenere). With these simpler ciphers, often referred to
as classical ciphers, it is quite easy to understand the algorithm and even perform en-
cryption/decryption by hand. Although it is valuable to initially perform the encryption
steps by hand, sometimes its useful to use software to speed things up. pycipher is a
Python package that implements many classical ciphers. It has good documentation on
how to use it, including installation instructions. Below I give two alternatives to install
pycipher in a virtnet node. The first is the default and easiest that uses git. The second
is an alternative if git is not available and you want a specific version of pycipher.

Install pycipher (Recommended Method)

In a terminal in Linux run:

$ sudo apt-get update
$ sudo apt-get install git python-pip
$ sudo pip install git+git://github.com/jameslyons/pycipher

Install pycipher (Alternative Method)

If the recommended method above does not work (e.g. you don’t have or want to use git
or pip), then you could try the following:

$ sudo apt-get install unzip python-setuptools
$ wget https://github.com/jameslyons/pycipher/archive/master.zip
$ unzip master.zip

www.python.org
https://pynacl.readthedocs.io/
https://github.com/jedisct1/libsodium
https://nacl.cr.yp.to/
https://cryptography.io/
https://pypi.python.org/pypi/pycipher
https://github.com/jameslyons/pycipher/blob/master/doc/source/index.rst
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$ cd pycipher-master/
$ sudo python setup.py install
$ python setup.py test

This installs and tests the latest version. Depending on the version, some tests my
fail. In my case it ran 41 tests, but 2 tests failed (using the Porta algorithm). Do not
use the algorithms that failed the tests.

Using pycipher

A quick example of encrypting and decrypting with pycipher is below. Other ciphers
include: Beaufort, Foursquare, Enigma, Polybius, Bifid, ADFGVX, Coltrans, Playfair,
and Vigenere. Details on the ciphers supported and how to use them are in the latest
documentation.

$ python
Python 2.7.3 (default, Feb 27 2014, 20:00:17)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import pycipher
>>> pycipher.Caesar(3).encipher("hello")
’KHOOR’
>>> pycipher.Caesar(3).decipher("khoor")
’HELLO’
>>> quit()

https://github.com/jameslyons/pycipher/blob/master/doc/source/index.rst
https://github.com/jameslyons/pycipher/blob/master/doc/source/index.rst
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Chapter 4

Statistics for Communications and
Security

This chapter presents a selection of definitions and examples of mathematical properties
that may be useful in learning computer communications and security.

Presentation slides that accompany this chapter can be downloaded in the following
formats: slides only (PDF); slides with notes (PDF, ODP, PPTX).

4.1 Binary Values
Applying several properties of exponentials and logarithms can make it easier when deal-
ing with large binary values. Consider the following properties:

nx × ny = nx+y

nx

ny
= nx−y

logn (x× y) = logn(x) + logn(y)

logn
(
x

y

)
= logn(x)− logn(y)

Example 4.1 (Properties of Exponentials). Properties can be applied to simplify calcu-
lations:

212 = 22+10

= 22 × 210

= 4× 1024
= 4096

With this property of exponentials, if you can remember the values of 21 to 210 then
you can approximate most values of 2b that you come across in communications and
security. Table 4.1 gives the exact or approximate decimal value for b-bit numbers.

File: crypto/statistics.tex, r1791

23

https://sandilands.info/crypto/slides/crypto-statistics-for-communications-and-security-slides-colour.pdf
https://sandilands.info/crypto/slides/crypto-statistics-for-communications-and-security-handout-colour.pdf
https://sandilands.info/crypto/slides/crypto-statistics-for-communications-and-security-slides-colour.odp
https://sandilands.info/crypto/slides/crypto-statistics-for-communications-and-security-slides-colour.pptx
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Exponent, b 2b
(bits) Exact Value Approx. Value
0 1 -
1 2 -
2 4 -
3 8 -
4 16 -
5 32 -
6 64 -
7 128 -
8 256 -
9 512 -
10 1,024 1,000 = 103

11 - 2,000
12 - 4,000
13 - 8,000
14 - 16,000

. . .
19 - 512,000
20 - 1,000,000 = 106

21 - 2× 106

22 - 4× 106

23 - 8× 106

. . .
29 - 512× 106

30 - 109

31 - 2× 109

32 - 4× 109

33 - 8× 109

. . .
39 - 512× 109

40 - 1012

50 - 1015

60 - 1018

70 - 1021

x× 10 - 103x

Table 4.1: Useful Exact and Approximate Values in Binary
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Example 4.2 (Properties of Exponentials with Binary Values). Properties and approx-
imations can be used to perform large calculations:

2128

2100 = 2128−100

= 228

= 28 × 220

≈ 256× 106

≈ 108

Example 4.3 (Properties of Logarithms). The number of bits needed to represent a
decimal number can be found using logarithms:

log2(20, 000) = log2(20× 103)
= log2(20) + log2(103)
≈ 4 + 10
≈ 14

4.2 Counting
Definition 4.1 (Number of Binary Values). Given an n-bit number, there are 2n possible
values.

Example 4.4 (Number of Sequence Numbers). Consider a sliding-window flow control
protocol that uses an 16-bit sequence number. There are 216 = 65, 536 possible values of
the sequence number, ranging from 0 to 65,535 (after which it wraps back to 0).

Example 4.5 (Number of IP Addresses). An IP address is a 32-bit value. There are 232

or approximately 4× 109 possible IP addresses.

Example 4.6 (Number of Keys). If choosing a 128-bit encryption key randomly, then
there are 2128 possible values of the key.

Video
Number of Binary Values (5 min; Jan 2015)
https://www.youtube.com/watch?v=AJU0BgwkXLU

Definition 4.2 (Fixed Length Sequences). Given a set of n items, there are nk possible
k-item sequences, assuming repetition is allowed.

Example 4.7 (Sequences of PINs). A user chooses a 4-digit PIN for a bank card. As
there are 10 possible digits, there are 104 possible PINs to choose from.

https://www.youtube.com/watch?v=AJU0BgwkXLU
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Example 4.8 (Sequences of Keyboard Characters). A standard keyboard includes 94
printable characters (a–z, A–Z, 0–9, and 32 punctuation characters). If a user must select
a password of length 8, then there are 948 possible passwords that can be selected.

Video
Fixed Length Sequences (7 min; Jan 2015)
https://www.youtube.com/watch?v=9srF2V1f1gU

Definition 4.3 (Pigeonhole Principle). If n objects are distributed over m places, and if
n > m, then some places receive at least two objects.

Video
Pigeonhole Principle (2 min; Jan 2015)
https://www.youtube.com/watch?v=sz9yPCGW2D4

Example 4.9 (Pigeonhole Principle on Balls). There are 20 balls to be placed in 5 boxes.
At least one box will have at least two balls. If the balls are distributed in a uniform
random manner among the boxes, then on average there will be 4 balls in each box.

Video
Pigeonhole Principle with Uniform Random Distribution (1 min; Jan 2015)
https://www.youtube.com/watch?v=PDCuL_SExu0

Example 4.10 (Pigeonhole Principle on Hash Functions). A hash function takes a 100-
bit input value and produces a 64-bit hash value. There are 2100 possible inputs dis-
tributed to 264 possible hash values. Therefore at least some input values will map to
the same hash value, that is, a collision occurs. If the hash function distributes the input
values in a uniform random manner, then on average, there will be 2100

264 ≈ 6.4 × 1010

different input values mapping to the same hash value.

Video
Pigeonhole Principle and Hash Functions (5 min; Jan 2015)
https://www.youtube.com/watch?v=5xjMuZIMLLk

4.3 Permutations and Combinations
Definition 4.4 (Factorial). There are n! different ways of arranging n distinct objects
into a sequence.
Example 4.11 (Factorial and Balls). Consider four coloured balls: Red, Green, Blue
and Yellow. There are 4! = 24 arrangements (or permutations) of those balls:

RGBY, RGYB, RBGY, RBYG, RYGB, RYBG,
GRBY, GRYB, GBRY, GBYR, GYRB, GYBR,
BRGY, BRYG, BGRY, BGYR, BYRG, BYGR,
YRGB, YRBG, YGRB, YGBR, YBRG, YBGR

https://www.youtube.com/watch?v=9srF2V1f1gU
https://www.youtube.com/watch?v=sz9yPCGW2D4
https://www.youtube.com/watch?v=PDCuL_SExu0
https://www.youtube.com/watch?v=5xjMuZIMLLk
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Video
Factorial and arranging balls (2 min; Jan 2015)
https://www.youtube.com/watch?v=Ay_E8bsOXJw

Example 4.12 (Factorial and English Letters). The English alphabetic has 26 letters,
a–z. There are 26! ≈ 4× 1026 ways to arrange those 26 letters.

Video
Arranging English Letters (2 min; Jan 2015)
https://www.youtube.com/watch?v=ksilZXfwuQs

Example 4.13 (Factorial and Plaintext Messages). An encryption algorithm takes a
64-bit plaintext message and a key as input and then maps that to a 64-bit ciphertext
message as output. There are 264 ≈ 1.6× 1019 possible input plaintext messages. There
are 264! ≈ 101088 different reversible mappings from plaintext to ciphertext, i.e. 264!
possible keys.

Video
Number of keys for ideal block cipher (6 min; Jan 2015)
https://www.youtube.com/watch?v=iQBLbz0w99s

Definition 4.5 (Combinations). The number of combinations of items when selecting
k at a time from a set of n items, assuming repetition is not allowed and order doesn’t
matter, is:

n!
k! (n− k)!

The following definition is just a specific instance of number of combinations (Defini-
tion 4.5) when k = 2. However the formula is simplified.

Definition 4.6 (Number of Pairs). The number of pairs of items in a set of n items,
assuming repetition is not allowed and order doesn’t matter, is:

n (n− 1)
2

Example 4.14 (Pairs of Coloured Balls). There are four coloured balls: Red, Green,
Blue and Yellow. The number of different coloured pairs of balls is 4×3/2 = 6. They are:
RG, RB, RY, GB, GY, BY. Repetitions are not allowed (as they won’t produce different
coloured pairs), meaning RR is not a valid pair. Ordering doesn’t matter, meaning RG is
the same as GR.

Example 4.15 (Pairs of Network Devices). A computer network has 10 devices. The
number of links needed to create a full-mesh topology is 10× 9/2 = 45.

https://www.youtube.com/watch?v=Ay_E8bsOXJw
https://www.youtube.com/watch?v=ksilZXfwuQs
https://www.youtube.com/watch?v=iQBLbz0w99s
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Example 4.16 (Pairs of Key Sharers). There are 50 users in a system, and each user
shares a single secret key with every other user. The number of keys in the system is
50× 49/2 = 1, 225.

Video
Number of Pairs from n Items (5 min; Jan 2015)
https://www.youtube.com/watch?v=ZykkvK_Hu5g

4.4 Probability
In this chapter when referring to a “random” number it means taken from a uniform
random distribution. That means there is equal probability of selecting each value from
the set.

Definition 4.7 (Probability of Selecting a Value). Probability of randomly selecting a
specific value from a set of n values is 1/n.

Example 4.17 (Probability of Selecting Coloured Ball). There are five coloured balls in
a box: red, green, blue, yellow and black. The probability of selecting the yellow ball is
1/5.

Example 4.18 (Probability of Selecting Backoff Value). IEEE 802.11 (WiFi) involves a
station selecting a random backoff from 0 to 15. The probability of selecting 5 is 1/16.

Video
Probability of Selecting a Particular Value from a Set (2 min; Jan 2015)
https://www.youtube.com/watch?v=hB5Hs4QPUUQ

Definition 4.8 (Total Expectation). For a set of n events which are mutually exclusive
and exhaustive, where for event i the expected value is Ei given probability Pi, then the
total expected value is:

E =
n∑
i=1

EiPi

Video
Total Expectation Definition (1 min; Jan 2015)
https://www.youtube.com/watch?v=HiHIE9oFeiU

Example 4.19 (Total Expectation of Packet Delay). Average packet delay for packets
in a network is 100 ms along path 1 and 150 ms along path 2. Packets take path 1 30% of
the time, and take path 2 70% of the time. The average packet delay across both paths
is: 100× 0.3 + 150× 0.7 = 135 ms.

https://www.youtube.com/watch?v=ZykkvK_Hu5g
https://www.youtube.com/watch?v=hB5Hs4QPUUQ
https://www.youtube.com/watch?v=HiHIE9oFeiU
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Video
Total Expectation and Packet Delay (3 min; Jan 2015)
https://www.youtube.com/watch?v=-yxbhR-EeHQ

Example 4.20 (Total Expectation of Password Length). In a network with 1,000 users,
150 users choose a 6-character password, 500 users choose a 7-character password, 250
users choose 9-character password and 100 users choose a 10-character password. The
average password length is 7.65 characters.

Video
Total Expectation and Password Selection (3 min; Jan 2015)
https://www.youtube.com/watch?v=zTX7ENu-F20

Definition 4.9 (Number of Attempts). If randomly selecting values from a set of n
values, then the number of attempts needed to select a particular value is:

best case: 1
worst case: n
average case: n/2

Video
Number of Attempts Needed to Randomly Select a Value (1 min; Jan 2015)
https://www.youtube.com/watch?v=brDlrkuiH50

Example 4.21 (Number of Attempts in Choosing Number). One person has chosen
a random number between 1 and 10. Another person attempts to guess the random
number. The best case is that they guess the chosen number on the first attempt. The
worst case is that they try all other numbers before finally getting the correct number,
that is 10 attempts. If the process is repeated 1000 times (that is, one person chooses
a random number, the other guesses, then the person chooses another random number,
and the other guesses again, and so on), then on average 10% of time it will take 1
attempt (best case), 10% of the time it will take 2 attempts, 10% of the time it will take
3 attempts, . . . , and 10% of the time it will take 10 attempts (worst case). The average
number of attempts is therefore 5.

Video
Attempts to select a value between 1 and 10 (5 min; Jan 2015)
https://www.youtube.com/watch?v=nQUda8Uq-Ho

Example 4.22 (Number of Attempts in Choosing Key). A user has chosen a random
128-bit encryption key. There are 2128 possible keys. It takes an attacker on average
2128/2 = 2127 attempts to find the key. If instead a 129-bit encryption key was used, then
the attacker would take on average 2129/2 = 2128 attempts. (Increasing the key length
by 1 bit doubles the number of attempts required by the attacker to guess the key).

https://www.youtube.com/watch?v=-yxbhR-EeHQ
https://www.youtube.com/watch?v=zTX7ENu-F20
https://www.youtube.com/watch?v=brDlrkuiH50
https://www.youtube.com/watch?v=nQUda8Uq-Ho
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Video
Attempts to guess a secret key (3 min; Jan 2015)
https://www.youtube.com/watch?v=8IttaYPN4MA

4.5 Collisions
Definition 4.10 (Birthday Paradox). Given n random numbers selected from the range
1 to d, the probability that at least two numbers are the same is:

p(n; d) ≈ 1−
(
d− 1
d

)n(n−1)/2

Example 4.23 (Two People Have Same Birthday). Given a group of 10 people, the
probability of at least two people have the same birth date (not year) is:

p(10; 365) ≈ 1−
(364

365

)10(9)/2
= 11.6%

Defintion 4.10 can be re-arranged to find the number of values needed to obtain a
specified probability that at least two numbers are the same:

n(p; d) ≈

√√√√2d ln
(

1
1− p

)

Example 4.24 (Group Size for Birthday Matching). How many people in a group are
needed such that the probability of at least two of them having the same birth date is
50%?

n(0.5; 365) ≈
√

2× 365× ln
( 1

1− 0.5

)
= 22.49

So 23 people in a group means there is 50% chance that at least two have the same birth
date.

Example 4.25 (Group Size for Hash Collision). Given a hash function that outputs a
64-bit hash value, how many attempts are need to give a 50% chance of a collision?

n(0.5; 264) ≈
√

2× 264 × ln
( 1

1− 0.5

)
≈
√

264

= 232

Following Example 4.25, the number of attempts to produce a collision when using
an n-bit hash function is approximately 2n/2.

https://www.youtube.com/watch?v=8IttaYPN4MA


Chapter 5

Number Theory

This chapter introduces basic concepts of number theory. These concepts are useful when
studying several aspects of cryptography, especially public key cryptosystems.

Presentation slides that accompany this chapter can be downloaded in the following
formats: slides only (PDF); slides with notes (PDF, ODP, PPTX).

5.1 Divisibility and Primes
Definition 5.1 (Divides). b divides a if a = mb for some m, where a, b and m are
integers. We can also say b is a divisor of a, or b|a.

Example 5.1 (Divides). 3 divides 12, since 12 = 4×3. Also, 3 is a divisor of 12, or 3|12.
Definition 5.2 (Greatest Common Divisor). gcd(a, b) returns the greatest common di-
visor of integers a and b. There are efficient algorithms for finding the gcd, i.e. Euclidean
algorithm.

Example 5.2 (Greatest Common Divisor). gcd(12, 20) = 4, since the divisors of 12 are
(1, 2, 3, 4, 6, 12) and the divisors of 20 are (1, 2, 4, 5, 10, 20).
Definition 5.3 (Relatively Prime). Two integers, a and b, are relatively prime if gcd(a, b) =
1.

Example 5.3 (Relatively Prime). gcd(7, 12) = 1, since the divisors of 7 are (1, 7) and
the divisors of 12 are (1, 2, 3, 4, 6, 12). Therefore 7 and 12 are relatively prime to each
other.
Exercise 5.1 (Relatively Prime). How many positive integers less than 10 are relatively
prime with 10?
Solution 5.1 (Relatively Prime). There are 9 positive integers less than 10, i.e. 1, 2, 3, . . . , 9.
For an integer a to be relatively prime to 10, then gcd(a, 10) = 1. The divisors of 10 are 1,
2, 5 and 10. As the even integers have a divisor of 2, then they cannot be relatively prime
with 10. That leaves 1, 3, 5, 7 and 9. gcd(5, 10) = 5 and therefore 5 is not relatively
prime with 10. The integers 1, 3, 7 and 9 cannot be divided by 3, 5 or 10, and therefore
all have a greatest common divisor with 10 of 1. Hence 1, 3, 7 and 9 are less than 10 and
relatively prime with 10. The answer is 4.

File: crypto/number.tex, r1963
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Video
Divisibility, Greatest Common Divisor and Relatively Prime (10 min; Apr 2021)
https://www.youtube.com/watch?v=c5t9WuP8C1w

Definition 5.4 (Prime Number). An integer p > 1 is a prime number if and only if its
only divisors are +1, −1, +p and −p.

Example 5.4 (Prime Number). The divisors of 13 are (1, 13), that is, 1 and itself.
Therefore 13 is a prime number. The divisors of 15 are (1, 3, 5, 15). Since the divisors
include numbers other than 1 and itself, 15 is not prime.

Credit: Wikipedia, https://en.wikipedia.org/wiki/List_of_prime_numbers, CC BY-SA 3.0

Figure 5.1: First 300 Prime Numbers

Definition 5.5 (Prime Factors). Any integer a > 1 can be factored as:

a = pa1
1 × pa2

2 × · · · × pat
t

where p1 < p2 < . . . < pt are prime numbers and where each ai is a positive integer

Example 5.5 (Prime Factors). The following are examples of integers expressed as prime
factors:

13 = 131

15 = 31 × 51

24 = 23 × 31

50 = 21 × 52

560 = 24 × 51 × 71

2800 = 24 × 52 × 71

https://www.youtube.com/watch?v=c5t9WuP8C1w
https://en.wikipedia.org/wiki/List_of_prime_numbers
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Exercise 5.2 (Integers as Prime Factors). Find the prime factors of 12870, 12936 and
30607.

Solution 5.2 (Integers as Prime Factors). A naive approach (which works for these
small examples) is to check if the number is divisible by primes, in increasing order. For
example, is 12870 divisible by 2? Yes, then 2 is a prime factor. Is the result, 6435 divisible
by 2? No, then is 6435 divisible by 3? Yes, and so on.

A “cheat” is to use software to find the factors. In Linux command line there is a
command called factor.

The answers are:

12870 = 21 × 32 × 51 × 111 × 131

12936 = 23 × 31 × 72 × 111

30607 = 1271 × 2411

Definition 5.6 (Prime Factorization Problem). There are no known efficient, non-
quantum algorithms that can find the prime factors of a sufficiently large number.

Example 5.6 (Prime Factorization Problem). RSA Challenge involved researchers at-
tempting to factor large numbers. Largest number measured in number of bits or decimal
digits. Some records held over time are:

1991: 330 bits or 100 digits
2005: 640 bits or 193 digits
2009: 768 bits or 232 digits
Equivalent of 2000 years on single core 2.2 GHz computer to factor 768 bit
Current algorithms such as RSA rely on numbers of 1024, 2048 and even 4096 bits in

length

Video
Prime Numbers and Prime Factorization (11 min; Apr 2021)
https://www.youtube.com/watch?v=i_LXZjK7Z98

Definition 5.7 (Euler’s Totient Function). Euler’s totient function, φ(n), is the number
of positive integers less than n and relatively prime to n. Also written as ϕ(n) or Tot(n).

Definition 5.8 (Properties of Euler’s Totient). Several useful properties of Euler’s totient
are:

φ(1) = 1

For prime p, φ(p) = p− 1

For primes p and q, φ(px× q) = φ(p)× φ(q) = (p− 1)× (q − 1)

https://www.youtube.com/watch?v=i_LXZjK7Z98
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Example 5.7 (Euler’s Totient Function). The integers relatively prime to 10, and less
than 10, are: 1, 3, 7, 9. There are 4 such numbers. Therefore φ(10) = 4.

The integers relatively prime to 11, and less than 11, are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
There are 10 such numbers. Therefore φ(11) = 10. The property could also be used since
11 is prime.

Since 7 is prime, φ(7) = 6.
Since 77 = 7× 11, then φ(77) = φ(7× 11) = 6× 10 = 60.

Video
Euler’s Totient Function (8 min; Apr 2021)
https://www.youtube.com/watch?v=lnmbs-rPT-I

5.2 Modular Arithmetic
Definition 5.9 (Modular arithmetic simple). Modular arithmetic is similar to nor-
mal arithmetic (addition, subtraction, multiplication, division) but the answers “wrap
around”.

Definition 5.10 (mod operator). If a is an integer and n is a positive integer, then
a mod n is defined as the remainder when a is divided by n. n is called the modulus.

Example 5.8 (mod operator). The following are several examples of mod:

3 mod 7 = 3, since 0× 7 + 3 = 3

9 mod 7 = 2, since 1× 7 + 2 = 9

10 mod 7 = 3, since 1× 7 + 3 = 10

(−3) mod 7 = 4, since (−1)× 7 + 4 = −3

Definition 5.11 (Congruent modulo). Two integers a and b are congruent modulo n if
(a mod n) = (b mod n). The congruence relation is written as:

a ≡ b (mod n)
When the modulus is known from the context, it may be written simply as a ≡ b.

Example 5.9 (Congruent modulo). The following are examples of congruence:

3 ≡ 10 (mod 7)

14 ≡ 4 (mod 10)

3 ≡ 11 (mod 8)

Definition 5.12 (Modular arithmetic). Modular arithmetic with modulus n performs
arithmetic operations within the confines of set Zn = {0, 1, 2, . . . , (n− 1)}.

https://www.youtube.com/watch?v=lnmbs-rPT-I
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Example 5.10 (mod in Z7). Consider the set:

Z7 = {0, 1, 2, 3, 4, 5, 6}

All modular arithmetic operations in mod 7 return answers in Z7.

• If a is an integer and n is a positive integer, we define a mod n to be the remainder
when a is divided by n

• n is called the modulus

• Two integers a and b are congruent modulo n if (a mod n) = (b mod n), which is
written as

a ≡ b (mod n)

• (mod n) operator maps all integers into the set of integers Zn = {0, 1, . . . , (n−1)}

• Modular arithmetic performs arithmetic operations within confines of set Zn

Definition 5.13 (Modular Addition). Addition in mod n is performed as normal addi-
tion, with the answer then mod by n.

Example 5.11 (Modular Addition). The following are several examples of modular
addition:

2 + 3 (mod 7) = 5 (mod 7) = 5 mod 7 = 5 (mod 7)

2 + 6 (mod 7) = 8 (mod 7) = 8 mod 7 = 1 (mod 7)

6 + 6 (mod 7) = 12 (mod 7) = 12 mod 7 = 5 (mod 7)

3 + 4 (mod 7) = 7 (mod 7) = 7 mod 7 = 0 (mod 7)

Definition 5.14 (Additive Inverse). a is the additive inverse of b in mod n, if a+ b ≡ 0
(mod n).

For brevity, AI(a) may be used to indicate the additive inverse of a. One property is
that all integers have an additive inverse.

Example 5.12 (Additive Inverse). In mod 7:

AI(3) = 4, since 3 + 4 ≡ 0 (mod 7)

AI(6) = 1, since 6 + 1 ≡ 0 (mod 7)

In mod 12:
AI(3) = 9, since 3 + 9 ≡ 0 (mod 12)

Definition 5.15 (Modular Subtraction). Subtraction in mod n is performed by addition
of the additive inverse of the subtracted operand. This is effectively the same as normal
subtraction, with the answer then mod by n.
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Example 5.13 (Modular Subtraction). For brevity, the modulus is sometimes omitted
and = is used in replace of ≡. In mod 7:

6− 3 = 6 + AI(3) = 6 + 4 = 10 = 3 (mod 7)

6− 1 = 6 + AI(1) = 6 + 6 = 12 = 5 (mod 7)
1− 3 = 1 + AI(3) = 1 + 4 = 5 (mod 7)

While the first two examples obviously give answers as we expect from normal subtraction,
the third does as well. 1 − 3 = −2, and in mod 7, −2 ≡ 5 since −1 × 7 + 5 = (−2).
Recall Z7 = {0, 1, 2, 3, 4, 5, 6}.

Video
Modular Addition, Additive Inverse and Modular Subtraction (13 min; Apr 2021)
https://www.youtube.com/watch?v=9uQe-7Fux9w

Definition 5.16 (Modular Multiplication). Modular multiplication is performed as nor-
mal multiplication, with the answer then mod by n.

Example 5.14 (Modular Multiplication). In mod 7:

2× 3 = 6 (mod 7)

2× 6 = 12 = 5 (mod 7)
3× 4 = 12 = 5 (mod 7)

Definition 5.17 (Multiplicative Inverse). a is a multiplicative inverse of b in mod n if
a×b ≡ 1 (mod n). For brevity, MI(a) may be used to indicate the multiplicative inverse
of a. a has a multiplicative inverse in (mod n) if a is relatively prime to n.

Example 5.15 (Multiplicative Inverse in mod 7). 2 and 7 are relatively prime, therefore
2 has a multiplicative inverse in mod 7.

2× 4 (mod 7) = 1, therefore MI(2) = 4 and MI(4) = 2

3 and 7 are relatively prime, therefore 3 has a multiplicative inverse in mod 7.

3× 5 (mod 7) = 1, therefore MI(3) = 5 and MI(5) = 3

φ(7) = 6, meaning 1, 2, 3, 4, 5 and 6 are relatively prime with 7, and therefore all of
those numbers have a MI in mod 7.

Example 5.16 (Multiplicative Inverse in mod 8). 3 and 8 are relatively prime, therefore
3 has a multiplicative inverse in mod 8.

3× 3 (mod 8) = 1, therefore MI(3) = 3

4 and 8 are NOT relatively prime, therefore 4 does not have a multiplicative inverse in
mod 8. φ(8) = 4, and therefore only 4 numbers (1, 3, 5, 7) have a MI in mod 8.

https://www.youtube.com/watch?v=9uQe-7Fux9w
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Definition 5.18 (Modular Division). Division in mod n is performed as modular multi-
plication of the multiplicative inverse of 2nd operand. Modular division is only possible
when the 2nd operand has a multiplicative inverse, otherwise the operation is undefined.

Example 5.17 (Modular Division). In mod 7:

5÷ 2 = 5×MI(2) = 5× 4 = 20 ≡ 6

In mod 8:
7÷ 3 = 7×MI(3) = 7× 3 = 21 ≡ 5

7÷ 4 is undefined, since 4 does not have a multiplicative inverse in mod 8.
Definition 5.19 (Properties of Modular Arithmetic).

(a mod n) mod n = a mod n

[(a mod n) + (b mod n)] mod n = (a+ b) mod n
[(a mod n)− (b mod n)] mod n = (a− b) mod n
[(a mod n)× (b mod n)] mod n = (a× b) mod n

Commutative, associative and distributive laws similar to normal arithmetic also hold.

Video
Modular Multiplication, Multiplicative Inverse (6 min; Apr 2021)
https://www.youtube.com/watch?v=hh0Nb_Gp-w0

5.3 Fermat’s and Euler’s Theorems
Definition 5.20 (Fermat’s Theorem 1). If p is prime and a is a positive integer not
divisible by p, then:

ap−1 ≡ 1 (mod p)

Definition 5.21 (Fermat’s Theorem 2). If p is prime and a is a positive integer, then:

ap ≡ a (mod p)

There are two forms of Fermat’s theorem—use whichever form is most convenient.

Example 5.18 (Fermat’s theorem). What is 2742 mod 43? Since 43 is prime and 42 =
43− 1, this matches Fermat’s Theorem form 1. Therefore the answer is 1.

Example 5.19 (Fermat’s theorem). What is 640163 mod 163? Since 163 is prime, this
matches Fermat’s Theorem form 2. Therefore the answer is 640, or simplified to 640 mod
163 = 151.

Definition 5.22 (Euler’s Theorem 1). For every a and n that are relatively prime:

aφ(n) ≡ 1 (mod n)

https://www.youtube.com/watch?v=hh0Nb_Gp-w0
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Definition 5.23 (Euler’s Theorem 2). For positive integers a and n:

aφ(n)+1 ≡ a (mod n)

Note that there are two forms of Euler’s theorem—use the most relevant form.

Example 5.20 (Euler’s theorem). Show that 3740 mod 41 = 1. Since n = 41, which is
prime, then φ(41) = 40. As 37 is also prime, 37 and 41 are relatively prime. Therefore
Euler’s Theorem form 1 holds.

Example 5.21 (Euler’s theorem). What is 137944621 mod 4757? Factoring 4757 into
primes gives 67× 71. Therefore φ(4757) = φ(67)x× φ(71) = 66× 70 = 4620. Therefore,
this follows Euler’s Theorem form 2, giving an answer of 13794.

Video
Fermat’s and Euler’s Theorems (16 min; Apr 2021)
https://www.youtube.com/watch?v=k0NBKQ8W90U

5.4 Discrete Logarithms
Definition 5.24 (Modular Exponentiation). As exponentiation is just repeated multipli-
cation, modular exponentiation is performed as normal exponentiation with the answer
mod by n.

Example 5.22 (Modular Exponentiation).

23 mod 7 = 8 mod 7 = 1

34 mod 7 = 81 mod 7 = 4

36 mod 8 = 729 mod 8 = 1

Video
Modular Exponentiation (1 min; Apr 2021)
https://www.youtube.com/watch?v=Nj6GxMeYRO4

Definition 5.25 (Normal Logarithm). If b = ai, then:

i = loga(b)

read as “the log in base a of b is index (or exponent) i”.

The above definition is for normal arithmetic, not for modular arithmetic. Logarithm
in normal arithmetic is the inverse operation of exponentiation. In modular arithmetic,
modular logarithm is more commonly called discrete logarithm. Note we replace n with
p—the reason will become apparent shortly.

https://www.youtube.com/watch?v=k0NBKQ8W90U
https://www.youtube.com/watch?v=Nj6GxMeYRO4
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Definition 5.26 (Discrete Logarithm). If b = ai (mod p), then:

i = dloga,p(b)

A unique exponent i can be found if a is a primitive root of the prime p.

Video
Normal and Discrete Logarithms (3 min; Apr 2021)
https://www.youtube.com/watch?v=T17nhLEWwoA

Definition 5.27 (Primitive Root). If a is a primitive root of prime p then a1, a2, a3, . . . ap−1
are distinct in mod p.

The integers with a primitive root are: 2, 4, pα, 2pα where p is any odd prime and α
is a positive integer.

Example 5.23 (Primitive Root). Consider the prime p = 7:
a = 1 : 12 mod 7 = 1, 13 mod 7 = 1, ...(not distinct)
a = 2 : 22 mod 7 = 4, 23 mod 7 = 1, 24 mod 7 = 2, 25 mod 7 = 4, ...(not distinct)
a = 3 : 32 mod 7 = 2, 33 mod 7 = 6, 34 mod 7 = 4, 35 mod 7 = 5, 36 mod 7 =

1(distinct)
Therefore 3 is a primitive root of 7 (but 1 and 2 are not).

Figure 5.2: Powers of Integers, modulo 7

From the above table we see 3 and 5 are primitive roots of 7.
Discrete logarithms to the base 3, modulo 7 are distinct since 3 is a primitive root of

7. Discrete logarithms to the base 5, modulo 7 are distinct since 5 is a primitive root of
7.

We see that 3, 5, 6, 7, 10, 11, 12 and 14 are primitive roots of 17.
The discrete logarithm in modulo 17 can be calculated for the 8 primitive roots.

https://www.youtube.com/watch?v=T17nhLEWwoA
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Figure 5.3: Discrete Logs, modulo 7

Figure 5.4: Powers of Integers, modulo 17
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Figure 5.5: Discrete Logarithms, modulo 17

5.5 Computationally Hard Problems
There are several problems in number theory that are considered computationally hard.
That means, when sufficiently large numbers are used, solving the problems are prac-
tically impossible. These computationally hard problems are used to provide security
in cryptographic mechanisms, especially in public key cryptography. Three important
problems considered impossible to solve with conventional computers follow.

Definition 5.28 (Hard Problem: Integer Factorisation). If p and q are unknown primes,
given n = pq, find p and q.

Also known as prime factorisation. While someone that knows p and q can easily
calculate n, if an attacker knows only n they cannot find p and q.

Definition 5.29 (Hard Problem: Euler’s Totient). Given composite n, find φ(n).

While it is easy to calculate Euler’s totient of a prime, or of the multiplication of
two primes if those primes are known, an attacker cannot calculate Euler’s totient of
sufficiently large non-prime number. Solving Euler’s totient of n, where n = pq, is
considered to be harder than integer factorisation.

Definition 5.30 (Hard Problem: Discrete Logarithms). Given b, a, and p, find i such
that i = dloga,p(b).

While modular exponentiation is relatively easy, such as calculating b = ai mod p,
the inverse operation of discrete logarithms is computationally hard. The complexity is
considered comparable to that of integer factorisation.
When studying RSA and Diffie-Hellman, you will see how these hard problems in number
theory are used to secure ciphers.
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Video
Computationally Hard Problems for Cryptography (4 min; Apr 2021)
https://www.youtube.com/watch?v=fJXdXNxeNVs

https://www.youtube.com/watch?v=fJXdXNxeNVs
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Chapter 6

Classical Ciphers

This chapter introduces several historical or classical ciphers. While these ciphers are no
longer used, they are simple enough to perform operations by hand while demonstrating
important concepts used in the design of most symmetrical ciphers used today. The
actual history of the ciphers is not presented here; you can find that in most cryptography
textbooks or via searches online.

Presentation slides that accompany this chapter can be downloaded in the following
formats: slides only (PDF); slides with notes (PDF, ODP, PPTX).

6.1 Caesar Cipher

6.1.1 Caesar Cipher Definitions and Examples
Algorithm 6.1 (Caesar Cipher). To encrypt with a key k, shift each letter of the plain-
text k positions to the right in the alphabet, wrapping back to the start of the alphabet if
necessary. To decrypt, shift each letter of the ciphertext k positions to the left (wrapping
if necessary).

In the examples we will assume the Caesar cipher (and most other classical ciphers)
operate on case-insenstive English plaintext. That is, the character set is a through to z.
However it can also be applied to any language or character set, so long as the character
set is agreed upon by the users.

Exercise 6.1 (Caesar Cipher Encryption). Using the Caesar cipher, encrypt plaintext
hello with key 3.

Solution 6.1 (Caesar Cipher Encryption). To encrypt the plaintext hello with the key
3, each letter in the plaintext is encrypted by shifting 3 positions to the right in the
alphabet. The letter 3 positions to the right of h is K, as illustrated below:

a b c d e f g h i j K l m n o p q r s t u v w x y z

The letter 3 positions to the right of e is H:
a b c d e f g H i j k l m n o p q r s t u v w x y z

File: crypto/classical.tex, r1964
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The letter 3 positions to the right of l is O (notin that there are two l’s in the plaintext,
so there will be two O’s in the ciphertext):

a b c d e f g h i j k l m n O p q r s t u v w x y z

The letter 3 positions to the right of o is R:
a b c d e f g h i j k l m n o p q R s t u v w x y z

The final ciphertext is therefore KHOOR.

Video
Caesar Cipher Encryption Example (2 min; Feb 2020)
https://www.youtube.com/watch?v=HILcygVamnU

Question 6.1 (How many keys are possible in the Caesar cipher?). If the Caesar cipher
is operating on the characters a–z, then how many possible keys are there? Is a key of 0
possible? Is it a good choice? What about a key of 26?

Video
Number of Keys in Caesar Cipher (3 min; Feb 2020)
https://www.youtube.com/watch?v=Uk1k_GA_2Y0

Exercise 6.2 (Caesar Cipher Decryption). You have received the ciphertext TBBQOLR.
You know the Caesar cipher was used with key n. Find the plaintext.

Solution 6.2 (Caesar Cipher Decryption). To decrypt the ciphertext TBBQOLR with the
key n, each letter in the ciphertext is decrypted by shifting n=13 positions to the left in
the alphabet. The letter 13 positions to the left of T is g, as illustrated below:

A B C D E F g H I J K L M N O P Q R S T U V W X Y Z

The letter 13 positions to the left of B is o:
A B C D E F G H I J K L M N o P Q R S T U V W X Y Z

Therefore, the first three letters of the plaintext so far are goo. You can continue as
above to find the final plaintext is goodbye.

Video
Caesar Cipher Decryption Example (3 min; Feb 2020)
https://www.youtube.com/watch?v=N6YwWnkXh8M

We will now look at the Caesar cipher from a mathematical perspective. By treating
each letter in the alphabet as a number, we can write equations that define the encrypt
and decrypt operations on each letter.

https://www.youtube.com/watch?v=HILcygVamnU
https://www.youtube.com/watch?v=Uk1k_GA_2Y0
https://www.youtube.com/watch?v=N6YwWnkXh8M
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Algorithm 6.2 (Caesar Cipher, formal).

C = E(K,P ) = (P +K) mod 26 (6.1)

P = D(K,C) = (C −K) mod 26 (6.2)

In the equations, P is the numerical value of a plaintext letter. Letters are numbered
in alphabetical order starting at 0. That is, a=0, b=1, . . . , z=25. Similarly, K and C
are the numerical values of the key and ciphertext letter, respectively. Shifting to the
right in encryption is addition, while shifting to the left in decryption is subtraction. To
cater for the wrap around (e.g. when the letter z is reacher), the last step is to mod by
the total number of characters in the alphabet.

Exercise 6.3 (Caesar Cipher, formal). Consider the following mapping.
a b c d e f g h i j k l m
0 1 2 3 4 5 6 7 8 9 10 11 12
n o p q r s t u v w x y z
13 14 15 16 17 18 19 20 21 22 23 24 25
Use the the formal (mathematical) algorithm for Caesar cipher to decrypt SDV with

key p.

Solution 6.3 (Caesar Cipher Encryption). Key p means K = 15. The first ciphertext
letter is S, so C1 = 18. Using the decrypt equation:

P1 = (C1 −K) mod 26
= (18− 15) mod 26
= 3 mod 26
= 3

Therefore the first plaintext letter is d.
The same decrypt equation and key are used for the second ciphertext letter of D, i.e.

C2 = 3.

P2 = (C2 −K) mod 26
= (3− 15) mod 26
= (−12) mod 26
= 14

Therefore the second plaintext letter is o.
The same decrypt equation and key are used for the third ciphertext letter of V, i.e.

C3 = 21.
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P3 = (C3 −K) mod 26
= (21− 15) mod 26
= (6) mod 26
= 6

Therefore the third plaintext letter is g, and the entire plaintext is dog.

Video
Caesar Cipher Decryption using Mathematical Approach (4 min; Feb 2020)
https://www.youtube.com/watch?v=yvLYP7zxnkA

Listing 6.1: Caesar Encrypt and Decrypt
1 >>> pycipher.Caesar(3).encipher("hello")
2 ’KHOOR’
3 >>> pycipher.Caesar(3).decipher("khoor")
4 ’HELLO’

Note that the pycipher package needs to be installed and imported first (see Sec-
tion 3.3.2).

6.1.2 Brute Force Attack on Caesar Cipher
Definition 6.1 (Brute Force Attack). Try all combinations (of keys) until the correct
plaintext/key is found.

Exercise 6.4 (Caesar Brute Force). The ciphertext FRUURJVBCANNC was obtained using
the Caesar cipher. Find the plaintext using a brute force attack.

Solution 6.4. As a naive approach, try all possible keys, and then check the plaintext
values obtained. If one is recognisable, then most likely have found the correct plaintext.
Without any knowledge of which key was used, one approach is to try the keys in order.
For example, try key 1, and then key 2, then key 3. (In theory you could try key 0, but
we know in the Caesar cipher that it does nothing).

Listing 6.2: Caesar Brute Force
1 for k in range(0,26):
2 pycipher.Caesar(k).decipher("FRUURJVBCANNC")

The range function in Python produces values inclusive of the lower limit and exclu-
sive of the upper limit. That is, from 0 to 25.

https://www.youtube.com/watch?v=yvLYP7zxnkA
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Listing 6.3: Caesar Brute Force Results
0: FRUURJVBCANNC 13: SEHHEWIOPNAAP
1: EQTTQIUABZMMB 14: RDGGDVHNOMZZO
2: DPSSPHTZAYLLA 15: QCFFCUGMNLYYN
3: CORROGSYZXKKZ 16: PBEEBTFLMKXXM
4: BNQQNFRXYWJJY 17: OADDASEKLJWWL
5: AMPPMEQWXVIIX 18: NZCCZRDJKIVVK
6: ZLOOLDPVWUHHW 19: MYBBYQCIJHUUJ
7: YKNNKCOUVTGGV 20: LXAAXPBHIGTTI
8: XJMMJBNTUSFFU 21: KWZZWOAGHFSSH
9: WILLIAMSTREET 22: JVYYVNZFGERRG
10: VHKKHZLRSQDDS 23: IUXXUMYEFDQQF
11: UGJJGYKQRPCCR 24: HTWWTLXDECPPE
12: TFIIFXJPQOBBQ 25: GSVVSKWCDBOOD

The results of the brute force are formatted to show the key (it is slightly different
from the Python code output).

Video
Brute Force Attack on Caesar Cipher with Python (5 min; Feb 2020)
https://www.youtube.com/watch?v=GpfoaxcxHWs

Question 6.2 (How many attempts for Caesar brute force?). What is the worst, best
and average case of number of attempts to brute force ciphertext obtained using the
Caesar cipher?

There are 26 letters in the English alphabet. The key can therefore be one of 26
values, 0 through to 25. The key of 26 is equivalent to a key of 0, since it will encrypt
to the same ciphertext. The same applies for all values greater than 25. While a key of
0 is not very smart, let’s assume it is a valid key.

The best case for the attacker is that the first key they try is the correct key (i.e. 1
attempt). The worst case is the attacker must try all the wrong keys until they finally
try the correct key (i.e. 26 attempts). Assuming the encrypter chose the key randomly,
there is equal probability that the attacker will find the correct key in 1 attempt (1/26),
as in 2 attempts (1/26), as in 3 attempts (1/26), and as in 26 attempts (1/26). The
average number of attempts can be calculated as (26+1)/2 = 13.5.

Assumption 6.1 (Recognisable Plaintext upon Decryption). The decrypter will be able
to recognise that the plaintext is correct (and therefore the key is correct). Decrypting
ciphertext using the incorrect key will not produce the original plaintext. The decrypter
will be able to recognise that the key is wrong, i.e. the decryption will produce unrecog-
nisable output.

Question 6.3 (Is plaintext always recognisable?). Caesar cipher is using recognisably
correct plaintext, i.e. English words. But is the correct plaintext always recognisable?
What if the plaintext was a different language? Or compressed? Or it was an image or
video? Or binary file, e.g. .exe? Or a set of characters chosen randomly, e.g. a key or
password?

The correct plaintext is recognisable if it contains some structure. That is, it does
not appear random. It is common in practice to add structure to the plaintext, making

https://www.youtube.com/watch?v=GpfoaxcxHWs
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it relatively easy to recognise the correct plaintext. For example, network packets have
headers/trailers or error detecting codes. Later we will see cryptographic mechanisms
that can be used to ensure that the correct plaintext will be recognised. For now, let’s
assume it can be.

There are two ways to improve the Caesar cipher:

1. Increase the key space so brute force is harder

2. Change the plaintext (e.g. compress it) so harder to recognise structure

6.2 Monoalphabetic Ciphers

6.2.1 Monoalphabetic Cipher Definitions and Examples
Definition 6.2 (Permutation). A permutation of a finite set of elements is an ordered
sequence of all the elements of S, with each element appearing exactly once. In general,
there are n! permutations of a set with n elements.

The concept of permutation is used throughput cryptography, and shortly we will see
in a monoalphabetic (substitution) cipher.

Example 6.1 (Permutation). Consider the set S = {a, b, c}. There are six permutations
of S:

abc, acb, bac, bca, cab, cba
This set has 3 elements. There are 3! = 3× 2× 1 = 6 permutations.

Definition 6.3 (Monoalphabetic (Substitution) Cipher). Given the set of possible plain-
text letters (e.g. English alphabetc, a–z), a single permutation is chosen and used to
determine the corresponding ciphertext letter.

This is a monoalphabetic cipher because only a single cipher alphabet is used per
message.

Example 6.2 (Monoalphabetic (Substitution) Cipher). In advance, the sender and re-
ceiver agree upon a permutation to use, e.g.:
P: a b c d e f g h i j k l m n o p q r s t u v w x y z
C: H P W N S K L E V A Y C X O F G T B Q R U I D J Z M
To encrypt the plaintext hello, the agreed upon permutation (or mapping) is used to
produce the ciphertext ESCCF.

Exercise 6.5 (Decrypt Monoalphabetic Cipher). Decrypt the ciphertext QSWBSR using
the permutation chosen in the previous example.

Solution 6.5 (Decrypt Monoalphabetic Cipher). A simple lookup on the mapping de-
fined in the example returns the plaintext secret.

Video
Mono-alphabetic Substitution Cipher Example (3 min; Feb 2020)
https://www.youtube.com/watch?v=RWoDvO2WQ0A

https://www.youtube.com/watch?v=RWoDvO2WQ0A
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Question 6.4 (How many keys in English monoalphabetic cipher?). How many possible
keys are there for a monoalphabetic cipher that uses the English lowercase letters? What
is the length of an actual key?

Consider the number of permutations possible. The example used a single permuta-
tion chosen by the two parties.

Video
Number of Keys in an English Monoalphabetic Substitution Cipher (3 min; Feb 2020)
https://www.youtube.com/watch?v=XXCHks0vMW0

6.2.2 Brute Force Attack on Monoalphabetic Cipher
Exercise 6.6 (Brute Force on Monoalphabetic Cipher). You have intercepted a cipher-
text message that was obtained with an English monoalphabetic cipher. You have a
Python function called:
mono_decrypt_and_check(ciphertext,key)
that decrypts the ciphertext with a key, and returns the plaintext if it is correct, otherwise
returns false. You have tested the Python function in a while loop and the computer can
apply the function at a rate of 1,000,000,000 times per second. Find the average time to
perform a brute force on the ciphertext.

Solution 6.6 (Brute Force on Monoalphabetic Cipher). With a 26 letter alphabet, there
are 26! permutations or keys. The average number of keys to try in a brute force attack
is (26! + 1)/2, or approximately half of them, 26!/2. The Python code can try 109 keys
per second. Therefore the average brute force time, T , is:

T = (26! + 1)/2
109

≈ 2× 1026

109

≈ 2× 1017 seconds
≈ 64 million centuries

Video
Brute Force Attack Time on English Monoalphabetic Cipher (7 min; Feb 2020)
https://www.youtube.com/watch?v=c4gLyX9mwgM

6.2.3 Frequency Analysis Attack on Monoalphabetic Cipher
Brute force is the “dumb” approach to breaking a cipher. While it was sufficient in
breaking the Caesar cipher, it is not feasible for a monoalphabetic substitution cipher.
Can we take a “smart” approach that would take less effort than brute force? Often we
can. Let’s consider frequency analysis as an alternative to a brute force attack.

https://www.youtube.com/watch?v=XXCHks0vMW0
https://www.youtube.com/watch?v=c4gLyX9mwgM
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Definition 6.4 (Frequency Analysis Attack). Find (portions of the) key and/or plaintext
by using insights gained from comparing the actual frequency of letters in the ciphertext
with the expected frequency of letters in the plaintext. Can be expanded to analyse sets
of letters, e.g. digrams, trigrams, n-grams, words.

Credit: Letter Counts by Peter Norvig

Figure 6.1: Relative Frequency of Letters by Norvig

The letter frequencies of the figure above are based on Peter Norvig’s analysis of
Google Books N-Gram Dataset. Norvig is Director of Research at Google. His website
has more details on the analysis.

Exercise 6.7 (Break a Monoalphabetic Cipher). Ciphertext:
ziolegxkltqodlzgofzkgrxetngxzgzithkofeohs
tlqfrzteifojxtlgyltexkofuegdhxztklqfregd
hxztkftzvgkalvoziygexlgfofztkftzltexkoznz
itegxkltoltyytezoctsnlhsozofzgzvghqkzlyo
klzofzkgrxeofuzitzitgkngyeknhzgukqhinofes
xrofuigvdqfnesqlloeqsqfrhghxsqkqsugkozid
lvgkaturtlklqrouozqsloufqzxktlqfrltegfrhk
gcorofurtzqoslgyktqsofztkftzltexkoznhkgz
gegslqsugkozidlqfrziktqzltuohltecokxltlyo
ktvqsslitfetngxvossstqkfwgzizitgktzoeqsq
lhtezlgyegdhxztkqfrftzvgkaltexkoznqlvtssq
ligvziqzzitgknolqhhsotrofzitofztkftzziol
afgvstrutvossitshngxofrtloufofuqfrrtctsgh
ofultexktqhhsoeqzogflqfrftzvgkahkgzgegsl
qlvtssqlwxosrofultexktftzvgkal

http://norvig.com/mayzner.html
http://norvig.com/mayzner.html
https://storage.googleapis.com/books/ngrams/books/datasetsv2.html
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Credit: Two-Letter Sequence (Bigram) Counts by Peter Norvig

Figure 6.2: Relative Frequency of Digrams by Norvig

Credit: N-Letter Sequences (N-grams)" by Peter Norvig

Figure 6.3: Relative Frequency of N-Grams by Norvig

http://norvig.com/mayzner.html
http://norvig.com/mayzner.html
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Solution 6.7 (Break a Monoalphabetic Cipher). See the the steps under the section
“Frequency Analysis of Monoalphabetic Cipher” on the following website:

sandilands.info/sgordon/classical-ciphers-frequency-analysis-examples

6.3 Playfair Cipher
Algorithm 6.3 (Playfair Matrix Construction). Write the letters of keyword k row-by-
row in a 5-by-5 matrix. Do not include duplicate letters. Fill the remainder of the matrix
with the alphabet. Treat the letters i and j as the same (that is, they are combined in
the same cell of the matrix).

Exercise 6.8 (Playfair Matrix Construction). Construct the Playfair matrix using key-
word australia.

Solution 6.8 (Playfair Matrix Construction). We write the keyword in a 5-by-5 matrix,
starting as:

a u s t r
l i
Note that we don’t write the letter a multiple times in the matrix, and the letter i

also represents the letter j.
Now we fill the remainder of the matrix with the English letters in alphabetical order.

Again, no duplicate letters are included.
a u s t r
l i b c d
e f g h k
m n o p q
v w x y z

Video
Playfair Cipher Matrix Construction (3 min; Feb 2020)
https://www.youtube.com/watch?v=5QGiCkZidE4

Algorithm 6.4 (Playfair Encryption). Split the plaintext into pairs of letters. If a pair
has identical letters, then insert a special letter x in between. If the resulting set of letters
is odd, then pad with a special letter x.

Locate the plaintext pair in the Playfair matrix. If the pair is on the same column,
then shift each letter down one cell to obtain the resulting ciphertext pair. Wrap when
necessary. If the plaintext pair is on the same row, then shift to the right one cell.
Otherwise, the first ciphertext letter is that on the same row as the first plaintext letter
and same column as the second plaintext letter, and the second ciphertext letter is that
on the same row as the second plaintext letter and same column as the first plaintext
letter.

Repeat for all plaintext pairs.

https://sandilands.info/sgordon/classical-ciphers-frequency-analysis-examples
https://www.youtube.com/watch?v=5QGiCkZidE4
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Playfair decryption uses the same matrix and reverses the rules. That is, move up
(instead of down) if on the same column, move left (instead of right) if on the same row.
Finally, the padded special letters need to be removed. This can be done based upon
knowledge of the langauge. For example, if the intermediate plaintext from decryption
is helxlo, then as that word doesn’t exist, the x is removed to produce hello.

Exercise 6.9 (Playfair Encryption). Find the ciphertext if the Playfair cipher is used
with keyword australia and plaintext hello.

Solution 6.9 (Playfair Encryption). The Playfair matrix from the previous exercise is:
a u s t r
l i b c d
e f g h k
m n o p q
v w x y z
First split the plaintext into pairs: he, ll and o. As the second pair has identical

letters, insert a special character x and move the second l into the third pair. The
resulting pairs are:

he lx lo
Now for each pair, apply the rules to find the corresponding ciphertext pair.
For plaintext pair he:
a u s t r
l i b c d
e f g h k
m n o p q
v w x y z
As the pair are on the same row, the ciphertext pair is taken as the letters to the

right:
a u s t r
l i b c d
e f g h k
m n o p q
v w x y z
The first two letters of the ciphertext are KF.
The second pair, lx, is on different rows and columns:
a u s t r
l i b c d
e f g h k
m n o p q
v w x y z
The ciphertext pair is taken from the same row and column, but reversed in order:
a u s t r
l i b c d
e f g h k
m n o p q
v w x y z
The second pair of ciphertext is BV.
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Finally, the third pair:
a u s t r
l i b c d
e f g h k
m n o p q
v w x y z
As a result, the final ciphertext is KFBVBM.

Video
Encryption with the Playfair Cipher (7 min; Feb 2020)
https://www.youtube.com/watch?v=7kmTq35mLzA

Question 6.5 (Does Playfair cipher always map a letter to the same ciphertext letter?).
Using the Playfair cipher with keyword australia, encrypt the plaintext hellolove.

With the Playfair cipher, if a letter occurs multiple times in the plaintext, will that
letter always encrypt to the same ciphertext letter?

If a pair of letters occurs multiple times, will that pair always encrypt to the same
ciphertext pair?

Is the Playfair cipher subject to frequency analysis attacks?

Video
Playfair Cipher and Frequency Analysis (4 min; Feb 2020)
https://www.youtube.com/watch?v=gPmRhuXd5j0

6.4 Polyalphabetic Ciphers
Definition 6.5 (Polyalphabetic (Substitution) Cipher). Use a different monoalphabetic
substitution as proceeding through the plaintext. A key determines which monoalpha-
betic substitution is used for each transformation.

For example, when encrypting a set of plaintext letters with a polyalphabetic cipher, a
monoalpabetic cipher with a particular key is used to encrypt the first letter, and then the
same monoalphabetic cipher is used but with a different key to encrypt the second letter.
They key used for the monoalphabetic cipher is determined by the key (or keyword) for
the polyalphabetic cipher.

• Vigenère Cipher: uses Caesar cipher, but Caesar key changes each letter based on
keyword

• Vernam Cipher: binary version of Vigenère, using XOR

• One Time Pad: same as Vigenère/Vernam, but random key as long as plaintext

Selected polyalphabetic ciphers are explained in depth in the following sections.

https://www.youtube.com/watch?v=7kmTq35mLzA
https://www.youtube.com/watch?v=gPmRhuXd5j0
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6.5 Vigenère Cipher
Algorithm 6.5 (Vigenère Cipher). For each letter of plaintext, a Caesar cipher is used.
The key for the Caesar cipher is taken from the Vigenère key(word), progressing for each
letter and wrapping back to the first letter when necessary. Formally, encryption using
a keyword of length m is:

ci = (pi + ki mod m) mod 26
where pi is letter i (starting at 0) of plaintext P , and so on.

Simply, Vigenère cipher is just the Caesar cipher, but changing the Caesar key for
each letter encrypted/decrypted. The Caesar key is taken from the Vigenère key. The
Vigenère key is not a single value/letter, but a set of values/letters, and hence referred to
as a keyword. Encrypting the first letter of plaintext uses the first key from the keyword.
Encrypting the second letter of plaintext uses the second key from the keyword. And so
on. As the keyword (for convenience) is usually shorter than the plaintext, once the end
of the keyword is reached, we return to the first letter, i.e. wrap around.

In the formal equation for encryption, i represents letter i (starting at 0) of the
plaintext. For example, if the keyword is 6 letters, when encrypting letter 8 of the
plaintext (that is the 9th), then k2 is used, i.e. the 3rd letter from the keyword.

Example 6.3 (Vigenère Cipher Encryption). Using the Vigenère cipher to encrypt the
plaintext carparkbehindsupermarket with the keyword sydney produces the ciphertext
UYUCEPCZHUMLVQXCIPEYUXIR. The keyword would be repeated when Caesar is applied:
P: carparkbehindsupermarket
K: sydneysydneysydneysydney
C: UYUCEPCZHUMLVQXCIPEYUXIR

Note that the first a in the plaintext transforms to Y, while the second a transforms
to E. With polyalphabetic ciphers, the same plaintext letters do not necessarily always
transform to the same ciphertext letters. Although they may: look at the third a.

Video
Encryption with Vigenere Cipher and Python (4 min; Feb 2020)
https://www.youtube.com/watch?v=r8xsofoAdNI

Exercise 6.10 (Vigenère Cipher Encryption). Use Python (or other software tools) to
encrypt the plaintext centralqueensland with the following keys with the Vigenère
cipher, and investigate any possible patterns in the ciphertext: cat, dog, a, giraffe.

Solution 6.10 (Vigenère Cipher Encryption). Using the pycipher library:

$ python3
Python 3.6.9 (default, Nov 7 2019, 10:44:02)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import pycipher
>>> pycipher.Vigenere("cat").encipher("centralqueensland")
’EEGVRTNQNGEGULTPD’

https://www.youtube.com/watch?v=r8xsofoAdNI
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>>> pycipher.Vigenere("dog").encipher("centralqueensland")
’FSTWFGOEAHSTVZGQR’
>>> pycipher.Vigenere("a").encipher("centralqueensland")
’CENTRALQUEENSLAND’
>>> pycipher.Vigenere("giraffe").encipher("centralqueensland")
’IMETWFPWCVESXPGVU’

Video
Vigenere Python Examples (4 min; Feb 2020)
https://www.youtube.com/watch?v=VqjDjocUqKY

While the Vigenère cipher improves on monoalphabetic ciphers, it still has a weakness.
The approach for breaking the cipher is:

• Determine the length of the keyword m

– Repeated n-grams in the ciphertext may indicate repeated n-grams in the
plaintext

– Separation between repeated n-grams indicates possible keyword length m
– If plaintext is long enough, multiple repetitions make it easier to find m

• Treat the ciphertext as that from m different monoalphabetic ciphers

– E.g. Caesar cipher with m different keys
– Break the monoalphabetic ciphers with frequency analysis

• With long plaintext, and repeating keyword, Vigenère can be broken

The following shows an example of breaking the Vigenère cipher, although it is not
necessary to be able to do this yourself manually.

Example 6.4 (Breaking Vigenère Cipher). Ciphertext ZICVTWQNGRZGVTWAVZHCQYGLMGJ
has repetition of VTW. That suggests repetition in the plaintext at the same position,
which would be true if the keyword repeated at the same position.
012345678901234567890123456
ZICVTWQNGRZGVTWAVZHCQYGLMGJ
That is, it is possible the key letter at position 3 is the repated at position 12. That in
turn suggest a keyword length of 9 or 3.
ciphertext ZICVTWQNGRZGVTWAVZHCQYGLMGJ
length=3: 012012012012012012012012012
length=9: 012345678012345678012345678
An attacker would try both keyword lengths. With a keyword length of 9, the attacker
then performs Caesar cipher frequency analysis on every 9th letter. Eventually they find
plaintext is wearediscoveredsaveyourself and keyword is deceptive.

This attack may require some trial-and-error, and will be more likely to be successful
when the plaintext is very long. See the Stallings textbook, from which the example is
taken, for further explanation.

https://www.youtube.com/watch?v=VqjDjocUqKY
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Video
Cryptanalysis of Vigenere Cipher (4 min; Feb 2020)
https://www.youtube.com/watch?v=u0FtomzkoTQ

6.6 Vernam Cipher
Before looking at an improvement of the Vigenère cipher, let’s look at a cipher that is
essentially the same but operates on binary data.

Algorithm 6.6 (Vernam Cipher). Encryption is performed as:

ci = pi ⊕ ki

decryption is performed as:
pi = ci ⊕ ki

where pi is the ith bit of plaintext, and so on. The key is repeated where necessary.

The Vernam cipher is essentially a binary form of the Vigenère cipher. The mathe-
matical form of Vigenère encryption adds the plaintext and key and mods by 26 (where
there are 26 possible charactersd). In binary, there are 2 possible characters, so the
equivalnet is to add the plaintext and key and mod by 2. This identical to the XOR
operation.

To demonstrate the Vernam cipher, we will use Python to perform the XOR (⊕)
operation.

Listing 6.4: XOR
1 >>> def xor(x, y):
2 ... return ’{1:0{0}b}’.format(len(x), int(x, 2) ^ int(y, 2))
3 ...

The Python code defines a function called xor that takes two strings representing
bits, and returns a string represent the XOR of those bits. The actual XOR is performed
on integers using the Python hat ôperator. The rest is formatting as strings.

Exercise 6.11 (Vernam Cipher Encryption). Using the Vernam cipher, encrypt the
plaintext 011101010101000011011001 with the key 01011.

Listing 6.5: Vernam Cipher Encryption
1 >>> xor(’011101010101000011011001’,’010110101101011010110101’)
2 ’001011111000011001101100’

Video
Vernam Cipher using Bits and XOR (7 min; Feb 2020)
https://www.youtube.com/watch?v=oXsyZhZrRE4

https://www.youtube.com/watch?v=u0FtomzkoTQ
https://www.youtube.com/watch?v=oXsyZhZrRE4


60 CHAPTER 6. CLASSICAL CIPHERS

6.7 One Time Pad
The weakness of the Vigenère and Vernam ciphers is a repeating keyword. The solution
is to use a key as long as the plaintext and entirely random.

Algorithm 6.7 (One-Time Pad). Use polyalphabetic cipher (such as Vigenère or Ver-
nam) but where the key must be: random, the same length as the plaintext, and not
used multiple times.

Essentially, the Vigenère or Vernam become a One-Time Pad (OTP) if the keys are
chosen appropriately.

The result of using a long, random key is the OTP has the following properties:

• Encrypting plaintext with random key means output ciphertext will be random

– E.g. XOR plaintext with a random key produces random sequence of bits in
ciphertext

• Random ciphertext contains no information about the structure of plaintext

– Attacker cannot analyse ciphertext to determine plaintext

• Brute force attack on key is ineffective

– Multiple different keys will produce recognisable plaintext
– Attacker has no way to determine which of the plaintexts are correct

• OTP is only known unbreakable (unconditionally secure) cipher

Example 6.5 (Attacking OTP). Consider a variant of Vigenère cipher that has 27 char-
acters (including a space). An attacker has obtained the ciphertext:
ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS

Attacker tries all possible keys. Two examples:
k1: pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih
p1: mr mustard with the candlestick in the hall
k2: pftgpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt
p2: miss scarlet with the knife in the library

There are many other legible plaintexts obtained with other keys. No way for attacker
to know the correct plaintext

The example shows that even a brute force attack on a OTP is unsuccessful. Even
if the attacker could try all possible keys—the plaintext is 43 characters long and so
there are 2743 ≈ 1061 keys—they would find many possible plaintext values that make
sense. The example shows two such plaintext values that the attacker obtained. Which
one is the correct plaintext? They both make sense (in English). The attacker has no
way of knowing. In general, there will be many plaintext values that make sense from a
brute force attack, and the attacker has no way of knowing which is the correct (original)
plaintext. Therefore a brute force attack on a OTP is ineffective.

Let’s finish our coverage of classical substitition ciphers with a summary of the OTP:
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• Only known unbreakable (unconditionally secure) cipher

– Ciphertext has no statistical relationship with plaintext
– Given two potential plaintext messages, attacker cannot identify the correct

message

• But two significant practical limitations:

1. Difficult to create large number of random keys
2. Distributing unique long random keys is difficult

• Limited practical use

The practical limittions are significant. The requirement that the key must be as long
as the plaintext, random and never repeated (if it is repeated then the same problems
arise as in the original Vernam cipher) means large random values must be created. But
creating a large amount of random data is actually difficult. Imagine you wanted to use a
OTP for encrypting large data transfers (multiple gigabytes) across a network. Multiple
gigabytes of random data must be generated for the key, which is time consuming (seconds
to hours) for some computers. Also, the key must be exchanging, usually over a network,
with the other party in advance. So to encrypt a 1GB file to need a 1GB random key.
Both the key and file must be sent across the network, i.e. a total of 2GB. This is very
inefficient use of the network: a maximum of 50% efficiency.

Later we will see real ciphers that work with a relatively small, fixed length key (e.g.
128 bits) and provide sufficient security.

Video
One-Time Pad as an Unbreakable Cipher (7 min; Feb 2020)
https://www.youtube.com/watch?v=GSsDofkajD4

6.8 Transposition Techniques
The previous set of classical ciphers use a substitution operation, replacing one character
with another from the character set. A different approach is to simply re-arrange the
set of characters within the plaintext. These type of ciphers are called transposition or
permutation techniques.

• Substitution: replace one (or more) character in plaintext with another from the
entire possible character set

• Transposition: re-arrange the characters in the plaintext

– The set of characters in the ciphertext is the same as in the plaintext
– Problem: the plaintext frequency statistics are also in the ciphertext

• On their own, transposition techniques are easy to break

https://www.youtube.com/watch?v=GSsDofkajD4
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• Combining transposition with substitution makes ciphers stronger, and building
block of modern ciphers

Definition 6.6 (Rail Fence Cipher Encryption). Select a depth as a key. Write the
plaintext in diagonals in a zig-zag manner to the selected depth. Read row-by-row to
obtain the ciphertext.

The decryption process can easily be derived from the encryption algorithm.

Exercise 6.12 (Rail Fence Encryption). Consider the plaintext securityandcryptography
with key 4. Using the rail fence cipher, find the ciphertext.

Solution 6.11 (Rail Fence Encryption). With a key of 4, we write the plaintext in di-
agonals over 4 rows.
s t r r
e i y c y g a
c r a d p o p y
u n t h

The ciphertext is obtained by reading row-by-row: STRREIYEYGACRADPOPYUNTH.

Video
Rail Fence Transposition Cipher Example (2 min; Feb 2020)
https://www.youtube.com/watch?v=35OM0S_MDcg

Definition 6.7 (Rows Columns Cipher Encryption). Select a number of columns m and
permutate the integers from 1 to m to be the key. Write the plaintext row-by-row over
m columns. Read column-by-column, in order of the columns determined by the key, to
obtain the ciphertext.

Be careful with the decryption process; it is often confusing. Of course it must be the
process such that the original plaintext is produced.

Exercise 6.13 (Rows Columns Encryption). Consider the plaintext securityandcryptography
with key 315624. Using the rows columns cipher, find the ciphertext.

Solution 6.12 (Rows Columns Encryption). With a key of 315624, we write the plain-
text row-by-row across 6 columns:

3 1 5 6 2 4
s e c u r i
t y a n d c
r y p t o g
r a p h y x

A special letter, x in this case, is used to pad to fill the last row. This padding must
be agreed upon in advance by the sender and receiver.

Now read column-by-column, starting with column indicated by the key as 1, i.e.
EYYA. Then column 2: RDOY. The resulting ciphertext is EYYARDOYSTRRICGXCAPPUNTH.

https://www.youtube.com/watch?v=35OM0S_MDcg
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Video
Encrypting with Rows/Columns Transposition Cipher (3 min; Feb 2020)
https://www.youtube.com/watch?v=nZdtNiDLKJ0

Example 6.6 (Rows Columns Multiple Encryption). Assume the ciphertext from the
previous example has been encrypted again with the same key. The resulting ciphertext
is YYCPRRCTEOIPDRAHYSGUATXH. Now let’s view how the cipher has “mixed up” the letters
of the plaintext. If the plaintext letters are numbered by position from 01 to 24, their
order (split across two rows) is:
01 02 03 04 05 06 07 08 09 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24

After first encryption the order becomes:
02 08 14 20 05 11 17 23 01 07 13 19
06 12 18 24 03 09 15 21 04 10 16 22

After the second encryption the order comes:
08 23 12 21 05 13 03 16 02 17 06 15
11 19 09 20 14 01 18 04 20 07 24 10
Are there any obviously obversvable patterns?

After the first encryption, the numbers reveal a pattern: increasing by 6 within groups
of 4. This is because of the 6 columns and 4 rows. After the second encryption, it is not
so obvious to identify patterns.

The point is that while a single application of the transposition cipher did not seem
to offer much security (in terms of hiding patterns), adding the second application of the
cipher offers an improvement. This principle of repeated applications of simple operations
is used in modern ciphers.

In summary:

• Transposition ciphers on their own offer no practical security

• But combining transposition ciphers with substitution ciphers, and repeated appli-
cations, practical security can be achieved

• Modern symmetric ciphers use multiple applications (rounds) of substitition and
transposition (permutation) operations

Video
Multiple Rounds of Rows/Columns Transposition Cipher (5 min; Feb 2020)
https://www.youtube.com/watch?v=oxQBHCWqe6A

https://www.youtube.com/watch?v=nZdtNiDLKJ0
https://www.youtube.com/watch?v=oxQBHCWqe6A
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Chapter 7

Encryption and Attacks

Chapter 6 introduced concepts of encryption using classical ciphers. This chapter for-
malises these concepts, in Section 7.1 defining the building blocks for encryption in mod-
ern ciphers, in particular in symmetric key cryptography. Section 7.2 looks at encryption
from the attackers point of view. Understanding the approaches attackers can take is
necessary to be able to build secure systems with will withstand attacks. Section 7.3
and Section 7.4 outline the general design approaches to the two types of symmetric key
ciphers: block ciphers and stream ciphers.

Further details about encryption and attacks are covered in subsequent chapters,
including details on Data Encryption Standard (DES) (Chapter 8) and Advanced En-
cryption Standard (AES) (Chapter 9). The alternative to symmetric key encryption,
public key cryptography is introduced in Part IV.

Presentation slides that accompany this chapter can be downloaded in the following
formats: slides only (PDF); slides with notes (PDF, ODP, PPTX).

7.1 Encryption Building Blocks

Video
Encryption Building Blocks (13 min; Mar 2020)
https://www.youtube.com/watch?v=ZVF2kYPnm3g

Figure 7.1 shows the general model for encrypting for confidentiality that we have seen
previously.

Symmetric sender/receiver use same key (single-key, secret-key, shared-key, conven-
tional)

Public-key sender/receiver use different keys (asymmetric)

All ciphers until about the 1960’s were symmetric key ciphers. The encrypter and
decrypter used the same key, i.e. symmetry between the keys. The key must be shared
between the two users and kept secret.

File: crypto/encryption.tex, r1965
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https://sandilands.info/crypto/slides/crypto-encryption-and-attacks-slides-colour.pdf
https://sandilands.info/crypto/slides/crypto-encryption-and-attacks-handout-colour.pdf
https://sandilands.info/crypto/slides/crypto-encryption-and-attacks-slides-colour.odp
https://sandilands.info/crypto/slides/crypto-encryption-and-attacks-slides-colour.pptx
https://www.youtube.com/watch?v=ZVF2kYPnm3g
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Figure 7.1: Model of Encryption for Confidentiality

A new form of cryptography was designed in the 1960’s and 1970’s, where the en-
crypter uses one key and the decrypter uses a different but related key. The keys are
asymmetric. One of the keys is kept secret, while the other can be disclosed, i.e. made
public.

We will focus on symmetric key ciphers initially, and return to public-key ciphers
later.

Figure 7.2: Symmetric Key Encryption for Confidentiality

We often use simple mathematical notation to describe the steps. E() is a function
that takes two inputs: key K and plaintext P. It returns ciphertext C as output. E()
represents the encryption algorithm. D() is the decryption algorithm.

Symmetric key encryption is the oldest form of encryption and involves both parties
(e.g. sender and receiver) knowing the same secret key. Plaintext is encrypted with
the secret key, and the ciphertext is decrypted with that secret key. If anyone else (i.e
attacker) learns the secret key, then the system in not secure.

For symmetric key encryption to be secure, the algorithm must be well designed
(strong, not easy to break) and the secret key must be kept secret. AES is an example of
a strong algorithm, and it uses keys of length 128 bits or longer. One of the challenges of
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symmetric key encryption is informing the receiver of the secret key in advance: it must
be done in a secure manner.

Substitution replace one element in plaintext with another

Permutation re-arrange elements (also called transposition)

Product systems multiple stages of substitutions and permutations, e.g. Feistel net-
work, Substitution Permutation Network (SPN)

Symmetric key ciphers are designed around two basic operations: substitution and
permutation. We have seen these operations when looking at classical ciphers. We also
saw the principle that repeating the operations can make a cipher more secure. Modern
ciphers are designed using these two basic operations, but repeated multiple times. For
example, perform a substitution and then permutation, then repeat. The result is a
“product system”.

The Feistel network and SPN are two common design principles for modern ciphers
and will be mentioned later when discussing block ciphers like AES and DES.

Block cipher process one block of elements at a time, typically 64 or 128 bits

Stream cipher process input elements continuously, e.g. 1 byte at a time, by XOR
plaintext with keystream

Originally the idea was that block ciphers were suitable for processing large amounts of
data when there were no strict time constraints. Stream ciphers were fast and suitable for
real-time applications. For example, for encrypting real-time voice, as the data (plaintext)
is generated, it needs to be quickly encrypted and then the ciphertext transmitted across
a network. By encrypting only a small amount of plaintext at a time and using the
extremely fast XOR operation, stream ciphers could perform the encryption without
introducing significant delay.

However nowadays, the dedicated hardware support for block ciphers like AES, there
is not a significant difference in performance (delay) of block and stream ciphers. Hence
we see block ciphers (in particular, AES) used in scenarios for which stream ciphers were
originally designed for.

We will focus on block ciphers initially, and return to stream ciphers later.

Data Encryption Standard (DES) Became a US government standard in 1977 and
widely used for more than 20 years; key is too short

Advanced Encryption Standard (AES) Standardised a replacement of DES in 1998,
and now widely used. Highly recommended for use.

While no longer recommended or in widespread use, DES was the first cipher that
saw widespread use. The primary limitation of DES however was the key was eventually
subject to a brute force attack. It was only 56 bits.

While Triple DES, which used the original DES but expanded the key length, was
popular for awhile, a new cipher was needed to perform well in a variety of hardware
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Figure 7.3: Common Symmetric Key Block Ciphers

platforms. AES was standardised in 1998 and continues to be the recommended symmet-
ric key block cipher for most applications today. There are no known practical attacks
that cannot be defended.

DES and AES are covered in depth later.
Figure 7.3 lists common symmetric key encryption block ciphers starting with DES,

through to around the time of AES. Most block ciphers operate on blocks of 64 or 128
bits, and support a range of key lengths. There are three main design principles: Feistel
network or structure, Substitution Permutation Network, or Lai-Massey.

AES is still highly recommended for most applications. There have been newer pro-
posals since then, however very few are standards or see wide spread usage. A recent
trend is on developing “lightweight” ciphers that perform well on very small devices, e.g.
sensors.

A detailed review of block ciphers is Roberto Avanzi’s “A Salad of Block Ciphers:
The State of the Art in Block Ciphers and their Analysis”, 2017, which is available for
free at https://eprint.iacr.org/2016/1171.pdf

7.2 Attacks on Encryption

Cryptography, which is the study of cipher design, and cryptanalysis, i.e. breaking cipher
designs, go hand-in-hand. Together these areas are study are cryptology. Let’s now
look from the attackers perspectives. Note that when we use the word “attacker”, we
don’t necessarily mean a malicious entity. That is, we are not judging whether the entity
performing the attack is good or evil.

Video
Attacks on Encryption (28 min; Mar 2020)
https://www.youtube.com/watch?v=yuiGyCx3WFA

https://eprint.iacr.org/2016/1171.pdf
https://www.youtube.com/watch?v=yuiGyCx3WFA
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7.2.1 Aims and Knowledge of the Attacker
First we list the general aims of an attacker, as well as assumptions we often make about
the attacker.

• Study of ciphers and attacks on them is based on assumptions and requirements

– Assumptions about what attacker knows and can do, e.g. intercept messages,
modify messages

– Requirements of the system/users, e.g. confidentiality, authentication

• Normally assumed attacker knows cipher

– Keeping internals of algorithms secret is hard
– Keeping which algorithm used secret is hard

• Attacker also knows the ciphertext

• Attacker has two general approaches

– “Dumb”: try all possible keys, i.e. brute force
– “Smart”: use knowledge of algorithm and ciphertext/plaintext to discover

unknown information, i.e. cryptanalysis

7.2.2 Brute Force Attacks
Brute force is the “dumb” or naive approach an attacker can take. It involves trying keys
until the correct plaintext is found.

Key Key Worst case time at speed:
length space 109/sec 1012/sec 1015/sec
32 232 4 sec 4 ms 4 us
56 256 833 days 20 hrs 72 sec
64 264 584 yrs 213 days 5 hrs
80 280 107 yrs 104 yrs 38 yrs
100 2100 1013 yrs 1010 yrs 107 yrs
128 2128 1022 yrs 1019 yrs 1016 yrs
192 2192 1041 yrs 1038 yrs 1035 yrs
256 2256 1060 yrs 1057 yrs 1054 yrs
26! 288 1010 yrs 107 yrs 104 yrs

Table 7.1: Worst Case Brute Force Time for Different Keys

Table 7.1 shows, for different key lengths, the time it takes to try every key if a single
computer could make attempts at one of three rates: 109 per second, 1012 per second, or
1015 per second. There are not necessarily realistic speeds, although roughly represent
lower and upper limits for today’s computing power.

While this table presents the worst case time, in most cases, it is not much different
from the average time. Recall the average time is about half of the worst case time. For
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a 128 bit key at 1015 decrypts per second, the worst case time is about 1 × 1016 years,
and the average time is about 0.5×1016. That is, both about 1016 years. With such large
times, cutting the time in half makes no practical difference.

Note that the last line is for a key for a monoalphabetic English cipher. There are
26! possible keys which is equivalent to a binary key of about 88 bits.

For comparison, the age of the Earth is approximately 4 × 109 years and the age of
the universe is approximately 1.3× 1010 years.

7.2.3 Cryptanalysis
Cryptanalysis is the “smart” approach to breaking ciphers. The attacker uses knowledge
of the ciphers, as well as expected patterns in ciphertext and plaintext to find unknown
information (e.g. keys or plaintext).

Attacks on ciphers can be classified based on how much information an attacker is
assumed to know to successfully perform the attack. We describe different classifications
in the following.

1. Ciphertext Only Attack

2. Known Plaintext Attack

3. Chosen Plaintext Attack

4. Chosen Ciphertext Attack

5. Chosen Text Attack

We describe the different attacks in the following.

Ciphertext Only Attack

• Attacker knows:

– encryption algorithm
– ciphertext

• Hardest type of attack

• If cipher can be defeated by this, then cipher is weakest

The common assumption is that an attacker knows the encryption algorithm and
ciphertext, and that they had no influence over the choice of ciphertext. This is referred
to a ciphertext only attack. A cipher that is subject to a ciphertext only attack is the
weakest of the groups of attacks we will consider.

However if a cipher cannot be defeated by a ciphertext only attack, then it still may be
defeated if the attacker has additional information. The following defines these additional
attacks. They all assume the attacker has the same information as a ciphertext only
attack (i.e. encryption algorithm and ciphertext), but also make additional assumptions
about other known information and the ability to select/influence values. Generally, the
more information an attacker knows or can control, the easier their task of defeating a
cipher.
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Known Plaintext Attack

• Attacker knows:

– encryption algorithm
– ciphertext
– one or more plaintext–ciphertext pairs formed with the secret key

• E.g. attacker has intercept past ciphertext and somehow discovered their corre-
sponding plaintext

• All pairs encrypted with the same secret key (which is unknown to attacker)

In a Known Plaintext Attack (KPA), the attacker also has access to one or more pairs
of plaintext/ciphertext. That is, assume the ciphertext known, Cknown, was obtained
using key Kunknown and plaintext Punknown (either of which the attacker is trying to find).
The attacker also knows at least C1 and P1, where C1 is the output of encrypting P1 with
key Kunknown. That is, the attacker knows a pair (P1, C1). They may also know other
pairs (obtained using the same key Kunknown).

How could an attacker known past plaintext/ciphertext pairs? A simple example is
if the plaintext messages were only valid for a limited time, after which they become
public. Such as coordinates for a public event to take place. Before the event takes
place the coordinates are encrypted and secret. But after the event takes place, while the
coordinates were decrypted, the attacker has learnt the value of the coordinates/plaintext
(without knowing the key).

Generally, the more pairs of plaintext/ciphertext known, the easiest it is to defeat a
cipher.

Chosen Plaintext Attack

• Attacker knows:

– encryption algorithm
– ciphertext
– plaintext message chosen by attacker, together with its corresponding cipher-

text generated with the secret key

In a Chosen Plaintext Attack (CPA) the attacker is able to select plaintexts to be
encrypted and obtain their ciphertext (but not knowing the key used in the encryption).
In such an attack, the attacker may select plaintext messages that have characteristics
that make it easier to break the cipher. Ability to select plaintext and have it encrypted
is common for public key ciphers (since the encryption key is public but the decryption
key is private), which should be designed to be resistant to such attacks.

Chosen Ciphertext Attack

• Attacker knows:

– encryption algorithm
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– ciphertext
– ciphertext chosen by attacker, together with its corresponding decrypted plain-

text generated with the secret key

• Attackers aim is to find the secret key (not the plaintext)

In a Chosen Ciphertext Attack (CCA) the attacker chooses a ciphertext, and obtains
the corresponding plaintext, in an attempt to discover a secret key. Note in this attack,
the aim is to find the secret key. If the attacker has a way to obtain plaintext from
a chosen ciphertext, then they could simply intercept ciphertext to find plaintext. A
CCA normally involves the attacker tricking a user to decrypt ciphertext and provide the
plaintext.

There are variations of the above types of attacks, and the details of the attacks may
be quite different, however this classification is sufficient to demonstrate that successful
cryptanalysis depends partially on the amount of information known to the attacker.

7.2.4 Measuring Security
Is a cipher security? To answer such a question, methods of measuring security must be
defined.

Unconditionally Secure Ciphertext does not contained enough information to derive
plaintext or key

• One-time pad is only unconditionally secure cipher (but not very practical)

Computationally Secure If:

• cost of breaking cipher exceeds value of encrypted information
• or time required to break cipher exceeds useful lifetime of encrypted informa-

tion
• Hard to estimate value/lifetime of some information
• Hard to estimate how much effort needed to break cipher

In theory we would like an unconditionally secure cipher. However in practice, we
aim for computationally secure. Unfortunately it is difficult to measure if a cipher is
computationally secure. For modern ciphers their security is judged based on the known
theoretical and practical attacks (e.g. resistant to CCA or not) as well as the metrics in
the following.

Time: usually measured as number of operations, since real time depends on implemen-
tation and computer specifics

• Operations are encrypts or decrypts; ignore other processing tasks
• E.g. worst case brute force of k-bit key takes 2k (decrypt) operations

Amount of Memory: temporary data needed to be stored during attack
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Known information: number of known plaintext/ciphertext values attacker needs to
know in advance to perform attack

While time to break the cipher is the metric of interest, it is usually simplified to
number of operations. For cryptanalysis, successful attacks should take fewer operations
than brute force. That is, an attack that takes more operations the a brute force attack
is considered an unsuccessful attack.

Often attacks requires intermediate values to be stored in memory while performing
the attack. The less memory needed, the better the attack.

As seen in the previous classification, known plaintext, chosen plaintext and chosen
ciphertext attacks all require the attacker to know additional information. The more in-
formation necessary for the attack to be successful, the poorer the attack is. For example,
a known plaintext attack that will be successful if 1,000,000 pairs of plaintext/ciphertext
are known, is better than a known plaintext attack that requires 2,000,000 pairs.

Video
Measuring Attacks on Ciphers (4 min; Mar 2021)
https://www.youtube.com/watch?v=3tfqACxHUSA

7.3 Block Cipher Design Principles
Block ciphers are the most common type of ciphers. They are designed to encrypt a
single fixed length block of bits.

• Encrypt a block of plaintext as a whole to produce same sized ciphertext

• Typical block sizes are 64 or 128 bits

• Modes of operation used to apply block ciphers to larger plaintexts

Figure 7.4: Block Cipher with n bit blocks

Modes of operation are covered in Chapter 11.

https://www.youtube.com/watch?v=3tfqACxHUSA
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Video
Block Cipher Design Principles (9 min; Mar 2021)
https://www.youtube.com/watch?v=ULKX4Xqpclg

Let’s look at some simple, ideal block ciphers to illustrate basic concepts, which will
then lead to common design principles used to create block ciphers in use today. In its
simplest form, a block cipher maps an n-bit plaintext block to a n-bit ciphertext block,
with the exact mapping determined by the cipher design and selected key. The mapping
can be viewed as a lookup table.

Figure 7.5: Simple Ideal 2-bit Block Cipher 1

Figure 7.5 is an example of a 2-bit ideal block cipher. The table shows input plaintext
blocks in the left column, different keys in the top row, and the resulting output ciphertext
block in the body of the table. To be used for sending a confidential message, both the
sender and receiver would know the table (e.g. stored in memory on their devices), or
some way to calculate the table) and agree upon the key to use. For a given plaintext
block, the sender looks up the key to find the output ciphertext to send. The receiver
looks up the receiver ciphertext in the column of the key, and the row determines the
plaintext.

Exercise 7.1 (Encrypt with Ideal Cipher 1). Encrypt the message Tokyo using the above
ideal 2-bit block cipher 1 with key K6.

Solution 7.1 (Encrypt with Ideal Cipher 1). As the example block cipher operates on
2-bit binary blocks, but a five letter English message is to be encrypted we will make
assumptions about the encoding and mode of operation to be used.

First, we will assume ASCII (or UTF-8) encoding is to be used (see Section B.1.4).
Each letter will map to an 8-bit value, i.e. T = 01010100, o = 01101111, k = 01101011,
and y = 01111001. The resulting plaintext in binary is 40 bits:

0101010001101111011010110111100101101111
Second, as we have 40 bits of plaintext, but a 2-bit block cipher, we will assume each 2-

bit block of plaintext will be encrypted (20 blocks in total), and the resulting 20 ciphertext
blocks will be concatenated to produce final 40 bit ciphertext. This naive approach is
referred to as the Electronic Code Book mode of operation. Modes of operations are
discussed in Chapter 11. The 20 plaintext blocks are:

01 01 01 00 01 10 11 11 01 10 10 11 01 11 10 01 01 10 11 11
Consider the 1st plaintext block of 01, using key K6, looking up the block cipher table

returns a ciphertext block of 10. We know have the first of 20 ciphertext blocks and can
move on to the 2nd ciphertext block. It turns out the next plaintext block is the same
as the first (01), and since the same key is used (K6), the same ciphertext block will

https://www.youtube.com/watch?v=ULKX4Xqpclg
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be output (10). In fact, the first three plaintext blocks are the same, so the ciphertext
blocks so far are:

10 10 10
The 4th plaintext block is 00. Looking up in the table with key K6 produces output

ciphertext block 11. We know have:
10 10 10 11
Continuing with all 20 plaintext blocks will produce ciphertext blocks:
10 10 10 11 10 00 01 01 10 00 00 01 10 01 00 10 10 00 01 01
Concatenating all ciphertext blocks together produces the ciphertext:
1010101110000101100000011001001010000101
Should the ciphertext be encoded as ASCII/UTF8 to complete the encryption? It

could be, but note that some of the characters may note be printable (e.g. ESCape
or ACK). For block ciphers we typically operate on binary plaintext and ciphertext.
Encoding and decoding between binary and other formats is not normally part of the
cipher, so we will leave the ciphertext as a sequence of bits.

The above exercise identified several issues that arise when applying an ideal block
cipher:

• Encoding/decoding: independent of block cipher, which operate only in binary
values

• Mode of operation: typically independent of block cipher, which operate only on a
single block

• Repetition of plaintext blocks: undesirable. Make block size larger and use mode
of operation that obscures repetition

• Key space: larger block size needed to allow more keys in ideal block cipher

• Implementing an ideal block cipher: how are they generated? can all values be
stored?

The following questions will explore some of these issues further.

Figure 7.6: Simple Ideal 2-bit Block Cipher 2

Figure 7.6 shows a different 2-bit ideal block cipher. It maps plaintext to ciphertext
in a different order than cipher 1.

This example is just used for illustrative purposes. If you had an ideal block cipher
that covered every permutation of plaintext values, then only a single cipher is needed.

Question 7.1 (What is plaintext with key K13, ciphertext 11 with ideal cipher 2?).
What is plaintext with key K13, ciphertext 11 with ideal cipher 2?
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Decryption also involves a lookup. In the column for key K13, identify the ciphertext
11, and the row indicates the original plaintext 10.

Question 7.2 (What is plaintext with key K4, ciphertext 11 with ideal cipher 2?). What
is plaintext with key K4, ciphertext 11 with ideal cipher 2?

Same cipher, same ciphertext but different key. However in column of K4 there are
two values of ciphertext 11. So we cannot determine for sure what was the original
plaintext: 00 or 10. This actually is a trick question, since the cipher design is in error.
A cipher must be reversible, so decryption is possible. This is an example of a cipher
design error that includes an irreversible mapping.

Figure 7.7: Simple Ideal 2-bit Block Cipher 2 (fixed)

Figure 7.7 shows the fixed cipher: it is now reversible, and decryption is possible for
all values of key and ciphertext.

Question 7.3 (How many bits are needed to represent the key in cipher 2?). The example
2-bit ideal block cipher 2 (as well as cipher 1) list 24 different keys (or mappings from
plaintext to ciphertext). How many bits are needed to represent a key for this cipher?

Firstly, why are 24 keys listed? With a 2-bit block, there are 22 = 4 possible blocks,
i.e. 00, 01, 10, and 11. There are 4! = 24 different ways to arrange those 4 plaintext
blocks to produce ciphertext, i.e. 24 permutations of the plaintext blocks. A key is used
to select the distinct permutation.

With key length of 1 bit, we can represent 21 = 2 possible keys. With a key length
of 2 bits, we can represent 22 = 4 possible keys. With a key length of 3 bits, we can
represent 23 = 8 possible keys. With a key length of 4 bits, we can represent 24 = 16
possible keys. With a key length of 5 bits, we can represent 25 = 32 possible keys. That
is, a key length of 4 bits is not enough to represent our 24 keys, but a key length of 5 is.
Therefore we need a 5-bit key for this ideal 2-bit block cipher.

Question 7.4 (How to reduce repetition of plaintext blocks?). With a 2-bit ideal block
cipher, with a long plaintext, many of plaintext blocks will repeat. This is bad for security
(see Modes of Operation). What can you change in the design of an ideal block cipher
that reduces repetition of plaintext blocks?

Increasing the block size for a block cipher will reduce the change of block repetition.
Recall the first example of the 2-bit ideal block cipher encrypting Tokyo. The plaintext
was 40-bits, resulting in 20 blocks. As there are only 22 = 4 different plaintext values,
there will be repetition. On average (if the plaintext was random, which is not likely but
it simplifies the analysis), each plaintext value will be repeated 20/4 = 5 times.

If however a 3-bit ideal block cipher was used, there would be 23 = 8 different plaintext
values. There would be 14 blocks (40/3, with the last block having just 1 bit of plaintext).
On average, each plaintext value will be repeated 14/8, which is less than 2 times.
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Increasing to a 4-bit ideal block cipher gives 16 different plaintext values, 10 blocks,
and a possibility there will be no repetition. Of course if the plaintext is much longer
than 40 bits, then repetition is still likely.

Figure 7.8: Impact of Block Sizes for 80 bit Plaintext

Figure 7.8 illustrates the impact of different block sizes for an example 80 bit plaintext
(whereas the previous example was a 40 bit plaintext).

Note that with a block size of 3 bits, the last block contains 2 bits of plaintext and 1
bit of padding. Padding is needed as all blocks must be the same size (since block ciphers
operate on fixed sized blocks). There are different schemes for padding, e.g. bit padding,
zero padding and PKCS7.

• n-bit block cipher takes n bit plaintext and produces n bit ciphertext

• 2n possible different plaintext blocks

• Encryption must be reversible (decryption possible)

• Number of permutations of plaintext (and number of keys) is 2n!

• Design trade-offs:

– Large block size to reduce plaintext repetitions (64-bits is good)
– Key space large enough to avoid brute force, but small enough to make distri-

bution practical
– Small block size to simplify implementation

The trade-offs are conflicting, meaning ideal block ciphers are good in theory, but in
practice we need a different design approach.

Exercise 7.2 (Ideal 64-bit Block Cipher). Consider an ideal 64-bit block cipher. How
many different different keys are possible? How many bits are needed to store a single
key? How much space is required to store the mappings?
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Solution 7.2 (Ideal 64-bit Block Cipher). We will not attempt to list all keys. With
64-bit blocks, there are 264! different permutations or mappings, meaning 264! possible
keys. To store a single key, we need about log2(264!) bits. Our software calculator will
not handle this, not even bc. So let’s try Wolfram Alpha, which returns 1.15398× 1021.
That means about 1021 bits are needed to store a key. That is approximately 125,000,000
TB. If someone wanted to send a short encrypted message to you, they would first need
to exchange a 125,000,000 TB key with you. Hence we see an ideal block cipher with
large blocks is not practical due to the key length.

For storage of the mappings, consider if you had to create a table similar to the 2-bit
ideal block ciphers. There are 264! columns, representing the keys. There are 264 rows,
representing the possible plaintext values. Each cell in the table contains a 64-bit, or 8
Byte, ciphertext value. So the storage space needed is 264!×264×8 Bytes. If you attempt
to calculate this you will quickly see it is not practical to store the entire table.

Video
Ideal Block Cipher (8 min; Mar 2021)
https://www.youtube.com/watch?v=-LjOIGjURGs

To overcome the limitations of ideal block ciphers, Horst Feistel designed a general
scheme that is practical in the sense of implementation and key lengths, but still achieves
suitable security.

• Ideal block ciphers are not practical

• Feistel proposed applying two or more simple ciphers in sequence so final result is
cryptographically stronger than component ciphers

• n-bit block length; k-bit key length; 2k transformations

• Feistel cipher alternates: substitutions, transpositions (permutations)

• Applies concepts of diffusion and confusion

• Applied in many ciphers today

• Approach:

– Plaintext split into halves
– Subkeys (or round keys) generated from key
– Round function, F , applied to right half
– Apply substitution on left half using XOR
– Apply permutation: interchange to halves

For example, with a 64-bit block cipher, there are 264 possible mappings/keys, mean-
ing the key length is log2(264) = 64 bits.

• Diffusion

https://www.wolframalpha.com/
https://www.wolframalpha.com/input/?i=log2%28%282%5E64%29%21%29
https://www.youtube.com/watch?v=-LjOIGjURGs
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– Statistical nature of plaintext is reduced in ciphertext
– E.g. A plaintext letter affects the value of many ciphertext letters
– How: repeatedly apply permutation (transposition) to data, and then apply

function

• Confusion

– Make relationship between ciphertext and key as complex as possible
– Even if attacker can find some statistical characteristics of ciphertext, still

hard to find key
– How: apply complex (non-linear) substitution algorithm

Diffusion and confusion are concepts introduced by Claude Shannon. See a summary
of Shannon’s contributions in telecommunications, digital circuits and cryptography in
Chapter C.

Credit: Amirki, https://commons.wikimedia.org/wiki/File:Feistel_cipher_diagram_en.svg, CC BY-SA 3.0

Figure 7.9: Feistel Encryption and Decryption

You don’t need to know the details of the Feistel structure. Just be aware that it is
a design principle used in many block ciphers, including DES.

• Exact implementation depends on various design features

– Block size, e.g. 64, 128 bits: larger values leads to more diffusion
– Key size, e.g. 128 bits: larger values leads to more confusion, resistance against

brute force
– Number of rounds, e.g. 16 rounds
– Subkey generation algorithm: should be complex
– Round function F : should be complex

• Other factors include fast encryption in software and ease of analysis

https://commons.wikimedia.org/wiki/File:Feistel_cipher_diagram_en.svg
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• Trade-off: security vs performance

Video
Ideal Block Cipher vs Feistel Structure (2 min; Mar 2021)
https://www.youtube.com/watch?v=5-zWE7GjjaQ

7.4 Stream Cipher Design Principles
Stream ciphers were designed to be fast using an XOR operation, and usually encrypt a
bit or byte at a time.

• Encrypts a digital data stream one bit or one byte at a time

• One time pad is example; but practical limitations

• Typical approach for stream cipher:

– Key (K) used as input to bit-stream generator algorithm
– Algorithm generates cryptographic bit stream (ki) used to encrypt plaintext
– ki is XORed with each byte of plaintext Pi
– Users share a key; use it to generate keystream

Figure 7.10: Stream Cipher Encrypt and Decrypt

Figure 7.10 illustrates the general operation of a stream cipher encryption and de-
cryption. The sender uses a shared secret key K and an algorithm to generate effectively

https://www.youtube.com/watch?v=5-zWE7GjjaQ
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a random stream of bits. This random stream of bits is XORed with the plaintext bits
as needed.

The receiver uses the same key and algorithm, which in turn generates the same
random stream of bits. When XORed with the ciphertext, the original plaintext is
output.

An issue when using stream ciphers is that a key cannot be re-used. This is usually
addressed by introducing an initialisation value or vector (IV).

• Encrypting two different plaintexts with the same key leads to key re-use attack

– Attacker intercepts two ciphertexts: C1 = P1 ⊕ k1 and C2 = P2 ⊕ k1

– Properties of XOR: commutative and A⊕ A = 0
– Attacker performs XOR on two ciphertexts
– C1 ⊕ C2 = P1 ⊕ k1 ⊕ P2 ⊕ k1 = P1 ⊕ P2

– Even without knowing P1 or P2, attacker can easily use frequency analysis to
discover both

• Solution: Use additional IV that changes for every encryption

Question 7.5 (When can key re-use attack be successful if IV is used?). If a stream
cipher is using a n-bit Initialisation Vector/Value (IV), but the same key, under what
conditions is a key re-use attack possible? Assume the IV increments every time an
encrypt operation is performed.

7.5 Example: Brute Force on DES
Now let’s consider an example of brute force on a real cipher, DES.

• DES is 64-bit block cipher with 56-bit (effective) key length

• Developed in 1977, recommended standard until 1990’s

• Brute force: 256 operations

• Hardware built to perform brute force attack

– 1998: DeepCrack
– 2006: COPACABANA

In 1998, the Electronics Frontiers Foundation (EFF) developed DeepCrack to demon-
strate how insecure DES was.

• Developed by EFF

• Cost less than $US250,000

• 80× 109 keys/sec

• Solved DES challenge in 56 hours
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Credit: Wikimedia, CC0 1.0 Public Domain https://commons.wikimedia.org/wiki/File:Paul_kocher_deepcrack.jpg

Figure 7.11: Paul Kocher and DeepCrack

• See www.cryptography.com and www.eff.org

Video
DeepCrack Brute Force on DES (1 min; Mar 2021)
https://www.youtube.com/watch?v=SIH2lgfV3Ao

In 2006, as a demonstration of their hardware, SciEngines developed COPACABANA.

• Joint effort by SciEngines and German universities

• 120 Field Programmable Gate Arrays (FPGAs), 400× 106 keys/sec/FPGA

• For comparison, a Pentium 4: 2× 106 keys/sec

• Brute force DES in 8.6 days

• Cost about $US10,000

• See www.sciengines.com

Credit: Copyright SciEngines GMBH

Figure 7.12: COPACABANA by SciEngines, 2006

https://commons.wikimedia.org/wiki/File:Paul_kocher_deepcrack.jpg
www.cryptography.com
www.eff.org
https://www.youtube.com/watch?v=SIH2lgfV3Ao
www.sciengines.com
http://www.sciengines.com/copacobana/
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Using the above example, we can roughly estimate what it would cost today to brute
force DES.

• Moore’s law: computers double speed every 1.5 years

• Alternative: computers halve in cost every 1.5 years

• $US10,000 to brute force DES in 2006

• Cost has halved about 10 times

• Cost to brute force DES in 2020: $10

A simplification of Moore’s law is that computers double their speed every 1.5 years.
In practice it is not that simple, but it is a useful rule to estimate the cost of brute force
today. It means in 1.5 years time, you could buy a computer that double the speed if a
new computer today, and at the same cost. Alternatively, you could buy a lower specced
computer, which is the same speed as a new computer today, buy half the cost of today’s
computer.

Assuming computers halve in cost every 1.5 years, between 2006 and 2020 is 14 years.
Over 15 years, there are 10 1.5 year periods, so the cost would halve 10 times. (Again
since this is an estimate, let’s use 15 years instead of 14). If you half $10,000 10 times,
you get $9.76. That is, a $10 computer today can brute force DES in 8.6 days.

As brute force attacks can be parallelised easily, you could spend $100 on 10 computers
(or buy a $100 computer) and break DES in less than a day. DES is not secure against
a brute force attack (and hasn’t been for a long time).

Video
SciEngines Copacabana Brute Force on DES (3 min; Mar 2021)
https://www.youtube.com/watch?v=8RGD7ckwoBI

7.6 Example: Brute Force on AES
Another demonstration of hardware brute force capabilities was again given by SciEngines
in 2013, this time attacking AES.

• Rivyera S3 supported up to 128 Xilinx Spartan-3 FPGAs

• Approx $100 per FPGA (XCS5000)

• AES-128 Brute Force

– 500× 106 keys per sec
– 4× 106 keys per mW

• Biclique Attack

– 945× 106 keys per sec

https://www.youtube.com/watch?v=8RGD7ckwoBI
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Credit: Copyright SciEngines GMBH

Figure 7.13: RIVYERA S3-5000 by SciEngines, 2013

– 7.3× 106 keys per mW

FPGAs are essentially computer processors programmed for a specific task, in this
case, decrypting with AES very fast. For about $12,800 a RIVYERA could decrypt
AES-128 at a rate of 500× 106 keys per second.

A known plaintext attack on AES is called the Biclique attack. The RIVYERA
implementation of the Biclique attack could decrypted AES-128 at a rate of 945 × 106

keys per sec, about twice that of a brute force.
Now let’s consider what it would take to break AES.

• AES-128 has key space of 2128

• 2013: $US12,800 for 5× 108 k/s

• Assume: computers double speed every 1.5 years

• 2020: Increase by 25 = 32; 1.6× 1010 k/s

– $12,800: 6.7× 1020 years
– $12,800,000: 6.7× 1017 years
– $12,800,000,000: 6.7× 1014 years

• Biclique attack about 2 to 4 times faster, but requires 288 known plaintext/cipher-
text pairs

• In 2035, cost $12,800,000,000 to brute force AES-128 in 670,000,000,000 years

Applying the same logic from analysis of DES brute force and Moore’s law (i.e. every
1.5 years halve cost or double speed), we can perform a rough analysis of the cost/time
to break AES-128. The numbers (dollars, years) are so large such that even if the
approximations are incorrect by a factor of 1,000,000,000 (e.g. reducing 1014 years to
100, 000 years, then it is still impossible to break AES-128.

Video
SciEngines Rivyera Attack on AES (4 min; Mar 2021)
https://www.youtube.com/watch?v=KC3Z3yp0s5k

http://www.sciengines.com/copacobana/
https://www.youtube.com/watch?v=KC3Z3yp0s5k
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7.7 Example: Meet-in-the-Middle Attack
One way to increase the key length of a block cipher is to apply the cipher multiple
times, each time using a different key. Applying the cipher twice is referred to as double
encryption.

• Encrypt plaintext with one key, then encrypt output with another key

Figure 7.14: Double Encryption Concept

• Advantage: doubles the key length

– Single version of cipher has k-bit key
– Double version of cipher uses two different k-bit keys
– Worst case brute force: 22k

• Advantage: uses an existing cipher

• Disadvantage: doubles the processing time

• Problem: double encryption is subject to meet-in-the-middle attack

Double encryption was a (naive) option for extending the key length of DES. It
effectively would double the key length from 56 bits to 112 bits. A new cipher would not
have to be designed or analysed, and existing software/hardware implementations could
be used.

But a meet-in-the-middle attack makes Double-DES (or double encryption on any
block cipher) insecure.

• Double Encryption where key K is k-bits: C = E(K2,E(K1, P ))

• Say X = E(K1, P ) = D(K2, C)

• Attacker knows two plaintext, ciphertext pairs (Pa, Ca) and (Pb, Cb)

1. Encrypt Pa using all 2k values of K1 to get multiple values of X
2. Store results in table and sort by X
3. Decrypt Ca using all 2k values of K2
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4. As each decryption result produced, check against table
5. If match, check current K1, K2 on Cb. If Pb obtained, then accept the keys

• With two known plaintext, ciphertext pairs, probability of successful attack is al-
most 1

• Encrypt/decrypt operations required: ≈ 2×2k (twice as many as single encryption)

Figure 7.15: Example 5-bit Block Cipher

Figure 7.15 shows an example 5-bit block cipher with a 3-bit key. To encrypt, look in
the left column to find the row of the plaintext, then look for the column corresponding
to the key. The intersection of row and column gives the ciphertext.

This example block cipher is used in the Meet-in-the-Middle attack exercise.

Exercise 7.3 (Meet-in-the-Middle Attack). Figure 7.15 shows an example 5-bit block
cipher, referred to as Bob’s Cipher. A double version of Bob’s cipher, called Double-Bob,
was used by two users to exchange multiple encrypted messages using the same 6-bit
secret key. You have obtained the plaintext/ciphertext pairs of two of those messages:
(P1, C1) = (01101, 11111) and (P2, C2) = (11001, 11011). Using a meet-in-the-middle
attack, find the secret key.

Solution 7.3 (Meet-in-the-Middle Attack). Figure 7.16 shows notes on performing the
attack. Figure 7.17 shows calculations of the performance of the attack, and compares
to an attack on Double-DES.

Video
Meet-in-the-Middle attack on 5-bit block cipher (52 min; Feb 2016)
https://www.youtube.com/watch?v=AwNlaN1w9jg

https://www.youtube.com/watch?v=AwNlaN1w9jg
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Figure 7.16: Solution for Meet-in-the-Middle Attack

Figure 7.17: Performance for Meet-in-the-Middle Attack
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• Different variations:

– Use 2 keys, e.g. Triple-DES 112 bits
– Use 3 keys, e.g. Triple-DES 168 bits

Figure 7.18: Triple Encryption Concept

• Why E-D-E? To be compatible with single DES:

C = E(K1,D(K1,E(K1, P ))) = E(K1, P )

• Problem: 3 times slower than single DES

Figure 7.18 shows the concept of Triple Encryption, where two different keys are
used. This effectively doubles the key strength compared to the original cipher. Another
variation (not shown) would be to use three different keys, effectively tripling the key
strength.

Note that if you use the same key for each step, then because of the E-D-E approach,
this reverts to the original cipher. That is, if you use Triple-DES but use the same key
in each step, this reverts to (single) DES. The benefit of this is that you can have an
implementation of Triple-DES (which is built on the implementations of DES), and allow
the user to choose a key to suit their needs: 1 key for DES, 2 keys for 112-bit security, 3
keys for 168-bit security.

7.8 Example: Cryptanalysis on Triple-DES and AES
Table 7.2 compares cryptanalysis on Triple-DES and AES against brute force attacks.

Video
Theoretical Attacks on DES and AES (2 min; Mar 2021)
https://www.youtube.com/watch?v=H001PSmfgMc

https://www.youtube.com/watch?v=H001PSmfgMc
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Cipher Method Key Required resources:
space Time Memory Known data

DES Brute force 256 256 - -
3DES MITM 2168 2111 256 22

3DES Lucks 2168 2113 288 232

AES 128 Biclique 2128 2126.1 28 288

AES 256 Biclique 2256 2254.4 28 240

• Known data: chosen pairs of (plaintext, ciphertext)

• Lucks: S. Lucks, Attacking Triple Encryption, in Fast Software Encryption, Springer, 1998

• Biclique: Bogdanov, Khovratovich and Rechberger, Biclique Cryptanalysis of the Full AES, in
ASIACRYPT2011, Springer, 2011

Table 7.2: Cryptanalysis of Triple-DES and AES
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Chapter 8

Data Encryption Standard

This chapter provides details of Data Encryption Standard (DES), with concepts demon-
strated via a simplified, educational version called Simplified-DES. Many of the details
serve mainly as reference, with little discussion.

Presentation slides that accompany this chapter can be downloaded in the following
formats: slides only (PDF); slides with notes (PDF, ODP, PPTX).

8.1 Overview of the Data Encryption Standard (DES)
• Symmetric block cipher

• 56-bit key, 64-bit input block, 64-bit output block

• Developed in 1977 by National Institute of Standards and Technology (NIST);
designed by IBM (Lucifer) with input from National Security Agency (NSA)

• Principles used in other ciphers, e.g. 3DES, IDEA

8.2 Simplified-DES
To understand the details of a cipher, it often helps if you can perform the encryption
(or decryption) steps yourself. However as common block ciphers operate on blocks of
64 bits or larger, and use similar sized keys, it is difficult to manually and efficiently
perform operations. Therefore, to illustrate the principles of selected real ciphers, sim-
plified versions have been developed. This section presents Simplified Data Encryption
Standard (S-DES), which is a cut-down version of DES. For example, S-DES uses op-
erates on 8-bit blocks, uses an 8-bit key and has only 2 rounds. As it is designed using
the same principles as (real) DES but using smaller values, it is possible to step through
an example encryption by hand. For some this can be a powerful way to understand
the operations used in real DES. It is important however to note that S-DES is just for
education; it is not a real cipher used in practice today or in the past. You will only find
it referred to in textbooks and university classes.

• Input (plaintext) block: 8-bits

File: crypto/des.tex, r1966
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https://sandilands.info/crypto/slides/crypto-data-encryption-standard-slides-colour.pdf
https://sandilands.info/crypto/slides/crypto-data-encryption-standard-handout-colour.pdf
https://sandilands.info/crypto/slides/crypto-data-encryption-standard-slides-colour.odp
https://sandilands.info/crypto/slides/crypto-data-encryption-standard-slides-colour.pptx
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• Output (ciphertext) block: 8-bits

• Key: 10-bits

• Rounds: 2

• Round keys generated using permutations and left shifts

• Encryption: initial permutation, round function, switch halves

• Decryption: Same as encryption, except round keys used in opposite order

Figure 8.1: S-DES Key Generation and Encryption

Figure 8.1 shows the key generation and encryption steps of S-DES. Key generation,
shown on the left, is used to generate round keys and is the same algorithm when used
for both encryption and decryption. That is, the encrypter and decrypter will generate
the exact same round keys.

The encrypter started with a shared secret key 10 bits long and 8 bits of plaintext.
Two sub-keys, or round keys, K1 and K2 are generated using the key generation steps,
which involve Permutations and Left Shifts.

Encryption applies an Initial Permutation, then a round function fk (with details to
be shown shortly), SWaps the two halves of the 8 bit output, then reapplies the round
function, but using the 2nd round key as input. Encryption ends with the inverse of the
Initial Permutation.

Figure 8.2 shows the key generation and decryption. Decryption is in fact identical to
encryption, except the round keys are used in the opposite order. That is, for encryption
round key K1 is used first, then round key K2. For decryption, K2 is used first and then
K1.
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Figure 8.2: S-DES Key Generation and Decryption

Figure 8.3: S-DES Round Function Details
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Figure 8.3 shows the details of the round function, fk. Note that the same steps are
applied in the 2nd round, but instead K2 is used as the round key. Operations include
Expand and Permutate, XOR, S-boxes and a Permutation of 4 bits. The 8 bits output
(left half and right half) are then input the the SWap block (swapping the two halves).

Definitions of the permutations and S-boxes follow.
Definition 8.1 (S-DES Permutations). Permutations used in S-DES:

P10 (permutate)
Input : 1 2 3 4 5 6 7 8 9 10
Output: 3 5 2 7 4 10 1 9 8 6
P8 (select and permutate)
Input : 1 2 3 4 5 6 7 8 9 10
Output: 6 3 7 4 8 5 10 9
P4 (permutate)
Input : 1 2 3 4
Output: 2 4 3 1
EP (expand and permutate)
Input : 1 2 3 4
Output: 4 1 2 3 2 3 4 1
IP (initial permutation)
Input : 1 2 3 4 5 6 7 8
Output: 2 6 3 1 4 8 5 7

As an example, permutation P4 takes a 4-bit input and produces a 4-bit output. The
1st bit of the input becomes the 4th bit of the output. The 2nd bit of the input becomes
the 1st bit of the output. The 3rd bit of the input becomes the 3rd bit of the output.
The 4th bit of the input becomes the 1st bit on the output.

The permutations are fixed. That is they are always these exact permutations, and
known by the encrypter, decrypter and attacker.

• LS-1: left shift by 1 position

• LS-2: left shift by 2 positions

• IP−1: inverse of IP, such that X = IP−1(IP(X))

• SW: swap the halves

• fK : a round function using round key K

• F: internal function in each round

Definition 8.2 (S-DES S-Boxes). S-Box considered as a matrix: input used to select
row/column; selected element is output

4-bit input: bit1, bit2, bit3, bit4
bit1bit4 specifies row (0, 1, 2 or 3 in decimal)
bit2bit3 specifies column

S0 =


01 00 11 10
11 10 01 00
00 10 01 11
11 01 11 10

 S1 =


00 01 10 11
10 00 01 11
11 00 01 00
10 01 00 11


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Exercise 8.1 (Encrypt with S-DES). Show that when the plaintext 01110010 is en-
crypted using S-DES with key 1010000010 that the ciphertext obtained is 01110111.

Video
Simplified DES Example (44 min; Jan 2016)
https://www.youtube.com/watch?v=3jGMCyOXOV8

Solution 8.1 (Encrypt with S-DES). The input 10-bit key, K, is: 1010000010. Then
the steps for generating the two 8-bit round keys, K1 and K2, are:

1. Rearrange K using P10: 1000001100

2. Left shift by 1 position both the left and right halves: 00001 11000

3. Rearrange the halves with P8 to produce K1: 10100100

4. Left shift by 2 positions the left and right halves: 00100 00011

5. Rearrange the halves with P8 to produce K2: 01000011

K1 and K2 are used as inputs in the encryption and decryption stages.
Now consider the 8-bit plaintext, P : 01110010. Then the steps for encryption are:

1. Apply the initial permutation, IP, on P: 10101001

2. Assume the input from step 1 is in two halves, L and R: L=1010, R=1001

3. Expand and permutate R using E/P: 11000011

4. XOR input from step 3 with K1: 10100100 XOR 11000011 = 01100111

5. Input left halve of step 4 into S-Box S0 and right halve into S-Box S1:

(a) For S0: 0110 as input: b1, b4 for row, b2, b3 for column
(b) Row 00, column 11 → output is 10
(c) For S1: 0111 as input:
(d) Row 01, column 11 → output is 11

6. Rearrange outputs from step 5 (1011) using P4: 0111

7. XOR output from step 6 with L from step 2: 0111 XOR 1010 = 1101

8. Now we have the output of step 7 as the left half and the original R as the right
half. Swap the halves and move to round 2: 1001 1101

9. E/P with right half: E/P(1101) = 11101011

10. XOR output of step 9 with K2: 11101011 XOR 01000011 = 10101000

11. Input to S-Boxes:

https://www.youtube.com/watch?v=3jGMCyOXOV8
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(a) For S0, 1010
(b) Row 10, column 01 → output is 10
(c) For S1, 1000
(d) Row 10, column 00 → output is 11

12. Rearrange output from step 11 (1011) using P4: 0111

13. XOR output of step 12 with left halve from step 8: 0111 XOR 1001 = 1110

14. Input output from step 13 and right halve from step 8 into inverse IP

(a) Input is: 1110 1101

(b) Output is: 01110111

So our encrypted result of plaintext 01110010 with key 1010000010 is: 01110111

In summary, S-DES:

• Educational encryption algorithm

• S-DES expressed as functions:

ciphertext = IP−1(fK2(SW(fK1(IP(plaintext)))))

plaintext = IP−1(fK1(SW(fK2(IP(ciphertext)))))

• Brute force attack on S-DES is easy since only 10-bit key

• If know plaintext and corresponding ciphertext, can we determine key? Very hard

The general design of S-DES follows the same principles as DES, although the algo-
rithm parameters differ.

• S-DES vs DES

• Block size: 8 bits vs 64 bits

• Rounds: 2 vs 16

• IP: 8 bits vs 64 bits

• F: 4 bits vs 32 bits

• S-Boxes: 2 vs 8

• Round key: 8 bits vs 48 bits

The following section presents the details of DES. This is primarily for reference (or
as evidence of the similarities and differences with S-DES). You are not expected to know
the details of the DES operations.
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8.3 Details of DES
DES was standardised by NIST as FIPS 46, with the latest version FIPS 46-3 withdrawn
as a standard in 2005. The standard contains the technical details of DES, with the
main figures repeated in the following. Most (if not all) NIST standards are in the public
domain.

The following figures are directly from the FIPS 46-3 PDF and are Reprinted courtesy
of the National Institute of Standards and Technology, U.S. Department of Commerce.
Not copyrightable in the United States. For further explanation of DES, see the standard
or various textbooks (such as Stallings).

Figure 8.4: General DES Encryption Algorithm

Figure 8.4 shows the overall steps in DES encryption. The details of each block are
shown in the following.

Figure 8.5 shows the initial permutation and it’s inverse. The table is read row-by-
row. So the 58th input bit becomes the 1st output bit. The 50th input bit becomes the
2nd output bit. And the 7th input bit becomes the 64th output bit.

Figure 8.6 shows the details of a single round of encruption, i.e. the round function.
Similar to S-DES, it takes the right half, applies an expand and permutate (E), XOR
with the round key, applies S-Boxes, and then a final permutate (P).

Figure 8.7 shows E and P which are used within a round of DES.
Figure 8.8 shows the first 4 S-Boxes. Each S-Box takes a 6 bit input. The first and

last bit are used to determine the row, and the middle 4 bits determine the column. The
result is a decimal values within the range 0 to 15, which determines the 4 bit output.
See https://en.wikipedia.org/wiki/DES_supplementary_material for an example
of reading the S-Boxes.

Figure 8.9 shows the last 4 S-Boxes.

https://csrc.nist.gov/publications/detail/fips/46/3/archive/1999-10-25
https://csrc.nist.gov/CSRC/media/Publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf
https://en.wikipedia.org/wiki/DES_supplementary_material
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Figure 8.5: Initial Permutation Tables for DES

Figure 8.6: Calculation of F(R,K)



8.3. DETAILS OF DES 99

Figure 8.7: Permutation Tables for DES

Figure 8.8: Definition of DES S-Boxes 1 to 4
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Figure 8.9: Definition of DES S-Boxes 5 to 6

Figure 8.10: DES Permutated Choice 1 and 2
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Figure 8.10 shows the Permutated Choices used in key generation.

Figure 8.11: DES Key Generation Schedule

Figure 8.11 shows the overall key generation steps.

Figure 8.12: DES Schedule of Left Shifts in Key Generation

Figure 8.12 shows the schedule of left shifts indicating how many bits are shifted left
when a Left Shift is applied in each round for key generation.

8.4 DES in OpenSSL
We will demonstrate several examples of using OpenSSL for DES encryption and decryp-
tion, including:
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• Encrypt a file with a password using the enc operation

• Generate a random key using the rand operation

• Disable padding (with exact plaintext correct size)

• Encrypt with key and IV using enc operation

• View binary data (e.g. ciphertext) with xxd

8.4.1 DES Encryption Basics in OpenSSL
To demonstrate using OpenSSL to encrypt a file with DES, let’s create an example
plaintext message. You can use any file, but for the example, let’s copy a plain text
dictionary file most likely on your Linux system /usr/share/dict/words. We will name
our plaintext file plaintext1.in. The file extension of .in is just to remember that this
is the original plaintext input. After encrypting and decrypting, we may obtain outputs,
for which we will use the extension .out. Remember, file extensions in Linux often do
not matter (Chapter 4 of Network and Security in Linux explains basic Linux operations
and files).

$ cp /usr/share/dict/words plaintext1.in
$ ls -l plaintext*
-rw-r--r-- 1 sgordon sgordon 938848 Jul 31 13:32 plaintext1.in

Now lets encrypt using DES. You can use the list command in OpenSSL to see the
-cipher-algorithms and -cipher-commands (see Section 3.2.3). You will note there
are different variants of DES, such as DES-ECB, DES-CBC and DES-CFB. The second
identifier specifies the mode of operation. Modes of operation are covered in Chapter 11,
but in short, these allow DES, which operates on 64-bit blocks, to be used to encrypt
arbitrary sized plaintexts. The simplest mode of operation, but least secure, is Electronic
Code Book (ECB). We will use ECB in this example.

Symmetric key encryption in OpenSSL is performed using the enc operation. In the
simplest form, we specify the algorithm then the input file and output file (in our case,
ciphertext1.bin). If we don’t specify a secret key, then OpenSSL will prompt for a
password and then convert that to a secret key.

$ openssl enc -des-ecb -in plaintext1.in -out ciphertext1.bin
enter des-ecb encryption password: password
Verifying - enter des-ecb encryption password: password
$ ls -l plaintext1.in ciphertext1.bin
-rw-rw-r-- 1 sgordon sgordon 938872 Jul 31 14:15 ciphertext1.bin
-rw-r--r-- 1 sgordon sgordon 938848 Jul 31 13:32 plaintext1.in

To decrypt, include the -d option:

$ openssl enc -d -des-ecb -in ciphertext1.bin -out plaintext1.out
enter des-ecb decryption password: password
$ ls -l plaintext1.in plaintext1.out
-rw-r--r-- 1 sgordon sgordon 938848 Jul 31 13:32 plaintext1.in
-rw-rw-r-- 1 sgordon sgordon 938848 Jul 31 14:18 plaintext1.out
$ diff plaintext1.in plaintext1.out

https://sandilands.info/nsl/
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$ xxd -l 96 ciphertext1.bin
0000000: 5361 6c74 6564 5f5f f253 8361 b87d 1a3e Salted__.S.a.}.>
0000010: 30ed be95 5b38 ebf9 a013 ca64 bbf4 03ea 0...[8.....d....
0000020: 3ebb cdf8 483d 5a12 acd8 bc75 140c 920b >...H=Z....u....
0000030: da41 7376 edc3 b9bd 59c4 a5ce 0a67 408a .Asv....Y....g@.
0000040: d23e 10ee 7ac3 f5b6 4f09 4aaf 88e4 1f96 .>..z...O.J.....
0000050: 3171 7277 91a7 100c ac04 7871 dd39 cf4c 1qrw......xq.9.L

The lack of output from the diff command indicates the files plaintext1.in and
plaintext1.out are identical. We’ve retrieved the original plaintext.

xxd was used to view the first 96 bytes, in hexadecimal, of the ciphertext. The first
8 bytes contain the special string Salted__ meaning the DES key was generated using
a password and a salt. The salt is stored in the next 8 bytes of ciphertext, i.e. the value
f2538361b87d1a3e in hexadecimal. So when decrypting, the user supplies the password
and OpenSSL combines with the salt to determine the DES 64 bit key.

Section 8.4.2 shows a more detailed example where the key and IV are specified.

8.4.2 Symmetric Key Encryption Padding and Modes of Oper-
ation

Section 8.4.1 showed a simple method for performing symmetric key encryption with
OpenSSL. Now we are going to consider some more details, in particular the role of
padding and modes of operation.

Recall that block ciphers, like DES and AES, operate on fixed size blocks. For exam-
ple, DES encrypts a 64 bit (or 8 Byte) block of plaintext. But commonly the plaintext we
want to encrypt is larger than a single block. Modes of operation, such as ECB, Cipher
Block Chaining (CBC) and Counter mode (CTR), are used to apply the block cipher
across multiple blocks. That is, encrypt the first 8 Bytes of plaintext with DES, then
encrypt the next 8 Bytes of plaintext (or related data) with DES, and combine them
together according to some algorithm. The details of modes of operation are covered in
Chapter 11.

A related issue is that often the full plaintext will not be an integer multiple of blocks.
For example, a 50 Byte file consists of 6 by 8 Byte blocks with 2 Bytes in the 7th block.
Padding is needed to fill out that 7th block. By default, OpenSSL performs padding
for you. However if you are sure you have a correct length plaintext (integer multiple
of blocks), you can omit padding. This is useful to perform simple exploration of the
output.

The following shows an example of using OpenSSL without padding, and demon-
strates the weakness of the ECB mode of operation.

To get started, we need a plaintext message to encrypt. The first command below
generates a message (saving to a file), and the subsequent commands show us some
information about the message/file.

$ echo -n "Hello. This is our super secret message. Keep it secret please.
Goodbye." > plaintext.txt

$ cat plaintext.txt
Hello. This is our super secret message. Keep it secret please. Goodbye.
$ wc -m plaintext.txt
72 plaintext.txt
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$ ls -l
total 4
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:39 plaintext.txt
$ xxd -c 8 plaintext.txt
0000000: 4865 6c6c 6f2e 2054 Hello. T
0000008: 6869 7320 6973 206f his is o
0000010: 7572 2073 7570 6572 ur super
0000018: 2073 6563 7265 7420 secret
0000020: 6d65 7373 6167 652e message.
0000028: 204b 6565 7020 6974 Keep it
0000030: 2073 6563 7265 7420 secret
0000038: 706c 6561 7365 2e20 please.
0000040: 476f 6f64 6279 652e Goodbye.
$ xxd -b -c 8 plaintext.txt
0000000: 01001000 01100101 01101100 01101100 01101111 00101110 00100000

01010100 Hello. T
0000008: 01101000 01101001 01110011 00100000 01101001 01110011 00100000

01101111 his is o
0000010: 01110101 01110010 00100000 01110011 01110101 01110000 01100101

01110010 ur super
0000018: 00100000 01110011 01100101 01100011 01110010 01100101 01110100

00100000 secret
0000020: 01101101 01100101 01110011 01110011 01100001 01100111 01100101

00101110 message.
0000028: 00100000 01001011 01100101 01100101 01110000 00100000 01101001

01110100 Keep it
0000030: 00100000 01110011 01100101 01100011 01110010 01100101 01110100

00100000 secret
0000038: 01110000 01101100 01100101 01100001 01110011 01100101 00101110

00100000 please.
0000040: 01000111 01101111 01101111 01100100 01100010 01111001 01100101

00101110 Goodbye.

The meaning of the preceding output is:

1. Create a short text message with echo. The -n option is used to ensure no newline is
added to the end. There are two things about this message that will be important
later: the length is a multiple of 8 characters (9 by 8 characters) and the word
secret appears twice (in particular positions).

2. Display the message on the screen with cat.

3. Count the number of characters with wc.

4. View the file size with ls.

5. Show the message in hexadecimal and binary using xxd. From now on, we’ll only
look at the hexadecimal values (not binary).

To encrypt with DES-ECB we need a secret key (as well as IV). You can choose your
own values. For security, they should be randomly chosen. We saw in Chapter 3 different
ways to generate random values. Let’s use OpenSSL’s rand twice: the first will be for
the secret key and the second for the IV.
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$ openssl rand -hex 8
001e53e887ee55f1
$ openssl rand -hex 8
a499056833bb3ac1

Now encrypt the plaintext using DES-ECB. The IV and Key are taken from the
outputs OpenSSL PRNG above. Importantly, we use the -nopad option at the end:

$ openssl enc -des-ecb -e -in plaintext.txt -out ciphertext.bin -iv
a499056833bb3ac1 -K 001e53e887ee55f1 -nopad

Now look at the output ciphertext. First note it is the same length as the plaintext
(as expected, when no padding is used). And on initial view, the ciphertext looks random
(as expected). But closer inspection you see there is some structure: the 4th and 7th
lines of the xxd output are the same. This is because it corresponds to the encryption of
the same original plaintext " secure " (recall that word was repeated in the plaintext, in
the positions such that it is in a 64-bit block). Since ECB is used, repetitions in input
plaintext blocks will result in repetitions in output ciphertext blocks. This is insecure
(especially for long plaintext). Another mode of operation, like CBC, should be used.

$ ls -l
total 8
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:42 ciphertext.bin
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:39 plaintext.txt
$ xxd -c 8 ciphertext.bin
0000000: 56dc b368 d9ef 0793 V..h....
0000008: 7be4 a87d e26d c2f1 {..}.m..
0000010: e042 bbe6 9e00 6d37 .B....m7
0000018: f1e9 7163 cb4a 38d8 ..qc.J8.
0000020: 5394 a92f 8cf2 ac72 S../...r
0000028: 5064 be07 f67c d807 Pd...|..
0000030: f1e9 7163 cb4a 38d8 ..qc.J8.
0000038: a31c 0efd cd0b dd03 ........
0000040: 0486 7e2d 00ad 762d ..~-..v-

Now lets decrypt:

$ openssl enc -des-ecb -d -in ciphertext.bin -out received.txt -iv
a499056833bb3ac1 -K 001e53e887ee55f1 -nopad

And look at the decrypted value. Of course, it matches the original plaintext message.

$ ls -l
total 12
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:42 ciphertext.bin
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:39 plaintext.txt
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:43 received.txt
$ cat received.txt
Hello. This is our super secret message. Keep it secret please. Goodbye.
$ xxd -c 8 received.txt
0000000: 4865 6c6c 6f2e 2054 Hello. T
0000008: 6869 7320 6973 206f his is o
0000010: 7572 2073 7570 6572 ur super
0000018: 2073 6563 7265 7420 secret
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0000020: 6d65 7373 6167 652e message.
0000028: 204b 6565 7020 6974 Keep it
0000030: 2073 6563 7265 7420 secret
0000038: 706c 6561 7365 2e20 please.
0000040: 476f 6f64 6279 652e Goodbye.

Now lets try and decrypt again, but this time using the wrong key. I’ve changed the
last hexadecimal digit of the key from “1” to “2”.

$ openssl enc -des-ecb -d -in ciphertext.bin -out received2.txt -iv
a499056833bb3ac1 -K 001e53e887ee55f2 -nopad

Looking at the decrypted message, it is random. We didn’t obtain the original plain-
text. Normally, when padding is used, OpenSSL adds a checksum when encrypting which
allows, after decrypting, incorrect deciphered messages to be automatically detected.

$ ls -l
total 16
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:42 ciphertext.bin
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:39 plaintext.txt
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:46 received2.txt
-rw-r--r-- 1 sgordon sgordon 72 Nov 11 16:43 received.txt
$ xxd -c 8 received2.txt
0000000: 0346 e59e c22d 403f .F...-@?
0000008: 63ff 28fd eb6b 387d c.(..k8}
0000010: b52f d595 06c0 342f ./....4/
0000018: f419 3569 e383 c857 ..5i...W
0000020: 0a77 0b49 6f62 cb64 .w.Iob.d
0000028: 8265 d419 51f3 ea12 .e..Q...
0000030: f419 3569 e383 c857 ..5i...W
0000038: f296 33f3 5cf4 d359 ..3.\..Y
0000040: e205 4018 0ce0 34f5 ..@...4.

However the checksum used within OpenSSL is not perfect, so it shouldn’t be relied
upon for secure authentication (i.e. checking the received message is correct). Chapter 17
discusses different ways for the receiver to be sure they have obtained the original message.

Video
DES Encryption using OpenSSL (13 min; Jan 2012)
https://www.youtube.com/watch?v=VdE21ku7SMs

8.4.3 DES OpenSSL Exercises
Exercise 8.2 (DES Key Generation). Generate a shared secret key to be used with DES
and share it with another person.

Solution 8.2 (DES Key Generation). It is important that any symmetric key is generated
randomly. Using OpenSSL rand operation is a good approach. See Section 3.2.4 and/or
Section 8.4.2 for examples.

The key must be 64 bits (8 bytes or 16 hex digits).

https://www.youtube.com/watch?v=VdE21ku7SMs
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Exercise 8.3 (DES Encryption). Create a message in a plain text file and after using
DES, send the ciphertext to the person you shared the key with.

Solution 8.3 (DES Encryption). See OpenSSL examples in Section 8.4.2. The sender
and receiver should agree upon the mode of operation, an IV (recommended to be random
in general, although not needed for ECB) and the use of padding (recommended to be
used).

Exercise 8.4 (DES Decryption). Decrypt the ciphertext you received.

Solution 8.4 (DES Decryption). See OpenSSL examples in Section 8.4.2.

8.5 DES in Python
The Python Cryptography library includes symmetric key encryption using various algo-
rithms. DES is covered under TripleDES. That is, using TripleDES with a 64 bit key is
equivalent to using DES. See the examples for generic symmetric encryption at:

• cryptography.io/en/latest/hazmat/primitives/symmetric-encryption/

https://cryptography.io/en/latest/
https://cryptography.io/en/latest/hazmat/primitives/symmetric-encryption/
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Chapter 9

Advanced Encryption Standard

This chapter provides details of Advanced Encryption Standard (AES), with concepts
demonstrated via a simplified, educational version called Simplified Advanced Encryption
Standard (S-AES). Many of the details serve mainly as reference, with little discussion.

Presentation slides that accompany this chapter can be downloaded in the following
formats: slides only (PDF); slides with notes (PDF, ODP, PPTX).

9.1 Overview of AES
As the 56-bit key of DES became a practical limitation, researchers and standard bodies
worked towards new block ciphers.

• 1977: DES (56-bit key). NIST published.

• 1991: IDEA, similar to DES, secure but patent issues

• 1999: 3DES (168-bit key). NIST recommended 3DES be used (DES only for legacy
systems)

– 3DES was considered secure (apart from special case attacks)
– But 3DES is very slow, especially in software
– DES and 3DES use 64-bit blocks – larger block sizes required for efficiency

• 1997: NIST called for proposals for new Advanced Encryption Standards

– Proposals made public and evaluations performed

• 2001: Selected Rijndael as the algorithm for AES

The process for determining the algorithm to be selected for AES was performed as a
multi-round competition run by NIST. There are varying criteria for selecting a winner.

• Original NIST criteria:

– Security: effort to cryptoanalyse algorithm, randomness, . . .

File: crypto/aes.tex, r1980

109

https://sandilands.info/crypto/slides/crypto-advanced-encryption-standard-slides-colour.pdf
https://sandilands.info/crypto/slides/crypto-advanced-encryption-standard-handout-colour.pdf
https://sandilands.info/crypto/slides/crypto-advanced-encryption-standard-slides-colour.odp
https://sandilands.info/crypto/slides/crypto-advanced-encryption-standard-slides-colour.pptx
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– Cost: royalty-free license, computationally efficient, . . .
– Algorithm and implementation characteristics: flexibility (different keys/blocks,

implement on different systems), simplicity, . . .

• 21 candidate algorithms reduced to 5

• Updated NIST evaluation criteria for 5 algorithms:

– General Security
– Software and hardware implementations (needs to be efficient)
– Low RAM/ROM requirements (e.g. for smart cards)
– Ability to change keys quickly
– Potential to use parallel processors

Rijndael, a proposal by Vincent Rijmen and Joan Daemen, was selected the winner
for the following reasons:

• Security: good, no known attacks

• Software implementation: fast, can make use of parallel processors

• Hardware implementation: fastest of all candidates

• Low memory requirements: good, except encryption and decryption require sepa-
rate space

• Timing and Power analysis attacks: easiest to defend against

• Key flexibility: supports on-the-fly change of keys and different size of keys/blocks

Key parameters of Rijndael were the block and key sizes. While the Rijndael support
various sizes, the eventual NIST standard settling on a single block size with three key
lengths.

• NIST Advanced Encryption Standard, FIPS-197, 2001

• Three variations of same algorithm standardised

– AES-128: 128-bit key, 10 rounds
– AES-192: 192-bit key, 12 rounds
– AES-256: 256-bit key, 14 rounds

• AES uses 128-bit block size for all variations

• Simplified Advanced Encryption Standard (S-AES) used to understand AES (edu-
cational only)

• For details of AES see the Stallings textbook, AES on Wikipedia or the AES stan-
dard from NIST

https://www.nist.gov/publications/advanced-encryption-standard-aes
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://www.nist.gov/publications/advanced-encryption-standard-aes
https://www.nist.gov/publications/advanced-encryption-standard-aes
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9.2 Simplified-AES
• Educational purposes only. Mohammad A. Musa , Edward F. Schaefer and Stephen

Wedig (2003) A Simplified AES Algorithm and its Linear and Differential Crypt-
analyses, Cryptologia, 27:2, 148-177, DOI: 10.1080/0161-110391891838

• Input: 16-bit block of plaintext; 16-bit key

• Output: 16-bit block of ciphertext

• Operations:

– Add Key: XOR of a 16-bit key and 16-bit state matrix
– Nibble Substitution: S-Box table lookup that swaps nibbles (4 bits)
– Shift Row: shift of nibbles in a row
– Mix Column: re-order columns
– Rotate Nibbles: swap the nibbles

• 3 rounds (although they don’t contain same operations)

S-AES operates on 16-bit blocks, with some operations on 8-bit words and others on
4-bit nibbles. For example, a 16-bit block is equivalent to two 8-bit words or four 4-bit
nibbles.

Figure 9.1, Figure 9.2, and Figure 9.3 show the encryption, decryption and key gen-
eration algorithms, respectively. The operations used in the algorithms are defined later.

Figure 9.1: S-AES Encryption

https://www.tandfonline.com/action/showCitFormats?doi=10.1080/0161-110391891838


112 CHAPTER 9. ADVANCED ENCRYPTION STANDARD

Figure 9.1 shows the overall steps for S-AES and key expansion and encryption. The
key generation takes a 16-bit secret key and expands that into 3 16-bit round keys. The
first round key K0 is simple the original key. The next two round keys, K1 and K2 are
generated by an expansion algorithm. Figure 9.3 shows that algorithm for K1.

S-AES encryption operates on 16-bit blocks of plaintext. To encrypt, there is an initial
add key, and then two rounds, where the 2nd round does not include the mix columns
operation.

Figure 9.2: S-AES Decryption

Figure 9.2 shows the decryption operations. Note that it is similar to encryption in
reverse, with all operations replaced with their inverse operations. The same round keys
are used as in encryption, but in the opposite order.

Figure 9.3 shows the key generation operations for generated round key K1. Similar
steps are used to generate K2, where the input is K1 and a different round constant.

Definition 9.1 (S-AES State Matrix). S-AES operates on a 16-bit state matrix, viewed
as 4 nibbles [

b0b1b2b3 b8b9b10b11
b4b5b6b7 b12b13b14b15

]
=
[
S0,0 S0,1
S1,0 S1,1

]

While S-AES operates on 16-bits at a time, those bits are viewed as a state matrix
of 4 nibbles. Note the matrix is filled columnwise, with the first 8 bits (2 nibbles) in the
first column.

The following shows operations based on the state matrix.

Definition 9.2 (S-AES Shift Row, Add Key and Rotate Nibbile operations). S-AES
Shift Row: [

S0,0 S0,1
S1,0 S1,1

]
→
[
S0,0 S0,1
S1,1 S1,0

]
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Figure 9.3: S-AES Key Generation for Round 1

S-AES Add Key: Exclusive OR (XOR)
S-AES Rotate Nibble: swap the two nibbles
S-AES Nibble Substitution: apply S-Box on each nibble
S-AES Round Constant 1: 10000000
S-AES Round Constant 2: 00110000

Shift Row swaps the 2nd nibble with the 4th nibble. Add Key is a bitwise XOR. The
round constants are used in the key generation.

Definition 9.3 (S-AES S-Boxes). S-Box considered as a matrix: input used to select
row/column; selected element is output

Input: 4-bit nibble, bit1, bit2, bit3, bit4
bit1bit2 specifies row
bit3bit4 specifies column

encrypt :


1001 0100 1010 1011
1101 0001 1000 0101
0110 0010 0000 0011
1100 1110 1111 0111



decrypt :


1010 0101 1001 1011
0001 0111 1000 1111
0110 0000 0010 0011
1100 0100 1101 1110


The left-most 2 bits in a nibble determine the row, and the right-most 2 bits in the

nibble determine the column. The output nibble is based on the S-Box. The Inverse
S-Box is used in decryption.
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Definition 9.4 (S-AES Mix Columns). Mix the columns in the state matrix be perform-
ing a matrix multiplication.

Mix Columns: [
S ′0,0 S ′0,1
S ′1,0 S ′1,1

]
=
[

1 4
4 1

] [
S0,0 S0,1
S1,0 S1,1

]
Inverse Mix Columns: [

S ′0,0 S ′0,1
S ′1,0 S ′1,1

]
=
[

9 2
2 9

] [
S0,0 S0,1
S1,0 S1,1

]

Galois Field GF(24) is used for addition and multiplication operations.

S ′ denotes the output from the mixing of columns, e.g. S ′0,0 = (1× S0,0) + (4× S1,0).
Importantly, the resulting addition and multiplication operations are in Galois Field
GF(24). We do not cover (Galois) fields, however in Number Theory we saw modular
arithmetic with mod n where all operations produced results within 0 to n. This is a
simple case of a field, i.e. all operations produce answers within some finite range. GF(24)
means all answers will be within range 0 to 15.

GF(24) addition is equivalent to bitwise XOR. However GF(24) multiplication is more
complicated. Therefore, for the purpose of demonstrating S-AES, a simplified view of the
mix column operations with a table lookup for multiplication is shown in the following.

Definition 9.5 (S-AES Mix Columns (Simple)). Mix the columns in the state matrix
be performing the following calculations.

Mix Columns:
S ′0,0 = S0,0 ⊕ (0100× S1,0)
S ′1,0 = (0100× S0,0)⊕ S1,0

S ′0,1 = S0,1 ⊕ (0100× S1,1)
S ′1,1 = (0100× S0,1)⊕ S1,1

Inverse Mix Columns:

S ′0,0 = (1001× S0,0)⊕ (0010× S1,0)

S ′1,0 = (0010× S0,0)⊕ (1001× S1,0)
S ′0,1 = (1001× S0,1)⊕ (0010× S1,1)
S ′1,1 = (0010× S0,1)⊕ (1001× S1,1)

For multiplication, lookup using Figure 9.4.

Figure 9.4 shows the GF(24) multiplication table in binary. The green column is used
in encryption (Mix Columns) and the two blue columns are used in decryption (Inverse
Mix Columns). For example with encryption, when multiplying a value by 4 (0100 in
binary), lookup the value in the first column (e.g. 0111) and the answer will be in the
green column (e.g. 1111).

Now let’s compare S-AES to the real AES, specifically AES-128.

• S-AES
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Figure 9.4: GF(24) Multiplication Table used in S-AES

– 16-bit key, 16-bit plaintext/ciphertext

– 2 rounds: first with all 4 operations, last with 3 operations

– Round key size: 16 bits

– Mix Columns: arithmetic over GF(24)

• AES-128

– 128-bit key, 128-bit plaintext/ciphertext

– 10 rounds: first 9 with all 4 operations, last with 3 operations

– Round key size: 128 bits

– Mix Columns: arithmetic over GF(28)

• Principles of operation are the same

9.3 Simplified-AES Example

Exercise 9.1 (Encrypt with S-AES). Show that when the plaintext 1101 0111 0010
1000 is encrypted using Simplified-AES with key 0100 1010 1111 0101 that the cipher-
text obtained is 0010 0100 1110 1100.

Solution 9.1 (Encrypt with S-AES). See the PDF of the solution at:
https://sandilands.info/sgordon/teaching/reports/simplified-aes-example-v2.
pdf

https://sandilands.info/sgordon/teaching/reports/simplified-aes-example-v2.pdf
https://sandilands.info/sgordon/teaching/reports/simplified-aes-example-v2.pdf
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9.4 AES in OpenSSL

9.4.1 AES Encryption Basics in OpenSSL
You can use AES in a similar manner to DES in OpenSSL (see Section 8.4), that is, using
the enc operation. The following is an example of AES encryption with a 128 bit key and
CTR mode of operation. In addition to the key, an IV is needed. The plaintext2.in
file is just an example, in fact it is obtained from copying the actual OpenSSL binary,
e.g. cp /usr/bin/openssl plaintext2.in.

$ openssl enc -aes-128-ctr -in plaintext2.in -out ciphertext2.bin -K
0123456789abcdef0123456789abcdef -iv 00000000000000000000000000000000

$ openssl enc -d -aes-128-ctr -in ciphertext2.bin -out plaintext2.out -K
0123456789abcdef0123456789abcdef -iv 00000000000000000000000000000000

$ ls -l *2*
-rw-rw-r-- 1 sgordon sgordon 513208 Jul 31 14:29 ciphertext2.bin
-rwxr-xr-x 1 sgordon sgordon 513208 Jul 31 13:32 plaintext2.in
-rw-rw-r-- 1 sgordon sgordon 513208 Jul 31 14:30 plaintext2.out
$ diff plaintext2.in plaintext2.out
$ xxd -l 96 ciphertext2.bin
0000000: 06ee 8984 3a69 ac84 d388 ce61 110a 6274 ....:i.....a..bt
0000010: c1ed f9ed f193 f2d2 bf8d 29e2 1577 5d32 ..........)..w]2
0000020: 1e25 cc36 bb37 baa7 eb65 402b a8ef 421b .%.6.7...e@+..B.
0000030: a6f7 073c a08a e698 747d 5153 8df1 ed88 ...<....t}QS....
0000040: 1131 f4e0 2014 1392 ee36 2b54 27eb ca72 .1.. ....6+T’..r
0000050:␣4b88␣e623␣ed28␣2da7␣87cd␣0c1a␣5441␣5d7c␣␣K..#.(-.....TA]|

Both the Key (note uppercase -K) and IV were specified on the command line as a
hexadecimal string. With AES-128, they must be 32 hex digits (128 bits). You may
choose any value you wish.

Use the list operation in OpenSSL to see the variants of AES supported by OpenSSL
(see Section 3.2.3).

9.4.2 AES Performance Benchmarking
OpenSSL has a built-in operation for performance testing. It encrypts random data over
short period, measuring how many bytes can be encrypted per second. It can be used
to compare the performance of different algorithms, and compare the performance of
different computers.

To run performance tests across a large set of algorithms, simple use the speed oper-
ation. Note that it may take a few minutes:

$ openssl speed
...

You can select the algorithms to test, e.g. AES, DES and Message Digest 5 hash
function (MD5):

$ openssl speed aes-128-cbc des md5
...
The ’numbers’ are in 1000s of bytes per second processed.
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
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md5 68101.86k 199387.83k 444829.62k 639419.85k 734323.76k
des cbc 76810.00k 78472.53k 78442.77k 79241.85k 78440.45k
des ede3 28883.98k 29585.17k 29640.69k 29499.08k 29740.52k
aes-128 cbc 138894.09k 150561.30k 154512.15k 155203.81k 155590.46k

The output shows the progress, the versions and options used for OpenSSL and then
a summary table at the end. Focus on the summary table, and the last line (for aes-
128-cbc) in the example above. The speed test encrypts as many b Byte input plaintexts
as possible in a period of 3 seconds. Different size inputs are used, i.e. b = 16, 64,
256, 1024 and 8192 Bytes. The summary table reports the encryption speed in Bytes
per second. So if 25955833 16-Byte plaintext values are encrypted in 3 seconds, then
the speed reported in the summary table is 25955833 × 16 ÷ 3 ≈ 138 million Bytes per
second. You can see that value (138,894.09kB/s) in the table above. So AES using 128
bit key and CBC can encrypt about 138 MB/sec when small plaintext values are used
and 155 MB/sec when plaintext values are 8192 Bytes.

Normally OpenSSL implements all algorithms in software. However recent Intel CPUs
include instructions specifically for AES encryption, a feature referred to as AES-NI. If
an application such as OpenSSL uses this special instruction, then part of the AES
encryption is performed directly by the CPU. This is usually must faster (compared to
using general instructions). To run a speed test that uses the Intel AES-NI, use the evp
option:

$ openssl speed -evp aes-128-cbc
...
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
aes-128-cbc 689927.75k 729841.81k 745383.38k 747226.84k 747784.87k

Compare the values to the original results. In the original test we achieved 138
MB/sec. Using the Intel AES hardware encryption we get a speed of 689 MB/sec, about
5 times faster.

9.4.3 AES OpenSSL Exercises
Exercise 9.2 (AES Key Generation). Generate a shared secret key to be used with AES
and share it with another person.

Solution 9.2 (AES Key Generation). It is important that any symmetric key is generated
randomly. Using OpenSSL rand operation is a good approach. See Section 3.2.4 for
examples.

The users need to select a key length: 128, 192 or 256 bits.

Exercise 9.3 (AES Encryption). Create a message in a plain text file and after using
AES, send the ciphertext to the person you shared the key with.

Solution 9.3 (AES Encryption). See OpenSSL examples in Section 9.4.1. The sender
and receiver should agree upon the mode of operation, an IV (recommended to be random
in general, although not needed for ECB) and the use of padding (recommended to be
used).

Exercise 9.4 (AES Decryption). Decrypt the ciphertext you received.

http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
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Solution 9.4 (AES Decryption). See OpenSSL examples in Section 9.4.1.

Exercise 9.5 (AES Performance Benchmarking). Perform speed tests on AES using
both the software and hardware implementations (if available). Compare and discuss
the impact of the following on performance: key length; software vs hardware; different
computers (e.g. compare the performance with another person).

Solution 9.5 (AES Performance Benchmarking). See OpenSSL examples in Section 9.4.2.
The performance of AES-128, AES-192 and AES-256 should be compared. Also, compare
software implementation of AES (default when running OpenSSL) with the hardware im-
plementation (-evp) if supported by your computer.

9.5 AES in Python
The Python Cryptography library includes symmetric key encryption using various algo-
rithms, including AES. See the examples for generic symmetric encryption at:

• https://cryptography.io/en/latest/hazmat/primitives/symmetric-encryption/

https://cryptography.io/en/latest/
https://cryptography.io/en/latest/hazmat/primitives/symmetric-encryption/
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Pseudorandom Number Generators

To be added in the future.

File: crypto/prng.tex, r1769
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Chapter 11

Block Cipher Modes of Operation

This chapter presents common modes of operation available with symmetric block ciphers.
Modes of operation allow the block ciphers to be applied to inputs greater than the block
size. The difference in designs lead to different security and performance tradeoffs. This
chapter is primarily for reference, presenting the modes but with little explanation of
each.

Presentation slides that accompany this chapter can be downloaded in the following
formats: slides only (PDF); slides with notes (PDF, ODP, PPTX).

11.1 Block Ciphers with Multiple Blocks
Block ciphers operate on fixed length inputs, so the question arises of how are they used
to encrypt arbitrary length inputs?

• Block cipher: operates on fixed length b-bit input to produce b-bit ciphertext

• What about encrypting plaintext longer than b bits?

• Naive approach: Break plaintext into b-bit blocks (padding if necessary) and apply
cipher on each block independently

– ECB

• Security issues arise:

– Repetitions of input plaintext blocks produces repetitions of output ciphertext
blocks

– Repetitions (patterns) in ciphertext are bad!

• Different modes of operation have been developed

• Tradeoffs between security, performance, error handling and additional features
(e.g. include authentication)

File: crypto/modes.tex, r1949
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https://sandilands.info/crypto/slides/crypto-block-cipher-modes-of-operation-slides-colour.pptx
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We will not cover each mode of operation in detail, but rather present them so you
are aware of some of the common modes. For more technical details of some of these
modes of operation, including discussion of padding, error propagation and the use of
initialisation vectors, see NIST Special Publication 800-38A Recommendations for Block
Cipher Modes of Operation: Methods and Techniques. Additional (newer) modes of
operation are in the NIST SP 800-38 series, such as 800-38C CCM, 800-38D GCM and
800-38E XTS-AES.

11.2 Electronic Code Book
Figure 11.1 and Figure 11.2 show the Electronic Code Book (ECB) mode of operation
applied for encryption and decryption, respectively.

• Each block of 64 plaintext bits is encoded independently using same key

• Typical applications: secure transmission of single values (e.g. encryption key)

• Problem: with long message, repetition in plaintext may cause repetition in cipher-
text

Credit: Wikimedia https://commons.wikimedia.org/wiki/File:ECB_encryption.svg, public domain

Figure 11.1: ECB Encryption

11.3 Cipher Block Chaining Mode
Figure 11.3 and Figure 11.4 show the Cipher Block Chaining (CBC) mode of operation
applied for encryption and decryption, respectively.

• Input to encryption algorithm is XOR of next 64-bits plaintext and preceding 64-
bits ciphertext

• Typical applications: General-purpose block-oriented transmission; authentication

• Initialisation Vector (IV) must be known by sender/receiver, but secret from at-
tacker

https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://csrc.nist.gov/publications/detail/sp/800-38c/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38e/final
https://commons.wikimedia.org/wiki/File:ECB_encryption.svg
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Credit: Wikimedia https://commons.wikimedia.org/wiki/File:ECB_decryption.svg, public domain

Figure 11.2: ECB Decryption

Credit: Wikimedia https://commons.wikimedia.org/wiki/File:CBC_encryption.svg, public domain

Figure 11.3: CBC Encryption

Credit: Wikimedia https://commons.wikimedia.org/wiki/File:CBC_decryption.svg, public domain

Figure 11.4: CBC Decryption

https://commons.wikimedia.org/wiki/File:ECB_decryption.svg
https://commons.wikimedia.org/wiki/File:CBC_encryption.svg
https://commons.wikimedia.org/wiki/File:CBC_decryption.svg
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11.4 Cipher Feedback Mode
Figure 11.5 and Figure 11.6 show the Cipher Feedback mode (CFB) mode of operation
applied for encryption and decryption, respectively.

• Converts block cipher into stream cipher

– No need to pad message to integral number of blocks
– Operate in real-time: each character encrypted and transmitted immediately

• Input processed s bits at a time

• Preceding ciphertext used as input to cipher to produce pseudo-random output

• XOR output with plaintext to produce ciphertext

• Typical applications: General-purpose stream-oriented transmission; authentica-
tion

Credit: Wikimedia https://commons.wikimedia.org/wiki/File:CFB_encryption.svg, public domain

Figure 11.5: CFB Encryption

11.5 Output Feedback Mode
Figure 11.7 and Figure 11.8 show the Output Feedback mode (OFB) mode of operation
applied for encryption and decryption, respectively.

• Converts block cipher into stream cipher

• Similar to CFB, except input to encryption algorithm is preceding encryption out-
put

• Typical applications: stream-oriented transmission over noisy channels (e.g. satel-
lite communications)

https://commons.wikimedia.org/wiki/File:CFB_encryption.svg
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Credit: Wikimedia https://commons.wikimedia.org/wiki/File:CFB_decryption.svg, public domain

Figure 11.6: CFB Decryption

• Advantage compared to OFB: bit errors do not propagate

• Disadvantage: more vulnerable to message stream modification attack

Credit: Wikimedia https://commons.wikimedia.org/wiki/File:OFB_encryption.svg, public domain

Figure 11.7: OFB Encryption

11.6 Counter Mode
Figure 11.9 and Figure 11.10 show the Counter mode (CTR) mode of operation applied
for encryption and decryption, respectively.

• Converts block cipher into stream cipher

• Each block of plaintext XORed with encrypted counter

• Typical applications: General-purpose block-oriented transmission; useful for high
speed requirements

• Efficient hardware and software implementations

• Simple and secure

https://commons.wikimedia.org/wiki/File:CFB_decryption.svg
https://commons.wikimedia.org/wiki/File:OFB_encryption.svg
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Credit: Wikimedia https://commons.wikimedia.org/wiki/File:OFB_decryption.svg, public domain

Figure 11.8: OFB Decryption

Credit: Wikimedia https://commons.wikimedia.org/wiki/File:CTR_encryption_2.svg, public domain

Figure 11.9: CTR Encryption

Credit: Wikimedia https://commons.wikimedia.org/wiki/File:CTR_decryption_2.svg, public domain

Figure 11.10: CTR Decryption

https://commons.wikimedia.org/wiki/File:OFB_decryption.svg
https://commons.wikimedia.org/wiki/File:CTR_encryption_2.svg
https://commons.wikimedia.org/wiki/File:CTR_decryption_2.svg


11.7. XTS-AES 127

11.7 XTS-AES
XTS-AES is a mode of operation designed for AES to be used to encrypt stored data
(e.g. disk drives). Compared to CBC, it improves the ability for a receiver to detect if
the ciphertext has been changed.

• XTS-AES designed for encrypting stored data (as opposed to transmitted data)

• Overcomes potential attack on CBC whereby one block of the ciphertext is changed
by the attacker, and that change does not affect all other blocks

• See Stallings Chapter 6.7 for details and differences to transmitted data encryption
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Chapter 12

Public Key Cryptography

This chapter summarises key concepts in public key cryptography. These concepts will
be demonstrated when looking at specific algorithms, including RSA (Chapter 13), Diffie-
Hellman Key Exchange (Chapter 14) and Elliptic Curve Cryptography (Chapter 15).

Presentation slides that accompany this chapter can be downloaded in the following
formats: slides only (PDF); slides with notes (PDF, ODP, PPTX).

12.1 Concepts of Public Key Cryptography
We have seen how symmetric key cryptography can be used for encryption. Now let’s
look at an alternative approach, public key cryptography.

• Symmetric Key Encryption

– Same key used for encryption and decryption
– Key is randomly generated (e.g. by sender)
– Problem: How does receiver securely obtain secret key?

• Public (or asymmetric) key encryption

– Two different, but mathematically related keys
– One key (public) for encryption, another key (private) for decryption
– Since encrypt key is public, key exchange is not a problem
– Ciphers designed around math problems
– Problem: Performance: much, much slower than symmetric

With symmetric key encryption, assume the sender generates a random key. The
receiver of the encrypted data must also know that key in order to decrypt the data. But
how does the receiver learn the key? If the sender sends the key unencrypted then an
attacker can learn the key and it is no longer secret. If the sender encrypts the key, then
the same problem arises: how do they get the second key (which is used to encrypt the
first key) to the receiver?

Public key encryption can solve this problem, as we will see in the following slides.

File: crypto/public.tex, r1944

131
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Symmetric key encryption has been the main form of cryptography for a long time.
It wasn’t until the 1960’s and 1970’s that public key cryptography was designed.

• Every user has their own key pair: (PU, PR)

– Keys are generated using known algorithm (they are not chosen randomly like
symmetric keys)

• Public key, PU

– Available to everyone, e.g. in email signature, on website, in newspaper

• Private key, PR

– Secret, known only by owner, e.g. access restricted file on computer

• Ciphers: if encrypt with one key in the pair, can only successfully decrypt with the
other key in the pair

Consider all the students in the class. With public key crypto, each student would
generate their own key pair. They could tell everyone their public key (e.g. yell it out in
class, print on the screen and show), but they must keep their private key secret. Note
that the keys are related: an algorithm is used to generate them (they are not randomly
chosen like symmetric key encryption secret keys). That algorithm must be designed
such that it is practically impossible for someone to find the private key if they know the
public key.

The encryption/decryption algorithms in public key crypto are designed such that if
you encrypt plaintext with one key in the pair, then you can only successfully decrypt the
ciphertext if using the other key from that pair. For example, if you encrypt a message
with the public key of Steve, then you can only decrypt the ciphertext if you know the
private key of Steve.

Some public key ciphers also work in the other direction: if you encrypt a message
with the private key of Steve, then you can only decrypt the ciphertext if you know the
public key of Steve. We will see this in digital signatures.

This assumes User A (on the left ) already knows the public key of user B. Since it is
PUBLIC there is no problem with A knowing B’s public key. However in practice, there
are problems with A being sure that the public key does indeed belong to B (maybe it
is someone pretending to be B). We don’t cover that here, but in the chapter on digital
certificates we will see this issue (of knowing who’s public key it is) be addressed.

• Public key ciphers consist of:

– Key generation algorithm
– Encryption algorithm
– Decryption algorithm

• Designed around computationally hard mathematical problems

• Very hard to solve without key, i.e. trapdoor functions

– Finding prime factors of large integers
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• User A is sender, user B is receiver

• Encrypt using receivers public key, PUB

• Decrypt using receivers private key, PRB

• Only B has PRB, therefore only B can successfully decrypt → confidentiality

Figure 12.1: Confidentiality with Public Key Crypto

– Solving logarithms in modulo arithmetic
– Solving logarithms on elliptic curves

The details of the algorithms are covered in subsequent chapters.

• RSA (Rivest Shamir Adleman)

– Security depends on difficult to factor large integers
– Widely used for digital signatures

• Diffie-Hellman

– Security depends on difficult to solve logarithms in modulo arithmetic
– Widely used for secret key exchange

• Elliptic Curve

– Security depends on difficulty to solve logarithms on elliptic curve
– Newer, used in signatures and key exchange
– Smaller keys is benefit

Video
Concepts of Public Key Cryptography (21 min; Apr 2021)
https://www.youtube.com/watch?v=9ZFm9i_uYvM

https://www.youtube.com/watch?v=9ZFm9i_uYvM
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Chapter 13

RSA

This chapter presents the RSA algorithm, as an example of public key cryptography.
Presentation slides that accompany this chapter can be downloaded in the following

formats: slides only (PDF); slides with notes (PDF, ODP, PPTX).

13.1 RSA Algorithm
The Rivest Shamir Adleman cipher (RSA) is the most widely known public key cryp-
tosystem.

• Created Ron Rivest, Adi Shamir and Len Adleman in 1978

• Formed RSA Security (company) in 1982 to commercialise products

• Most widely used public-key algorithm

• RSA is a block cipher: plaintext and ciphertext are integers

As we will see, the plaintext and ciphertext are integers. Any data can be represented
in binary, and then split into blocks, where each block is taken as an input to RSA.

More information about Rivest, Shamir and Adleman is given in Chapter C.

• Step 1: Users generated RSA key pairs using RSA Key Generation Algorithm

• Step 2: Users exchange public key

• Step 3: Sender encrypts plaintext using RSA Encryption Algorithm

• Step 4: Receiver decrypts ciphertext using RSA Decryption Algorithm

The following will show the algorithms used in steps 1, 3 and 4. For now we assume
the users can exchange public keys, noting that public keys do not need to be kept secret.
For example, one method to exchange public keys over a network is to simply email the
public key, unencrypted. It doesn’t matter if an attacker intercepts the public key, since,
by definition, it is public to everyone.

Later we will see that the exchange of public keys is in fact harder than it seems.

File: crypto/rsa.tex, r1945
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Video
Introduction to RSA (4 min; Apr 2021)
https://www.youtube.com/watch?v=29Jpc-rvH8w

Algorithm 13.1 (RSA Key Generation). Each user generates their own key pair

1. Choose primes p and q

2. Calculate n = pq

3. Select e: gcd(φ(n), e) = 1, 1 < e < φ(n)

4. Find d ≡ e−1 (mod φ(n))

The user keeps p, q and d private. The values of e and n can be made public.

• Public key of user, PU = {e, n}

• Private key of user PR = {d, n}

Note that the private key includes both d and n, however the same n is also included
in the public key. So while n is included in the private key, it is not actually private.
This describes the conceptual view of the RSA public and private key. Implementations
of RSA may store additional information in the keys, especially the private key.

Video
RSA Key Generation Algorithm (6 min; Apr 2021)
https://www.youtube.com/watch?v=bKuaAv8LsFY

Exercise 13.1 (RSA Key Generation). Assume user A chose the primes p = 17 and
q = 11. Find the public and private keys of user A.

Solution 13.1 (RSA Key Generation). First calculate n:

n = p× q
= 17× 11
= 187

Now find φ(n) using the property of Euler’s totient (Definition 5.8):

φ(p× q) = φ(p)× φ(q)
= (p− 1)× (q − 1)
= (17− 1)× (11− 1)
= 16× 10
= 160

https://www.youtube.com/watch?v=29Jpc-rvH8w
https://www.youtube.com/watch?v=bKuaAv8LsFY
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Next we choose a number relatively prime with 160, which will be e. Or in other
words, the greatest common divisor of e and 160 is 1. There are multiple values possible
for e. We need to choose just one value, and at this point, any of those values. Let’s
start small. As 160 is even, the even numbers will not be relatively prime with 160 so we
can ignore them. What about 3? As 3 is prime and is not a divisor of 160, then 3 and
160 are relatively prime. So e = 3 is a valid choice. There are other valid choices (e.g. 7,
9, 11, . . . ), but we will go with 3.

Now we need to find the multiplicative inverse of 3 in mod 160. That is, find a d such
that:

3× d (mod 160) ≡ 1
The extended Euclidean algorithm can efficiently find a multiplicative inverse. But for
now, as we are using small numbers, we can use trial and error. Note that the condition
can be satisfied if we can find a d that satisfies the following, for an integer a:

3× d = (a× 160) + 1

Therefore we can try integers a, and check if (a× 160) + 1 is divisible by 3.

(1× 160) + 1 = 161, which is not divisible by 3

(2× 160) + 1 = 321, which is divisible by 3, giving 107
Therefore d = 107.

We now have the RSA key pair of user A:

PUA = {e = 3, n = 187} and PRA = {d = 107, n = 187}

Video
RSA Key Generation Example (14 min; Feb 2015)
https://www.youtube.com/watch?v=_57utzfyyPY

Algorithm 13.2 (RSA Encryption and Decryption). Encryption of plaintext M , where
M < n:

C = M e mod n
Decryption of ciphertext C:

M = Cd mod n

Note the conceptual simplicity of the encryption and decryption algorithms, com-
pared to DES and AES. Also note that the decryption algorithm is in fact identical to
encryption—it is only the variable names that have changed.

Video
RSA Encryption and Decryption (2 min; Apr 2021)
https://www.youtube.com/watch?v=lQLJy6XVRuY

For a RSA to be usable it must meet the following usability and security requirements:

https://www.youtube.com/watch?v=_57utzfyyPY
https://www.youtube.com/watch?v=lQLJy6XVRuY
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1. Successful decryption: Possible to find values of e, d, n such that M ed mod n = M
for all M < n

2. Successful decryption: Encryption with one key of a key pair (e.g. PU) can only be
successfully decrypted with the other key of the key pair (e.g. PR)

3. Computational efficiency: Easy to calculate M e mod n and Cd mod n for all values
of M < n

4. Secure: Infeasible to determine d or M from known information e, n and C

5. Secure: Infeasible to determine d or M given known plaintext, e.g. (M1, C1)

We will not show how RSA meets these requirements yet (it is covered in more depth
later), but RSA does indeed meet these requirements.

The 1st requirement is that if a message is encrypted, then the decryption of the
resulting ciphertext will produce the original message.

The 2nd requirement is that you can only use keys in the same key pair; using the
wrong key will produce incorrect results.

The 3rd requirement is that users can easily perform the encrypt and decrypt op-
erations. By “easily” we mean within reasonable time (i.e. seconds, not thousands of
years).

The 4th requirement is that an attacker cannot find the private value d or the message.
The 5th requirement is that, even if the attacker knows old plaintext values and the

corresponding ciphertext (which was obtained using the same key pair), they should not
be able to find d or M .

Looking at the algorithms it is not immediately obvious how the security requirements
are met. That is because, for example, the encryption algorithm is an equation with 4
variables (C, M , e, n), of which 3 are known to the attacker. Why can’t the attacker
re-arrange the equation and find the value of the unknown variable C? We will see some
analysis of the security later.

• RSA encryption uses one key of a key pair, while decryption must use the other
key of that same key pair

• RSA works no matter the order of the keys

• RSA for confidentiality of messages

– Encrypt using the public key of receiver
– Decrypt using the private key of receiver

• RSA for authentication of messages

– Encrypt using the private key of the sender (called signing)
– Decrypt using the public key of the sender (called verification)

• In practice, RSA is primarily used for authentication, i.e. sign and verifying mes-
sages
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Why does confidentiality work? Since the receiver is the only user that knows their
private key, then they are the only user that can decrypt the ciphertext.

Why does authentication work? Since the sender is the only user that knows their
private key, then they are the only user that can sign the message/plaintext. And the
receiver can verify it came from that user if the signature decrypts successful with the
sender’s public key.

Figures 13.1 and 13.2 illustrate how the key pair is used in RSA to provide either
confidentiality or authentication. Note that such a feature (ability to use keys in either
direction) is including in some, but not all, public key cryptography ciphers.

Figure 13.1: RSA used for Confidentiality

Figure 13.1 shows RSA used to provide confidentiality of the message M . User A is
on the left and user B is on the right. The operations E() and D() correspond to the
encrypt and decrypt algorithms of RSA, respectively. User A encrypts the message using
user B’s public key, PUB. The ciphertext is sent to user B. User B then decrypts using
their own private key, PRB.

Figure 13.2: RSA used for Authentication

Figure 13.2 shows RSA used to provide authentication of the message M . The opera-
tions E() and D() correspond to the encrypt and decrypt algorithms of RSA, respectively,
however they are more commonly referred to as signing and verification operations, re-
spectively. User A encrypts/signs the message using their own private key, PRA. The
ciphertext/signed message is sent to user B. User B then decrypts/verifies using user A’s
public key, PUA.

Exercise 13.2 (RSA Encryption for Confidentiality). Assume user B wants to send a
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confidential message to user A, where that message, M is 8. Find the ciphertext that B
will send A.

Solution 13.2 (RSA Encryption for Confidentiality). For confidentiality, the sender
encrypts using the receiver’s public key. From the previous key generation exercise, the
public key of user A is PUA = {e = 3, n = 187}. With M = 8, the RSA encryption
algorithm can be applied:

C = M e mod n
= 83 mod 187
= 512 mod 187
= 138

Therefore the ciphertext is C = 138.

Video
RSA Encryption Example (11min; Feb 2015)
https://www.youtube.com/watch?v=fdGGErmf9E8

Exercise 13.3 (RSA Decryption for Confidentiality). Show that user A successfully
decrypts the ciphertext.

Solution 13.3 (RSA Decryption for Confidentiality). User A receives the ciphertext,
C = 138 from B, and decrypts using their own private key PRA = {d = 107, n = 187}.

M = Cd mod n
= 138107 mod 187

Be careful at this stage. Some calculators will approximate the exponentiation (the
calculator applications in Ubuntu 18.08 and Windows 10 do not, but older desk calcu-
lators will). You may try an arbitrary precision calculator, such as bc (see Chapter 3).
The output from the exponentiation using bc is:

138ˆ107
92696267009151974112580966494142469075148237762435797813883675229744\
10315603725576855575549455980054411733018856229158449793951447981059\
64058537231504845445105996494390906329961481123710256232656386293889\
6109715508026034609979392
Then performing the mod gives:
138ˆ107 % 187
8
Therefore user A has successfully decrypted the ciphertext, obtaining the original

plaintext, M = 8.

https://www.youtube.com/watch?v=fdGGErmf9E8
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13.2 Analysis of RSA
We now analyse the design of RSA, identifying appropriate values to be used that lead
to suitable security and performance.

• Encryption involves taking plaintext and raise to power e

• Decryption involves taking previous value and raise to a different power d

• Decryption must produce the original plaintext, that is:

(M e)d mod n = M for all M < n

• This is true of if e and d are relatively prime

• Choose primes p and q, and calculate:

n = pq
1 < e < φ(n)
ed ≡ 1 (mod φ(n)) or d ≡ e−1 (mod φ(n))

Here we see why the key generation algorithm is designed as it is. Decryption will
only work (that is, produce the original plaintext) if the top equation is true. Note that
M ed = M ed. So the condition is that if you take the plaintext M and raise it to the
power ed then the answer must be the original M (in mod n). For this to be true, e and
d must be chosen appropriately—it will not work for just any value of e and d. Using
Euler’s theorem it can be shown that it will be true if e and d are multiplicative inverses
of each other in mod φ(n).

Now we consider the guidelines for choosing values of parameters in RSA key gener-
ation.

• Note: modular exponentiation is slow when using large values

• Choosing e

– Values such as 3, 17 and 65537 are popular: make exponentiation faster
– Small e vulnerable to attack; solution is to add random padding to each M

• Choosing d

– Small d vulnerable to attack
– But large d makes decryption slow

• Choosing p and q

– p and q must be very large primes
– Choose random odd number and test if its prime (probabilistic test)
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As we saw in the exercise, key generation involves selecting values for p, q and e
(where e influences the value of d as it is the multiplicative inverse).

As e is a public value, a small value can be selected (since a brute force is not relevant;
the attacker already knows it) and in fact, many users can use the same value as each
other. For example, OpenSSL defaults to using e = 216 + 1 = 65537 for all keypairs
generated. That is, by default everyone using OpenSSL to generate keypairs will have
the same value of e. This value is small, meaning encryption is reasonable fast.

As d is the multiplicative inverse of e, a small e means d will be large. This is good,
because d must be kept private; large values are not subject to brute force attack. But it
makes decryption slow, since it involves Md, which is often taking one very large number
M and raising to the power of another very large number d. We will see later there are
algorithms that can speed up the decryption process.

The primes p and q should be chosen randomly (again, they are private, so should be
hard for an attacker to guess). A common approach is to choose a large odd number and
then check if it is prime. There are primality testing algorithms that can either prove
the number selected is prime, or give high confidence that it is prime (i.e. probabilistic
test). When RSA is used for signatures—it’s most common use—probabilistic testing is
sufficient (it is faster than testing for provable primes).

Now we look at why RSA is considered secure by considering the possible attacks on
RSA.

• Brute-Force attack: choose large d (but makes algorithm slower)

• Mathematical attacks:

1. Factor n into its two prime factors
2. Determine φ(n) directly, without determining p or q
3. Determine d directly, without determining φ(n)

• Factoring n is considered fastest approach; hence used as measure of RSA security

• Timing attacks: practical, but countermeasures easy to add (e.g. random delay). 2
to 10% performance penalty

• Chosen ciphertext attack: countermeasure is to use padding (Optimal Asymmetric
Encryption Padding)

The three mathematical attacks require the attacker to solve computationally hard
problems. That is, when large values are used,

Video
Analysis of RSA (6 min; Apr 2021)
https://www.youtube.com/watch?v=CX2-Crudguk

Video
Avenues of attack on RSA (10 min; Feb 2015)
https://www.youtube.com/watch?v=ywlzcE3eQzQ

https://www.youtube.com/watch?v=CX2-Crudguk
https://www.youtube.com/watch?v=ywlzcE3eQzQ
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• Factoring n into primes p and q is considered the easiest attack

• Some records by length of n:

– 1991: 330 bits (100 digits)
– 2003: 576 bits (174 digits)
– 2005: 640 bits (193 digits)
– 2009: 768 bits (232 digits), 1020 operations, 2000 years on single core 2.2 GHz

computer
– 2019: 795 bits (240 digits), 900 core years

• Improving at rate of 5–20 bits per year

• Typical length of n: 1024 bits, 2048 bits, 4096 bits

In the 1990’s and 2000’s, the RSA Challenge tasked researchers with factoring integers
of various sizes. The numbers reported on this slide are mainly from successful attempts
at the RSA Challenge.

The rate of improvement of integer factorisation, varies depending on where you
consider the starting year. In any case, RSA keys of 2048 bits are considered secure for
the near future.

We don’t cover quantum computers and cryptography here. While it is important
for the future, in 2018 the largest reported integer factored into primes using a quantum
computer was 4088459, that is 22 bits. While in theory quantum computers will be able
to make integer factorisation much easier (make RSA insecure), in practice there is a
long way to go.

13.3 Implementations of RSA
We now consider implementation aspects of RSA, first looking at the recommend param-
eter values and then how implementations can improve performance.

• RSA Key length: 1024, 2048, 3072 or 4096 bits

– Refers to the length of n
– 2048 and above are recommended

• p and q are chosen randomly; about half as many bits as n

• e is small, often constant; e.g. 65537

• d is calculated; about same length as n

• For detailed recommendations see NIST FIPS 186 Digital Signature Standard

As an example, with a RSA 1024 bit key, length of p and q will be about 512 bits,
and the length of n will be 1024 bits. e could be 65537 which is 17 bits, and d will be
approximately 1024 bits.

FIPS 186 provides details of the implementation of RSA to meet US government
standards. It includes specific algorithms to use and some recommended values. It also
sets requirements for selecting random primes.

https://en.wikipedia.org/wiki/RSA_numbers
https://arxiv.org/pdf/1805.10478.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
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• Modular arithmetic, especially exponentiation, can be slow with very large numbers
(1000’s of bits)

• Use properties of modular arithmetic to simplify calculations, e.g.

[(a mod n)× (b mod n)] mod n = (a× b) mod n

• Also Euler’s theorem and Chinese Remainder Theorem can simplify calculations

• Decryption is significantly slower than encryption since d is very large

• Implementations of RSA often store and use intermediate values to speed up de-
cryption

While there are methods to speed up decryption in RSA (see the next slide), it is still
significantly slower than encryption in practice.

• Encryption:
C = M e mod n

• Decryption:
M = Cd mod n

• Modulus, n of length b bits

• Public exponent, e

• Private exponent, d

• Prime1, p, and Prime2, q

• Exponent1, dp = d (mod p− 1)

• Exponent2, dq = d (mod q − 1)

• Coefficient, qinv = q−1 (mod p)

• Private values: PR = {n, e, d, p, q, dp, dq, qinv}

• Public values: PU = {n, e}

We see the parameters used within OpenSSL. p, q, n, e and d are normal. However
dp, dq and qinv are intermediate values introduced and stored as part of the private key.
They are used to speed up the decryption calculation. The decryption algorithm is split
into multiple steps using these intermediate values, such that it is significant faster than
if using a single step. However the end result is still the same.

While you don’t need to know what the intermediate steps are, it is useful to know
that these intermediate values exist, as you will see them when using RSA in practice
(e.g. generating keys with OpenSSL).



13.4. RSA IN OPENSSL 145

13.4 RSA in OpenSSL
OpenSSL can be used to perform various operations with public key cryptography. Here
we demonstrate basic usage of RSA.

To demonstrate RSA we use the scenario of user Alice on one computer (called node1)
wishing to send a confidential and signed message to user Bob on another computer
(called node2). This chapter has focused on using RSA for encryption (i.e. keeping the
message confidential). However it is much more widely used for authentication or signing
messages. This example includes signing; the concepts of signing and verification are
discussed in Chapter 17.

We demonstrate the following operations for users:

• Create a RSA public/private key pair

• View and understand the parameters in the key pair

• Sign a message using their private key

• Encrypt a message using the recipients public key

• “Send” the signature and ciphertext to the recipient

13.4.1 RSA Key Generation in OpenSSL
Any user can generate their RSA key pair using the genpkey command. Note that in
public key cryptography a key pair consists of a private key and public key. A user can
distribute their public key to anyone, but keeps their private key to themselves. But they
also need to store their own public key. So in practice, a user will have two files: a private
key file, which contains their private key information and their public key information;
and a public key file, which contains only their public key information. So in OpenSSL,
when a private key is generated with genpkey, the public key information is also created.

To generate the private (and public key):

alice@node1:~$ openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:2048
-pkeyopt rsa_keygen_pubexp:3 -out privkey-alice.pem

alice@node1:~$ cat privkey-alice.pem
-----BEGIN PRIVATE KEY-----
MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCoXEAmbAuh9Nks
xtjIqgW8+MjaoRLWIKOpr54E7XcpzMSlNZggPBp0sLjfgvNFBPP7BrQms3qigwow
krML/fdwSFybigmuTCyJS/UIn3J5s70vUSpQ9M8oAU+6lvRdiByqR0zBnnWdR9B8
wW2/jM2Ng3yq51S6qR6LUs92jEzYATz1df8z+qcUL+navmOSLdA110qQpbKjEjI1
esJIkqrKlQiu1N0TQbexC9dNwtI79G79UR+YOR8CWJyYy/ZPeUrsr1mcSGL7facW
/aG2hh85/XdICm2PWgRySUu0M2rHdxL+AMukauYnlw4gddTO0cmUNyxKrVr5aQBP
hZxKtFV5AgEDAoIBAHA9gBmdXRajO3MvOzBxWSil2zxrYeQVwnEfvq3zpMaIgxjO
ZWrSvE3LJepXTNit9/yvIsR3pxcCBssMd11T+kra6GexW8mIHbDdTgW/oaZ303Tg
xuCjNMVWNScPTZOwExwviIEUTmjaiv3WSSpd3l5XqHHvjdHGFFzh36RdiI//vcSX
VHC76AkhkJ13aDEIUSQPMfE0OmI4dgK2sxH8BXAmAgc7YOksLF4t+tjaEoeUFQWP
SwFiGgVaU3wtmv1DoSwbAKSWs/9hDg3vgN8AFku3HCdBkpmpp2CYqoBWFDfUNW2q
TtB7IU2fwUOtoqiW8CegqVNf+X+KWT85mb1NnqMCgYEA3z2IhWyENYsHRrfbpISR
q3y5l5sgFM1ofRbPA5AZbZANY48jFPSeuKWJ1HhhZpwai+dcKf5R2w5V/4vpKqec
wFFGkXiOshkzty/67A75Uww/iewff0nj8ZwG7oLYl2PHu7iyyHiwbTj7N21Rapq+
iUHpd4RBpiOPoad4lD+CDWcCgYEAwREKex5clXt2SjavosQPqwMG6Au3RkJVBBqZ
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sh1/NRJOohTYtsDgvH49CpAaT9R7w42eBRfUHOv7H9KeYyv3GNlARyzXouM4WtIb
dFkMqrwrQyEIkl73l8VdXXDZtQ/xByDOjPMBxvosNM2f9jcw2BbctslbvpaJ2Mk2
oW892h8CgYEAlNOwWPMCzlyvhHqSba22clMmZRIVYzOa/g80rQq7nmAI7QoXY02/
JcOxOFBA7xK8XUToG/7hPLQ5VQfwxxpogDYvC6W0drt3z3VR8rSmN11/sUgU/4aX
9mgEnwHlukKFJ9B3MFB1niX8z542RxHUW4FGT62BGW0Ka8T7DX+sCO8CgYEAgLYG
/L7oY6ekMXnKbIK1HKyvRV0k2YGOArxmdr5Uzgw0bA3lzytAfal+Bwq8NThSgl5p
WLqNaJ1SFTcUQh1PZeYq2h3lF0IlkeFnouYIcdLHghYFtun6ZS4+Pks7zgqgr2s0
XfdWhKbIIzO/+XogkA89zzDn1GRb5dt5wPTT5r8CgYEA29235n/Hw7wzOJyao6nO
3rjCZon4/V2G800VJF5hhAqCX5KDLd0KIMbaHaxsjW+n79CqZSUz3kZtpSXBXRJ7
SIXoCYljaoxdJ6SkVED6uFmcZ+3iwioxXzpIFIW0ZZj5S/WgBkPsioAJ6Cp5S8zh
BFB15UA+JWFH2SRabjXf0+4=
-----END PRIVATE KEY-----

The genpkey command takes an algorithm (RSA) as an option, and that algorithm
may have further specific options. In this example we set the RSA key length to 2048
bits and used a public exponent of 3. Omitting these -pkeyopt options will revert to the
default values. The private key (and public key information) is output to a file.

The private key file is encoded with Base64. To view the values:

alice@node1:~$ openssl pkey -in privkey-alice.pem -text
-----BEGIN PRIVATE KEY-----
MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCoXEAmbAuh9Nks
xtjIqgW8+MjaoRLWIKOpr54E7XcpzMSlNZggPBp0sLjfgvNFBPP7BrQms3qigwow
krML/fdwSFybigmuTCyJS/UIn3J5s70vUSpQ9M8oAU+6lvRdiByqR0zBnnWdR9B8
wW2/jM2Ng3yq51S6qR6LUs92jEzYATz1df8z+qcUL+navmOSLdA110qQpbKjEjI1
esJIkqrKlQiu1N0TQbexC9dNwtI79G79UR+YOR8CWJyYy/ZPeUrsr1mcSGL7facW
/aG2hh85/XdICm2PWgRySUu0M2rHdxL+AMukauYnlw4gddTO0cmUNyxKrVr5aQBP
hZxKtFV5AgEDAoIBAHA9gBmdXRajO3MvOzBxWSil2zxrYeQVwnEfvq3zpMaIgxjO
ZWrSvE3LJepXTNit9/yvIsR3pxcCBssMd11T+kra6GexW8mIHbDdTgW/oaZ303Tg
xuCjNMVWNScPTZOwExwviIEUTmjaiv3WSSpd3l5XqHHvjdHGFFzh36RdiI//vcSX
VHC76AkhkJ13aDEIUSQPMfE0OmI4dgK2sxH8BXAmAgc7YOksLF4t+tjaEoeUFQWP
SwFiGgVaU3wtmv1DoSwbAKSWs/9hDg3vgN8AFku3HCdBkpmpp2CYqoBWFDfUNW2q
TtB7IU2fwUOtoqiW8CegqVNf+X+KWT85mb1NnqMCgYEA3z2IhWyENYsHRrfbpISR
q3y5l5sgFM1ofRbPA5AZbZANY48jFPSeuKWJ1HhhZpwai+dcKf5R2w5V/4vpKqec
wFFGkXiOshkzty/67A75Uww/iewff0nj8ZwG7oLYl2PHu7iyyHiwbTj7N21Rapq+
iUHpd4RBpiOPoad4lD+CDWcCgYEAwREKex5clXt2SjavosQPqwMG6Au3RkJVBBqZ
sh1/NRJOohTYtsDgvH49CpAaT9R7w42eBRfUHOv7H9KeYyv3GNlARyzXouM4WtIb
dFkMqrwrQyEIkl73l8VdXXDZtQ/xByDOjPMBxvosNM2f9jcw2BbctslbvpaJ2Mk2
oW892h8CgYEAlNOwWPMCzlyvhHqSba22clMmZRIVYzOa/g80rQq7nmAI7QoXY02/
JcOxOFBA7xK8XUToG/7hPLQ5VQfwxxpogDYvC6W0drt3z3VR8rSmN11/sUgU/4aX
9mgEnwHlukKFJ9B3MFB1niX8z542RxHUW4FGT62BGW0Ka8T7DX+sCO8CgYEAgLYG
/L7oY6ekMXnKbIK1HKyvRV0k2YGOArxmdr5Uzgw0bA3lzytAfal+Bwq8NThSgl5p
WLqNaJ1SFTcUQh1PZeYq2h3lF0IlkeFnouYIcdLHghYFtun6ZS4+Pks7zgqgr2s0
XfdWhKbIIzO/+XogkA89zzDn1GRb5dt5wPTT5r8CgYEA29235n/Hw7wzOJyao6nO
3rjCZon4/V2G800VJF5hhAqCX5KDLd0KIMbaHaxsjW+n79CqZSUz3kZtpSXBXRJ7
SIXoCYljaoxdJ6SkVED6uFmcZ+3iwioxXzpIFIW0ZZj5S/WgBkPsioAJ6Cp5S8zh
BFB15UA+JWFH2SRabjXf0+4=
-----END PRIVATE KEY-----
Private-Key: (2048 bit)
modulus:

00:a8:5c:40:26:6c:0b:a1:f4:d9:2c:c6:d8:c8:aa:
05:bc:f8:c8:da:a1:12:d6:20:a3:a9:af:9e:04:ed:
77:29:cc:c4:a5:35:98:20:3c:1a:74:b0:b8:df:82:
f3:45:04:f3:fb:06:b4:26:b3:7a:a2:83:0a:30:92:
b3:0b:fd:f7:70:48:5c:9b:8a:09:ae:4c:2c:89:4b:
f5:08:9f:72:79:b3:bd:2f:51:2a:50:f4:cf:28:01:
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4f:ba:96:f4:5d:88:1c:aa:47:4c:c1:9e:75:9d:47:
d0:7c:c1:6d:bf:8c:cd:8d:83:7c:aa:e7:54:ba:a9:
1e:8b:52:cf:76:8c:4c:d8:01:3c:f5:75:ff:33:fa:
a7:14:2f:e9:da:be:63:92:2d:d0:35:d7:4a:90:a5:
b2:a3:12:32:35:7a:c2:48:92:aa:ca:95:08:ae:d4:
dd:13:41:b7:b1:0b:d7:4d:c2:d2:3b:f4:6e:fd:51:
1f:98:39:1f:02:58:9c:98:cb:f6:4f:79:4a:ec:af:
59:9c:48:62:fb:7d:a7:16:fd:a1:b6:86:1f:39:fd:
77:48:0a:6d:8f:5a:04:72:49:4b:b4:33:6a:c7:77:
12:fe:00:cb:a4:6a:e6:27:97:0e:20:75:d4:ce:d1:
c9:94:37:2c:4a:ad:5a:f9:69:00:4f:85:9c:4a:b4:
55:79

publicExponent: 3 (0x3)
privateExponent:

70:3d:80:19:9d:5d:16:a3:3b:73:2f:3b:30:71:59:
28:a5:db:3c:6b:61:e4:15:c2:71:1f:be:ad:f3:a4:
c6:88:83:18:ce:65:6a:d2:bc:4d:cb:25:ea:57:4c:
d8:ad:f7:fc:af:22:c4:77:a7:17:02:06:cb:0c:77:
5d:53:fa:4a:da:e8:67:b1:5b:c9:88:1d:b0:dd:4e:
05:bf:a1:a6:77:d3:74:e0:c6:e0:a3:34:c5:56:35:
27:0f:4d:93:b0:13:1c:2f:88:81:14:4e:68:da:8a:
fd:d6:49:2a:5d:de:5e:57:a8:71:ef:8d:d1:c6:14:
5c:e1:df:a4:5d:88:8f:ff:bd:c4:97:54:70:bb:e8:
09:21:90:9d:77:68:31:08:51:24:0f:31:f1:34:3a:
62:38:76:02:b6:b3:11:fc:05:70:26:02:07:3b:60:
e9:2c:2c:5e:2d:fa:d8:da:12:87:94:15:05:8f:4b:
01:62:1a:05:5a:53:7c:2d:9a:fd:43:a1:2c:1b:00:
a4:96:b3:ff:61:0e:0d:ef:80:df:00:16:4b:b7:1c:
27:41:92:99:a9:a7:60:98:aa:80:56:14:37:d4:35:
6d:aa:4e:d0:7b:21:4d:9f:c1:43:ad:a2:a8:96:f0:
27:a0:a9:53:5f:f9:7f:8a:59:3f:39:99:bd:4d:9e:
a3

prime1:
00:df:3d:88:85:6c:84:35:8b:07:46:b7:db:a4:84:
91:ab:7c:b9:97:9b:20:14:cd:68:7d:16:cf:03:90:
19:6d:90:0d:63:8f:23:14:f4:9e:b8:a5:89:d4:78:
61:66:9c:1a:8b:e7:5c:29:fe:51:db:0e:55:ff:8b:
e9:2a:a7:9c:c0:51:46:91:78:8e:b2:19:33:b7:2f:
fa:ec:0e:f9:53:0c:3f:89:ec:1f:7f:49:e3:f1:9c:
06:ee:82:d8:97:63:c7:bb:b8:b2:c8:78:b0:6d:38:
fb:37:6d:51:6a:9a:be:89:41:e9:77:84:41:a6:23:
8f:a1:a7:78:94:3f:82:0d:67

prime2:
00:c1:11:0a:7b:1e:5c:95:7b:76:4a:36:af:a2:c4:
0f:ab:03:06:e8:0b:b7:46:42:55:04:1a:99:b2:1d:
7f:35:12:4e:a2:14:d8:b6:c0:e0:bc:7e:3d:0a:90:
1a:4f:d4:7b:c3:8d:9e:05:17:d4:1c:eb:fb:1f:d2:
9e:63:2b:f7:18:d9:40:47:2c:d7:a2:e3:38:5a:d2:
1b:74:59:0c:aa:bc:2b:43:21:08:92:5e:f7:97:c5:
5d:5d:70:d9:b5:0f:f1:07:20:ce:8c:f3:01:c6:fa:
2c:34:cd:9f:f6:37:30:d8:16:dc:b6:c9:5b:be:96:
89:d8:c9:36:a1:6f:3d:da:1f

exponent1:
00:94:d3:b0:58:f3:02:ce:5c:af:84:7a:92:6d:ad:
b6:72:53:26:65:12:15:63:33:9a:fe:0f:34:ad:0a:
bb:9e:60:08:ed:0a:17:63:4d:bf:25:c3:b1:38:50:
40:ef:12:bc:5d:44:e8:1b:fe:e1:3c:b4:39:55:07:
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f0:c7:1a:68:80:36:2f:0b:a5:b4:76:bb:77:cf:75:
51:f2:b4:a6:37:5d:7f:b1:48:14:ff:86:97:f6:68:
04:9f:01:e5:ba:42:85:27:d0:77:30:50:75:9e:25:
fc:cf:9e:36:47:11:d4:5b:81:46:4f:ad:81:19:6d:
0a:6b:c4:fb:0d:7f:ac:08:ef

exponent2:
00:80:b6:06:fc:be:e8:63:a7:a4:31:79:ca:6c:82:
b5:1c:ac:af:45:5d:24:d9:81:8e:02:bc:66:76:be:
54:ce:0c:34:6c:0d:e5:cf:2b:40:7d:a9:7e:07:0a:
bc:35:38:52:82:5e:69:58:ba:8d:68:9d:52:15:37:
14:42:1d:4f:65:e6:2a:da:1d:e5:17:42:25:91:e1:
67:a2:e6:08:71:d2:c7:82:16:05:b6:e9:fa:65:2e:
3e:3e:4b:3b:ce:0a:a0:af:6b:34:5d:f7:56:84:a6:
c8:23:33:bf:f9:7a:20:90:0f:3d:cf:30:e7:d4:64:
5b:e5:db:79:c0:f4:d3:e6:bf

coefficient:
00:db:dd:b7:e6:7f:c7:c3:bc:33:38:9c:9a:a3:a9:
ce:de:b8:c2:66:89:f8:fd:5d:86:f3:4d:15:24:5e:
61:84:0a:82:5f:92:83:2d:dd:0a:20:c6:da:1d:ac:
6c:8d:6f:a7:ef:d0:aa:65:25:33:de:46:6d:a5:25:
c1:5d:12:7b:48:85:e8:09:89:63:6a:8c:5d:27:a4:
a4:54:40:fa:b8:59:9c:67:ed:e2:c2:2a:31:5f:3a:
48:14:85:b4:65:98:f9:4b:f5:a0:06:43:ec:8a:80:
09:e8:2a:79:4b:cc:e1:04:50:75:e5:40:3e:25:61:
47:d9:24:5a:6e:35:df:d3:ee

An explanation of these values can be found in a lecture on Public Key Cryptography,
specifically on slide 18.

To output just the public key to a file:

alice@node1:~$ openssl pkey -in privkey-alice.pem -out pubkey-alice.pem -pubout
alice@node1:~$ cat pubkey-alice.pem
-----BEGIN PUBLIC KEY-----
MIIBIDANBgkqhkiG9w0BAQEFAAOCAQ0AMIIBCAKCAQEAqFxAJmwLofTZLMbYyKoF
vPjI2qES1iCjqa+eBO13KczEpTWYIDwadLC434LzRQTz+wa0JrN6ooMKMJKzC/33
cEhcm4oJrkwsiUv1CJ9yebO9L1EqUPTPKAFPupb0XYgcqkdMwZ51nUfQfMFtv4zN
jYN8qudUuqkei1LPdoxM2AE89XX/M/qnFC/p2r5jki3QNddKkKWyoxIyNXrCSJKq
ypUIrtTdE0G3sQvXTcLSO/Ru/VEfmDkfAlicmMv2T3lK7K9ZnEhi+32nFv2htoYf
Of13SAptj1oEcklLtDNqx3cS/gDLpGrmJ5cOIHXUztHJlDcsSq1a+WkAT4WcSrRV
eQIBAw==
-----END PUBLIC KEY-----

Check by looking at the individual values. Only the public key values are included:

alice@node1:~$ openssl pkey -in pubkey-alice.pem -pubin -text
-----BEGIN PUBLIC KEY-----
MIIBIDANBgkqhkiG9w0BAQEFAAOCAQ0AMIIBCAKCAQEAqFxAJmwLofTZLMbYyKoF
vPjI2qES1iCjqa+eBO13KczEpTWYIDwadLC434LzRQTz+wa0JrN6ooMKMJKzC/33
cEhcm4oJrkwsiUv1CJ9yebO9L1EqUPTPKAFPupb0XYgcqkdMwZ51nUfQfMFtv4zN
jYN8qudUuqkei1LPdoxM2AE89XX/M/qnFC/p2r5jki3QNddKkKWyoxIyNXrCSJKq
ypUIrtTdE0G3sQvXTcLSO/Ru/VEfmDkfAlicmMv2T3lK7K9ZnEhi+32nFv2htoYf
Of13SAptj1oEcklLtDNqx3cS/gDLpGrmJ5cOIHXUztHJlDcsSq1a+WkAT4WcSrRV
eQIBAw==
-----END PUBLIC KEY-----
Public-Key: (2048 bit)
Modulus:

https://sandilands.info/sgordon/teaching/css441y15s2/topic-public_key_cryptography
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00:a8:5c:40:26:6c:0b:a1:f4:d9:2c:c6:d8:c8:aa:
05:bc:f8:c8:da:a1:12:d6:20:a3:a9:af:9e:04:ed:
77:29:cc:c4:a5:35:98:20:3c:1a:74:b0:b8:df:82:
f3:45:04:f3:fb:06:b4:26:b3:7a:a2:83:0a:30:92:
b3:0b:fd:f7:70:48:5c:9b:8a:09:ae:4c:2c:89:4b:
f5:08:9f:72:79:b3:bd:2f:51:2a:50:f4:cf:28:01:
4f:ba:96:f4:5d:88:1c:aa:47:4c:c1:9e:75:9d:47:
d0:7c:c1:6d:bf:8c:cd:8d:83:7c:aa:e7:54:ba:a9:
1e:8b:52:cf:76:8c:4c:d8:01:3c:f5:75:ff:33:fa:
a7:14:2f:e9:da:be:63:92:2d:d0:35:d7:4a:90:a5:
b2:a3:12:32:35:7a:c2:48:92:aa:ca:95:08:ae:d4:
dd:13:41:b7:b1:0b:d7:4d:c2:d2:3b:f4:6e:fd:51:
1f:98:39:1f:02:58:9c:98:cb:f6:4f:79:4a:ec:af:
59:9c:48:62:fb:7d:a7:16:fd:a1:b6:86:1f:39:fd:
77:48:0a:6d:8f:5a:04:72:49:4b:b4:33:6a:c7:77:
12:fe:00:cb:a4:6a:e6:27:97:0e:20:75:d4:ce:d1:
c9:94:37:2c:4a:ad:5a:f9:69:00:4f:85:9c:4a:b4:
55:79

Exponent: 3 (0x3)

13.4.2 RSA Signing in OpenSSL (Sender)
Now that Alice has her private and public key files, let’s create a text file containing the
message to send to Bob:

alice@node1:~$ echo "This is my example message." > message-alice.txt
alice@node1:~$ cat message-alice.txt
This is my example message.

To sign the message you need to calculate its hash and then encrypt that hash using
your private key. To create a hash of a message (without encrypting):

alice@node1:~$ openssl dgst -sha1 message-alice.txt
SHA1(message-alice.txt)= 064774b2fb550d8c1d7d39fa5ac5685e2f8b1ca6

OpenSSL has an option to calculate the hash and then sign it using a selected private
key. The output will be a file containing the signature.

alice@node1:~$ openssl dgst -sha1 -sign privkey-alice.pem -out sign-alice.bin
message-alice.txt

alice@node1:~$ ls -l
total 16
-rw-r--r-- 1 sgordon users 28 2012-03-04 15:14 message-alice.txt
-rw-r--r-- 1 sgordon users 1704 2012-03-04 14:58 privkey-alice.pem
-rw-r--r-- 1 sgordon users 451 2012-03-04 15:08 pubkey-alice.pem
-rw-r--r-- 1 sgordon users 256 2012-03-04 15:20 sign-alice.bin

13.4.3 RSA Encryption in OpenSSL (Sender)
To encrypt the message using RSA, use the recipients public key (this assumes the re-
cipient, Bob, has already created and distributed their public key, using the same steps
as above):
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alice@node1:~$ openssl pkeyutl -encrypt -in message-alice.txt -pubin -inkey
pubkey-bob.pem -out ciphertext-alice.bin

Note that direct RSA encryption should only be used on small files, with length less
than the length of the key. If you want to encrypt large files then use symmetric key
encryption. Two approaches to do this with OpenSSL: (1) generate a random key to be
used with a symmetric cipher to encrypt the message and then encrypt the key with RSA;
(2) use the smime operation, which combines RSA and a symmetric cipher to automate
approach 1.

Now Alice sends the following to Bob:

• Ciphertext of the mesasge, ciphertext-alice.bin

• Signature of the message, sign-alice.bin

• Optionally, if she hasn’t done so in the past, her public key, public-alice.pem

13.4.4 RSA Decryption in OpenSSL (Receiver)
When Bob receive’s the two files from Alice, he needs to decrypt the ciphertext and
verify the signature. Bob will need to use his RSA private/public key files, which were
generated in the same way as for Alice, i.e. using genpkey.

To decrypt the received ciphertext:

bob@node2:~$ openssl pkeyutl -decrypt -in ciphertext-alice.bin -inkey
privkey-bob.pem -out received-alice.txt

bob@node2:~$ cat received-alice.txt
This is my example message.

13.4.5 RSA Verification in OpenSSL (Receiver)
To verify the signature of a message:

bob@node2:~$ openssl dgst -sha1 -verify pubkey-alice.pem -signature
sign-alice.bin received-alice.txt

Verified OK

The output messages shows the verification was successful.

13.4.6 RSA OpenSSL Exercises
Exercise 13.4 (RSA Key Generation). Generate your own RSA key pair using the
OpenSSL genpkey command. Extract your public key and then exchange public key’s
with another person (or if you want to do it on your own, generate a second key pair).

Solution 13.4 (RSA Key Generation). See the examples of genpkey and pkey commands
in Section 13.4.1.

Exercise 13.5 (RSA Signing). Create a message in a file, sign that message using the
dgst command, and then send the message and signature to another person.
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Solution 13.5 (RSA Signing). Use a text editor, such as nano, to create a file containing
a message. See the examples of dgst in Section 13.4.2.

Exercise 13.6 (RSA Verification). Verify the message you received.

Solution 13.6 (RSA Verification). See the example in Section 13.4.5.

Exercise 13.7 (RSA Performance Test). Using the OpenSSL speed command, com-
pare the performance of RSA encrypt/sign operation against the RSA decrypt/verify
operation.

Solution 13.7 (RSA Performance Test). You can select the rsa algorithm using the
speed command, so that the performance test is only for RSA (and doesn’t include AES
etc.).

13.5 RSA in Python
The Python Cryptography library includes asymmetric algorithms, including RSA. See
the examples for RSA at:

• https://cryptography.io/en/latest/hazmat/primitives/asymmetric/

https://cryptography.io/en/latest/
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/
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Chapter 14

Diffie–Hellman Key Exchange

This chapter presents the Diffie–Hellman key exchange algorithm, which was the first
example of public key cryptography.

Presentation slides that accompany this chapter can be downloaded in the following
formats: slides only (PDF); slides with notes (PDF, ODP, PPTX).

14.1 Diffie–Hellman Key Exchange Algorithm
Whitfield Diffie and Martin Hellman, along with Ralph Merkle, were the first to publish
algorithms for public key cryptography. Their algorithm was designed to exchange a
secret key between two parties, and commonly referred to as Diffie-Hellman Key Exchange
(DHKE). You can read more about Diffie, Hellman and Merkle in Chapter C.

• Diffie and Hellman proposed public key cryptosystem in 1976

– Motivation: solve the problem of how to exchange secret keys for symmetric
key crypto

– Proposed protocol for exchanging secrets using public keys
– Merkle also contributed to the idea; sometimes called Diffie–Hellman-Merkle

key exchange

• DHKE is algorithm for exchanging secret key (not for secrecy of data)

– E.g. two users want to use symmetric key crypto, but need to first exchange a
secret key

• Based on discrete logarithms

– Easy to calculate exponential modulo a prime
– Infeasible to calculate inverse, i.e. discrete logarithm

It is important to note that DHKE is a “key exchange” protocol. The purpose is for
two users to exchange a secret key. Once a secret key has been exchanged with DHKE,
the two users can then use that secret key for other purposes (e.g. for encrypting data
using AES).

File: crypto/dh.tex, r1968

153

https://sandilands.info/crypto/slides/crypto-diffie-hellman-key-exchange-slides-colour.pdf
https://sandilands.info/crypto/slides/crypto-diffie-hellman-key-exchange-handout-colour.pdf
https://sandilands.info/crypto/slides/crypto-diffie-hellman-key-exchange-slides-colour.odp
https://sandilands.info/crypto/slides/crypto-diffie-hellman-key-exchange-slides-colour.pptx
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If you do not know what a discrete logarithm is, it is worth refreshing your knowledge
in number theory from Chapter 5.

Algorithm 14.1 (Diffie–Hellman Key Exchange). One-time setup. A and B agree upon
public values prime p and generator g, where g < p and g is a primitive root of p.

Protocol.

1. A: select private PRA < p

2. A: calculate public PUA = gPRA mod p

3. A → B: send PUA

4. B: select private PRB < p

5. B: calculate public PUB = gPRB mod p

6. B: calculate secret KB = PUPRB
A mod p

7. B → A: send PUB

8. A: calculate secret KA = PUPRA
B mod p

Result. KA = KB is the shared secret value

The values p and g are either agreed upon in advance, or selected by one user and
sent to the other in the first message. Both values are public; the attacker is assumed to
know them.

When two users need to exchange a shared secret, one of them initiates the protocol.
User A and B actually perform the same steps, but just with different values. First a
private value PR is randomly selected. Then a public value PU is calculated. Both users
exchange their public PU values (and the attacker may learn them). Finally, both users
calculate their private values K based on their own PR and received PU . The values
and calculations are designed such that the K calculated by each user will be the same.
K is the shared secret key.

Note that the parameters have different variables or names in different sources. You
may also see:

• prime p: q

• generator g: α

• private PRA and PRB: XA and XB; or a and b; or x and y

• public PUA and PUB: YA and YB; or A and B; or e and f

• secret K: s

Exercise 14.1 (Diffie–Hellman Key Exchange). Assume two users, A and B, have agreed
to use DHKE with prime p = 19 and generator g = 10. Assuming A randomly chose
private PRA = 7 and B randomly chose private PRB = 8, find the shared secret key.
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Solution 14.1 (Diffie–Hellman Key Exchange). First note that g = 10 is in indeed a
primitive root of p = 19, as seen in the examples on number theory in Section 5.4. That
is, 100, 101, 102, 103, . . ., 1018 give distinct values in mod 19.

Let’s consider the first phase from user A’s perspective. A chooses private value
PRA = 7, which is less than 19. Then A calculates their public value:

PUA = gPRA mod p
= 107 mod 19
= 10000000 mod 19
= 15

A sends PUA = 15 to B.
Now consider from user B’s perspective. B calculates their public value using their

chosen PRB = 8::

PUB = gPRB mod p
= 108 mod 19
= 100000000 mod 19
= 17

B sends PUB = 17 to A.
B can also calculate their version of the shared secret:

KB = PUPRB
A mod p

= 158 mod 19
= 2562890625 mod 19
= 5

As A has received B’s public value, A can also calculate their version of the shared
secret:

KA = PUPRA
B mod p

= 177 mod 19
= 410338673 mod 19
= 5

In summary, A and B have exchanged public values and then calculated a shared
secret key of K = 5. Figure 14.1 illustrates the DHKE steps.
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Figure 14.1: Diffie–Hellman Key Exchange Example

Video
Diffie-Hellman Key Exchange with Example (18 min; Mar 2015)
https://www.youtube.com/watch?v=p_UhlXDOlfU

14.2 Analysis of DHKE
1. Same shared secret: KA and KB must be identical

2. Computational efficiency: Easy to calculate PU and K

3. Secure: Infeasible to determine PR or K from known values

• Attacker knows 3 public values in PUA = gPRA mod p
• Must be practically impossible to find the 4th value PRA

While we don’t show it here, it can easily be proved that DHKE will produce the
same value of K for both users.

Modular exponentiation, while slow with big numbers, is easy to calculate, i.e. can be
achieved in less than seconds.

The inverse operation of modular exponentiation, referred to as a discrete logarithm,
is hard to calculate. With large enough values, it is considered impossible to calculate.

Question 14.1 (Prove Identical Keys in DHKE). Prove that user A and user B will
always calculate the same shared secret key in DHKE. That is, prove that KA = KB.

Video
Proof of Identical Keys in DHKE (5 min; Mar 2015
https://www.youtube.com/watch?v=y5G8YMA_sDU

https://www.youtube.com/watch?v=p_UhlXDOlfU
https://www.youtube.com/watch?v=y5G8YMA_sDU
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Question 14.2 (Brute Force Attack on PR in DHKE). Assuming you have intercepted
PUA = 15 from the DHKE exercise, how would you perform a brute force attack to find
PRA? How could such a successful brute force attack be prevented in practice?

Exercise 14.2 (Discrete Logarithm Attack in DHKE). Assuming a brute force attack is
not possible, write an equation that the attacker would have to solve to find PRA.

Solution 14.2 (Discrete Logarithm Attack in DHKE). Consider the equation:

PUA = gPRA mod p

There is one unknown variable in the equation of four variables. The equation con-
sists of modular exponentiation. The inverse operation is modular logarithm, or more
commonly discrete logarithm, which can be written as:

PRA = dlogg,p(PUA)

which can be read as “given the base g and modulus p, find the index (or exponent)
PRA that produces the result PUA”.

• Discrete Logarithm Problem:

given g, p and gx mod p, find x

• For certain values of p, considered computationally hard

– p is a safe prime, i.e. p = 2q + 1 where q is a large prime
– p is very large, usually at least 1024 bits

• 2016: Discrete logarithm with 768 bit prime p was solved within 5300 core years
on 2.2GHz Xeon E5-2660 processor

• Considered harder to solve than equivalent integer factorisation

– 768 bit integer factored in 2000 core years

14.3 Man-in-the-Middle Attack on DHKE
A very practical attack on DHKE is a Man-in-the-Middle (MITM) attack. If an attacker
has the ability to intercept and send messages in between the two users, and the messages
have no form of authentication, this attack can be successful.

Exercise 14.3 (MITM Attack on DHKE). Consider the “Diffie–Hellman Key Exchange”
exercise where user A chooses PRA = 7 and B chooses PRB = 8. Show how a MITM
can be performed such that an attacker Q can decrypt any communications between A
and B that use the secret shared between A and B.

https://eprint.iacr.org/2017/067
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Solution 14.3 (MITM Attack on DHKE). In a MITM attack, the attacker Q intercepts
messages between A and B, and masquerades as A to B, and as B to A. So when A sends
its public value PUA to B, it is intercepted by Q. Q then masquerades as B: selecting
it’s own PRQA, calculating a PUQA and sending back to A. A and Q calculate a shared
secret key which will be identical. Without authentication of messages, A thinks it is
communicating with B (since it send a message to B, and received a reply from who they
think is B).

Q then performs a DHKE with B, and B thinks this is with A. The end result is that
A and Q have a shared secret, and B and Q have another shared secret, and both A and
B think their shared secret is with each other.

Figure 14.2 illustrates the MITM, where Q chooses random private value PRQA = 4
for the DHKE with A and PRQB = 12 for the DHKE with B.

Figure 14.2: Diffie–Hellman MITM Attack Example

Now assuming the shared secrets are used as a key in a symmetric key cipher. When
A encrypts a message and sends to B, Q can intercept and decrypt, since Q knows A’s
shared secret (9). Q can then encrypt the message with B’s shared secret (11) and send
on to B. B receives and decrypts, and subsequently responds to A. The exchange of
encrypted data continues between A and B, without them noticing that Q is intercepting
and decrypting the data.

Video
Man-in-the-Middle Attack on Diffie-Hellman Key Exchange (16 min; Mar 2015)
https://www.youtube.com/watch?v=Jokkhl8kq4c

https://www.youtube.com/watch?v=Jokkhl8kq4c
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14.4 Implementations of DHKE
• Some (older) communication protocols defined a fixed value of p and g

– All clients and servers use the same values

• Newer protocols allow for an exchange of values (e.g. a Group Exchange protocol)

• Example fixed value in older versions of SSH (diffie-hellman-group1-sha1 using Oak-
ley Group 2)

p = 21024 − 2960 − 1 + 264 × (2894 × π + 129093)

g = 2

p is 1024 bits in length

As p and q are public and known to the attacker, using the same values all the time
should not be a problem. Exchanging values involves extra communication overhead and
also processing overhead. However following the principle of changing keys frequently to
give an attacker less chance to compromise them, many protocols now support the ability
to change the public parameters.

14.5 Diffie–Hellman in OpenSSL
OpenSSL supports the generation of public parameters for DHKE, as well as of the public
and private keys of the users. The calculation of the secret key is also supported, although
the public keys need to be manually exchanged. The main operations with OpenSSL are:

• Generate global public parameters with genpkey

• View parameters with pkeyparam

• Generate a public/private key pair with genpkey

• Extract a public key with pkey

• Derive a shared secret with pkeyutl

For this demo, we use the scenario of user Alice on node1 and Bob on node2. Take
note of the prompt to see who is performing each command.

The first step is to generate the Diffie-Hellman (DH) global public parameters, saving
them in the file dhp.pem. We use the OpenSSL genpkey command, using the algorithm
DH and the -genparam option:

alice@node1:~$ openssl genpkey -genparam -algorithm DH -out dhparam.pem
...+.......................................................................
.............................................................+.............
...............................................+...........................
...........................+........+......................................
.....................................+.....................................
...........................+..................................+........+...
...............+..........+...............+................................

https://tools.ietf.org/html/rfc4253#page-23
https://tools.ietf.org/html/rfc2409#page-22
https://tools.ietf.org/html/rfc2409#page-22
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........................................................................+..

..................................................................+........

..............................................+........................+...

.....++*++*++*

Now let’s display the generated global public parameters, first in the encoded form,
then in the text form:

alice@node1:~$ cat dhparam.pem
-----BEGIN DH PARAMETERS-----
MIGHAoGBAOZVzJ4E8766527Mp3FD71xEUYdmFan4tPcSuPO99H7n9xfAm7WytmRQ
gxNn2dz4X58FKLzVMY+x2rLyPOd8SLa3OB7tE+gKFMymswteN//lPbFeLWtyei78
7lGJNnjVDpqJFmo1nldMTDyl5Z+ueZJP5vGGs2ouvem/Cf5N5QRTAgEC
-----END DH PARAMETERS-----

alice@node1:~$ openssl pkeyparam -in dhparam.pem -text
-----BEGIN DH PARAMETERS-----
MIGHAoGBAOZVzJ4E8766527Mp3FD71xEUYdmFan4tPcSuPO99H7n9xfAm7WytmRQ
gxNn2dz4X58FKLzVMY+x2rLyPOd8SLa3OB7tE+gKFMymswteN//lPbFeLWtyei78
7lGJNnjVDpqJFmo1nldMTDyl5Z+ueZJP5vGGs2ouvem/Cf5N5QRTAgEC
-----END DH PARAMETERS-----
PKCS#3 DH Parameters: (1024 bit)

prime:
00:e6:55:cc:9e:04:f3:be:ba:e7:6e:cc:a7:71:43:
ef:5c:44:51:87:66:15:a9:f8:b4:f7:12:b8:f3:bd:
f4:7e:e7:f7:17:c0:9b:b5:b2:b6:64:50:83:13:67:
d9:dc:f8:5f:9f:05:28:bc:d5:31:8f:b1:da:b2:f2:
3c:e7:7c:48:b6:b7:38:1e:ed:13:e8:0a:14:cc:a6:
b3:0b:5e:37:ff:e5:3d:b1:5e:2d:6b:72:7a:2e:fc:
ee:51:89:36:78:d5:0e:9a:89:16:6a:35:9e:57:4c:
4c:3c:a5:e5:9f:ae:79:92:4f:e6:f1:86:b3:6a:2e:
bd:e9:bf:09:fe:4d:e5:04:53

generator: 2 (0x2)

Each user can use the public parameters to generate their own private and public key,
saving them in their respective files. Similar to RSA, the DH private key file also stores
the public key information.

alice@node1:~$ openssl genpkey -paramfile dhparam.pem -out dhprivkey-alice.pem

alice@node1:~$ openssl pkey -in dhprivkey-alice.pem -text -noout
PKCS#3 DH Private-Key: (1024 bit)

private-key:
48:88:7d:fd:09:0d:17:5e:33:be:ea:29:e7:b3:83:
34:29:92:89:06:9f:9a:b4:92:b6:78:07:90:5f:aa:
98:d9:6d:22:d7:92:05:be:f0:3f:14:af:09:3f:17:
97:b9:04:73:41:32:c3:4a:38:8f:dc:79:e2:04:97:
bf:a1:46:5f:ec:2a:ac:4f:ab:df:3b:b0:c9:be:86:
85:d2:0f:7b:fe:03:46:a9:ab:df:7f:a8:98:38:c3:
fa:9c:a6:ab:db:70:be:a6:67:95:ab:66:99:cc:15:
4d:b5:94:90:e4:15:9f:14:2f:7b:dd:ff:60:3c:1d:
3d:6c:4f:ff:81:77:e1:1d

public-key:
00:d9:ab:d7:8c:93:df:dd:eb:92:0d:57:d6:51:31:
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26:d8:f1:11:8c:92:37:a4:51:01:40:8d:bf:fe:6c:
fd:95:b0:11:a0:16:e4:e0:ab:8a:ef:06:01:e8:36:
a4:52:b8:bb:88:be:7c:a7:1e:4f:22:f9:7a:a6:5f:
83:58:ee:69:34:8d:12:27:d6:5d:b6:e5:36:41:d1:
a6:54:2a:a4:be:4b:4a:dc:75:fa:c8:16:af:79:a8:
e3:f5:09:7f:83:13:e7:b7:25:df:37:ea:dc:8c:77:
4e:20:33:df:a9:9c:95:cc:ef:33:3b:f4:02:b0:66:
19:8c:30:48:1e:2a:83:87:5c

prime:
00:e6:55:cc:9e:04:f3:be:ba:e7:6e:cc:a7:71:43:
ef:5c:44:51:87:66:15:a9:f8:b4:f7:12:b8:f3:bd:
f4:7e:e7:f7:17:c0:9b:b5:b2:b6:64:50:83:13:67:
d9:dc:f8:5f:9f:05:28:bc:d5:31:8f:b1:da:b2:f2:
3c:e7:7c:48:b6:b7:38:1e:ed:13:e8:0a:14:cc:a6:
b3:0b:5e:37:ff:e5:3d:b1:5e:2d:6b:72:7a:2e:fc:
ee:51:89:36:78:d5:0e:9a:89:16:6a:35:9e:57:4c:
4c:3c:a5:e5:9f:ae:79:92:4f:e6:f1:86:b3:6a:2e:
bd:e9:bf:09:fe:4d:e5:04:53

generator: 2 (0x2)

The other user uses the same public parameters, dhparam.pem, to generate their
private/public key:

bob@node2:~$ openssl genpkey -paramfile dhparam.pem -out dhprivkey-bob.pem

bob@node2:~$ openssl pkey -in dhprivkey-bob.pem -text -noout
PKCS#3 DH Private-Key: (1024 bit)

private-key:
5d:70:9b:3e:a7:c9:b1:3b:df:17:d3:76:dd:45:f0:
38:6d:be:35:f6:79:5d:05:bf:e2:63:b0:ea:25:00:
61:0a:4c:e2:e4:e7:8e:97:6e:cb:9e:f0:f9:4b:d9:
1c:2e:d6:b1:71:cb:ec:56:a7:2f:b0:af:ff:67:df:
37:e0:d8:8c:ab:5d:ef:3d:27:c5:5a:a6:8d:49:30:
6b:4e:d4:1f:5c:40:da:35:d0:bc:c7:3d:16:a3:13:
2e:86:af:13:8b:65:c4:19:f2:75:43:e7:11:b6:5a:
81:d1:e0:ff:5d:f3:c2:f4:6f:d2:f0:72:97:66:b9:
93:3d:17:b0:06:ef:8a:3b

public-key:
00:d9:9a:00:1b:98:f5:0b:e2:d6:57:f7:4d:e3:4b:
aa:43:ad:e2:f2:93:31:a1:e7:4b:a7:06:dc:ab:22:
09:5a:0d:41:1a:c1:37:c0:6d:88:f4:7c:0a:22:27:
1e:d3:84:39:51:92:62:d5:14:9e:68:ee:2f:69:27:
ae:dd:d1:e6:a2:5f:3c:d2:7b:a7:7c:8e:61:28:fb:
8b:1c:d7:a0:0b:d3:7b:37:af:78:b2:7e:eb:62:a7:
85:b6:0f:90:10:b7:9c:ce:ec:84:a9:28:e3:7f:22:
8f:76:cd:68:58:56:45:fd:3e:36:37:a1:99:aa:ca:
4a:65:65:af:a8:21:ee:1f:b6

prime:
00:e6:55:cc:9e:04:f3:be:ba:e7:6e:cc:a7:71:43:
ef:5c:44:51:87:66:15:a9:f8:b4:f7:12:b8:f3:bd:
f4:7e:e7:f7:17:c0:9b:b5:b2:b6:64:50:83:13:67:
d9:dc:f8:5f:9f:05:28:bc:d5:31:8f:b1:da:b2:f2:
3c:e7:7c:48:b6:b7:38:1e:ed:13:e8:0a:14:cc:a6:
b3:0b:5e:37:ff:e5:3d:b1:5e:2d:6b:72:7a:2e:fc:
ee:51:89:36:78:d5:0e:9a:89:16:6a:35:9e:57:4c:
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4c:3c:a5:e5:9f:ae:79:92:4f:e6:f1:86:b3:6a:2e:
bd:e9:bf:09:fe:4d:e5:04:53

generator: 2 (0x2)

The users must exchange their public keys. To do so, they must first extract their
public keys into separate files using the pkey command

alice@node1:~$ openssl pkey -in dhprivkey-alice.pem -pubout -out dhpub-alice.pem

Bob would perform a similar command as above with his keys (not shown).
We can view the public keys:

alice@node1:~$ openssl pkey -pubin -in dhpub-alice.pem -text
-----BEGIN PUBLIC KEY-----
MIIBIDCBlQYJKoZIhvcNAQMBMIGHAoGBAOZVzJ4E8766527Mp3FD71xEUYdmFan4
tPcSuPO99H7n9xfAm7WytmRQgxNn2dz4X58FKLzVMY+x2rLyPOd8SLa3OB7tE+gK
FMymswteN//lPbFeLWtyei787lGJNnjVDpqJFmo1nldMTDyl5Z+ueZJP5vGGs2ou
vem/Cf5N5QRTAgECA4GFAAKBgQDZq9eMk9/d65INV9ZRMSbY8RGMkjekUQFAjb/+
bP2VsBGgFuTgq4rvBgHoNqRSuLuIvnynHk8i+XqmX4NY7mk0jRIn1l225TZB0aZU
KqS+S0rcdfrIFq95qOP1CX+DE+e3Jd836tyMd04gM9+pnJXM7zM79AKwZhmMMEge
KoOHXA==
-----END PUBLIC KEY-----
PKCS#3 DH Public-Key: (1024 bit)

public-key:
00:d9:ab:d7:8c:93:df:dd:eb:92:0d:57:d6:51:31:
26:d8:f1:11:8c:92:37:a4:51:01:40:8d:bf:fe:6c:
fd:95:b0:11:a0:16:e4:e0:ab:8a:ef:06:01:e8:36:
a4:52:b8:bb:88:be:7c:a7:1e:4f:22:f9:7a:a6:5f:
83:58:ee:69:34:8d:12:27:d6:5d:b6:e5:36:41:d1:
a6:54:2a:a4:be:4b:4a:dc:75:fa:c8:16:af:79:a8:
e3:f5:09:7f:83:13:e7:b7:25:df:37:ea:dc:8c:77:
4e:20:33:df:a9:9c:95:cc:ef:33:3b:f4:02:b0:66:
19:8c:30:48:1e:2a:83:87:5c

prime:
00:e6:55:cc:9e:04:f3:be:ba:e7:6e:cc:a7:71:43:
ef:5c:44:51:87:66:15:a9:f8:b4:f7:12:b8:f3:bd:
f4:7e:e7:f7:17:c0:9b:b5:b2:b6:64:50:83:13:67:
d9:dc:f8:5f:9f:05:28:bc:d5:31:8f:b1:da:b2:f2:
3c:e7:7c:48:b6:b7:38:1e:ed:13:e8:0a:14:cc:a6:
b3:0b:5e:37:ff:e5:3d:b1:5e:2d:6b:72:7a:2e:fc:
ee:51:89:36:78:d5:0e:9a:89:16:6a:35:9e:57:4c:
4c:3c:a5:e5:9f:ae:79:92:4f:e6:f1:86:b3:6a:2e:
bd:e9:bf:09:fe:4d:e5:04:53

generator: 2 (0x2)

After exchanging public keys, i.e. the files dhpub-alice.pem and dhpub-bob.pem,
each user can derive the shared secret. Alice uses her private key and Bob’s pub-
lic key to derive a secret, in this case a 128 Byte binary value written into the file
secret-alice.bin:

alice@node1:~$ openssl pkeyutl -derive -inkey dhprivkey-alice.pem -peerkey
dhpubkey-bob.pem -out secret-alice.bin

Bob does the same using his private key and Alice’s public key to produce his secret
in the file secret-bob.bin:
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bob@node2:~$ openssl pkeyutl -derive -inkey dhprivkey-bob.pem -peerkey
dhpub-alice.pem -out secret-bob.bin

The secrets should be the same. Although there is no need for Bob to send his secret
file to Alice, if he did, then Alice can use cmp to compare the files, or even xxd to manually
inspect the binary values:

alice@node1:~$ cmp secret-alice.bin secret-bob.bin
alice@node1:~$ xxd secret-alice.bin
0000000: b7cb b892 b541 7810 d8ec d089 6c89 3c19 .....Ax.....l.<.
0000010: e8e1 27d8 66ee dac8 684a f0bd 0a7f e7d3 ..’.f...hJ......
0000020:␣3643␣8654␣fddf␣4399␣e58e␣2c7c␣3d33␣9532␣␣6C.T..C...,|=3.2
0000030:␣f693␣edf2␣c9a0␣40e8␣58b8␣38de␣74a5␣c0b0␣␣......@.X.8.t...
0000040:␣64ab␣4006␣a3cd␣d795␣2cef␣d0fc␣2b0f␣d1ab␣␣d.@.....,...+...
0000050:␣d1e5␣1a2a␣3431␣e3fa␣ba63␣f7cf␣1c61␣ff65␣␣...*41...c...a.e
0000060:␣d9cd␣c85d␣c5fe␣5c50␣c543␣aaeb␣de49␣8501␣␣...]..\P.C...I..
0000070:␣6cf1␣66a6␣87b6␣ddec␣835c␣b4b1␣3d9d␣e2fe␣␣l.f......\..=...
alice@node1:~$␣<kbd>xxd␣secret-bob.bin</kbd>
0000000:␣b7cb␣b892␣b541␣7810␣d8ec␣d089␣6c89␣3c19␣␣.....Ax.....l.<.
0000010:␣e8e1␣27d8␣66ee␣dac8␣684a␣f0bd␣0a7f␣e7d3␣␣..’.f...hJ......
0000020: 3643 8654 fddf 4399 e58e 2c7c 3d33 9532 6C.T..C...,|=3.2
0000030: f693 edf2 c9a0 40e8 58b8 38de 74a5 c0b0 ......@.X.8.t...
0000040: 64ab 4006 a3cd d795 2cef d0fc 2b0f d1ab d.@.....,...+...
0000050: d1e5 1a2a 3431 e3fa ba63 f7cf 1c61 ff65 ...*41...c...a.e
0000060: d9cd c85d c5fe 5c50 c543 aaeb de49 8501 ...]..\P.C...I..
0000070: 6cf1 66a6 87b6 ddec 835c b4b1 3d9d e2fe l.f......\..=...

Now both Alice and Bob have a shared secret, securely exchanged across a public
network using DHKE.

14.6 DHKE in Python
The Python Cryptography library includes asymmetric algorithms, including RSA. See
the examples for DHKE at:

• https://cryptography.io/en/latest/hazmat/primitives/asymmetric/

https://cryptography.io/en/latest/
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/
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Chapter 15

Elliptic Curve Cryptography

RSA (Chapter 13) and Diffie-Hellman (Chapter 14) are two widely-used public key cryp-
tography algorithms. Their security depends on the difficulty of factoring large integers
into primes and solving discrete logarithms for integers, respectively. Their problem how-
ever is that keys are relatively large (e.g. 2048-bits for RSA). This leads to high commu-
nications overhead when exchanging keys in security protocols, and possibly performance
limitations when implementing on low-cost computers.

Elliptic Curve Cryptography (ECC) is another, newer approach to public key cryp-
tography. Mathematical operations are performed on an elliptic curve, where some oper-
ations can be easy if certain values are known, but practically impossible of those values
are unknown. This is similar to the integer factorisation and discrete logarithm problems
that make RSA and Diffie-Hellman secure. In fact, the problem is solving a discrete
logarithm on an elliptic curve (rather than for integers as in Diffie-Hellman).

The main benefit of ECC is in performance. Specifically to achieve similar level of
security as RSA and Diffie-Hellman, ECC has much smaller key sizes: 100’s of bits vs
1000’s of bits. Chapter 18 gives common recommended key lengths for RSA, Diffie-
Hellman and ECC. In the past, RSA and (normal) Diffie-Hellman were favoured as ECC
was relatively new. But now ECC is used in many applications, e.g. secret key exchange
regularly uses the elliptic curve form of Diffie-Hellman rather than the normal, integer-
based form1.

This chapter gives a brief, as simple-as-possible, introduction to ECC.
Presentation slides that accompany this chapter can be downloaded in the following

formats: slides only (PDF); slides with notes (PDF, ODP, PPTX).

15.1 Overview of Elliptic Curve Cryptography
This section steps through the maths of elliptic curves, and explains why operations on
an elliptic curve can be used for public key cryptography.

Definition 15.1 (Elliptic Curve). An elliptic curve is defined by:

y2 = x3 + ax+ b

File: crypto/elliptic.tex, r1949
1When referring to “Diffie-Hellman”, we normally mean the algorithm based on integer discrete

logarithms. However there is a Diffie-Hellman algorithm based on elliptic curve discrete logarithms. We
will refer to this as “ECDH”.
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https://sandilands.info/crypto/slides/crypto-elliptic-curve-cryptography-slides-colour.pdf
https://sandilands.info/crypto/slides/crypto-elliptic-curve-cryptography-handout-colour.pdf
https://sandilands.info/crypto/slides/crypto-elliptic-curve-cryptography-slides-colour.odp
https://sandilands.info/crypto/slides/crypto-elliptic-curve-cryptography-slides-colour.pptx
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(with some constraints of constants a and b)

The constraints on a and b specify the relationship between the values, i.e. you cannot
necessarily choose any values. We will not go into that detail here.

Credit: Generated based on MIT Licensed code by Fang-Pen Lin

Figure 15.1: Elliptic Curve for y2 = x3 − 3x+ 5

Figure 15.1 shows an example elliptic curve where a = −3 and b = 5, plotted for x
values from -4 to 4. An elliptic curve always mirrors itself about the horizontal (red)
axis.

Definition 15.2 (Addition Operation with an Elliptic Curve). Select two points on the
curve, A and B, and draw a straight line through them. The line will intersect with the
curve at a third point, R (and no other points). The horizontal inverse of point R, is
defined as the addition of A and B.

A+B = −R

See the following figure for an example of this concept. Note the points, A, B, R and
-R are just (x, y) coordinates.

Figure 15.2 shows the concept of addition. Adding the points A and B results in the
point shown as A+B. There is always a third point that intersects the curve on the line
between A and B, and there is always an inverse of this point.

Note that we could continue the addition. For example, with A+B, add another point
C, to arrive at a new point A+B+C. And so on.

Rather than adding two different points, we can simply add a single point to itself.
The same concepts apply.

Figure 15.3 shows the self addition of point P. When adding a single point P to itself,
the line that intersects P is chosen as the line tangent to P. So P+P = 2P.

We can continue to add P.

https://github.com/fangpenlin/elliptic-curve-explained/blob/master/elliptic-curve.ipynb


15.1. OVERVIEW OF ELLIPTIC CURVE CRYPTOGRAPHY 167

Credit: Generated based on MIT Licensed code by Fang-Pen Lin

Figure 15.2: Addition Operation on Elliptic Curve

Credit: Generated based on MIT Licensed code by Fang-Pen Lin

Figure 15.3: Self Addition on Elliptic Curve

https://github.com/fangpenlin/elliptic-curve-explained/blob/master/elliptic-curve.ipynb
https://github.com/fangpenlin/elliptic-curve-explained/blob/master/elliptic-curve.ipynb
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Credit: Generated based on MIT Licensed code by Fang-Pen Lin

Figure 15.4: P + 2P on Elliptic Curve

Credit: Generated based on MIT Licensed code by Fang-Pen Lin

Figure 15.5: NP on Elliptic Curve

https://github.com/fangpenlin/elliptic-curve-explained/blob/master/elliptic-curve.ipynb
https://github.com/fangpenlin/elliptic-curve-explained/blob/master/elliptic-curve.ipynb
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Figure 15.4 shows P + 2P = 3P. Then we can add P again to get 4P and so on.
Figure 15.5 shows NP. In this example N=13. That is, we start with point P, and

add P twelve times, resulting in the point 13P.
So now we know the concept of point addition on an elliptic curve, how can that be

used for cryptography?

• User chooses a point P (global public parameter)

• User chooses a large, random N (private key)

• User calculates NP (public key)

– Easy, since there is a shortcut (described shortly)

• Challenge for attacker: given NP , find N

– Computationally hard for large N

As with other public key systems, elliptic curve cryptography relies on the fact that
it is easy for the user to generate the public and private key, but practically impossible
for an attacker to find the private key from the public key.

Why is that the case? So far we said NP is found by adding P N − 1 times, that
is, takes N − 1 addition operations. So an attacker could simply start with P , and keep
adding P until they get an answer of NP . Now the know how many additions, i.e. the
private value N .

However if N is large enough the attackers method will be practically impossible. And
for the user to generate NP when they know N , there is a shortcut that is practically
achievable.

• Assume N is large, e.g. 256-bit random number

• Naive point addition: P + P + P + P + . . .+ P + P (2256 − 1 additions)

• Shortcut algorithm for point addition:

– Calculate P , P +P = 2P = 21P , 2P +2P = 4P = 22P , 4P +4P = 8P = 23P ,
. . . , 2255P (255 additions)

– Write N as binary expansion, e.g.:
∗ N = 233 = 27 + 26 + 25 + 23 + 20

∗ NP = 27P + 26P + 25P + 23P + 20P

∗ In this example, there are 4 point additions
∗ Maximum number of point additions for 256-bit N is 255

– Calculate NP using the binary expansion
– Maximum number of point additions for 256-bit N : 255 + 255 = 510

• If N is 256-bit random number:

• Attacker: ≈ 2256 point additions (practically impossible)
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• User: ≈ 2× 256 point additions (easy)

In summary, knowing the b-bit value N , the user needs to perform about 2× b point
additions. This is easy. But the attacker, who doesn’t know N , must perform about 2b
point additions, which is practically impossible.

• The above discussed a normal elliptic curve

• But to ensure all values contained within finite coordinate space, modular arith-
metic is used

• y2 mod p = (x3 + ax+ b) mod p

• p is a prime number

The figures and examples given previously shown an elliptic curve without modular
arithmetic. But in elliptic curve cryptography, modular arithmetic occurs. The same
principles, and reasoning why it is hard for the attacker, still apply. The plots of the
elliptic curve in modular arithmetic look different however—they now have distinct points
in a finite coordinate space. Search online for examples.

Next we will see how elliptic curves are applied to build cryptographic mechanisms.

15.2 Applications of Elliptic Curve Cryptography
ECC can be applied for various cryptographic mechanisms:

• Secret key exchange, e.g. ECDH, ECMQV

• Digital signatures, e.g. ECDSA, EC-KCDSA

• Public key encryption, e.g. ECIES, PSEC

The most common applications are for secret key exchange, especially with Elliptic
Curve Diffie-Hellman (ECDH), and digital signatures with Elliptic Curve Digital Signa-
ture Algorithm (ECDSA). We will look at ECDH in the following.

Algorithm 15.1 (Elliptic Curve Diffie-Hellman Key Exchange). Assume users A and B
have EC key pairs: PUA = NP , PRA = N , PUB = MP , PRB = M .

1. User A calculates secret SA = N · PUB = NMP using shortcut point addition.

2. User B calculates secret SB = M · PUA = MNP using shortcut point addition.

Diffie-Hellman key exchange can be used using ECC so that both users obtain a shared
secret over an insecure channel. Users agree on a public point P . They generate their
own keypairs, where the private key is some large random number, and the public key is
that number times P . Note that in the key generation, each user can use the shortcut to
calculate NP or MP .

Assume the users exchange public keys. They then use their own private key multi-
plied by the other’s public key. Again, the shortcut point addition can be used. Both
will arrive at the same point (coordinate), i.e. NMP = MNP . This is the shared secret.
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An attacker that knows the public keys and initial point P has to find either N or
M . If those numbers are large enough, this is practically impossible.

Until now we have referred to general or example elliptic curves without specifying
the parameter values. In practice, users of ECC do not select their own parameters, but
rather use standardised parameters.

• Parameters for ECC are usually standardised

– Base point, P (also referred to as generator, G)
– Curve parameters, a and b
– Prime, p
– Other parameters also included

• Common curves (see also https://safecurves.cr.yp.to/):

– NIST FIPS 186: P-256, P-384 and 13 others
– SECG: secp160k1, secp160r1, . . . (NIST curves are a subset)
– ANSI X9.62: prime192, prime256, . . .
– Other curves: Curve25519, Brainpool

SECG in SEC 2 defined a large set of curves. The NIST curves were a subset of the
SEC 2 curves. NSA Suite B curves are a subset of NIST curves.

15.3 Elliptic Curve Cryptography in OpenSSL
In OpenSSL, the ecparam command is used for elliptic curve cryptography parameter
and key generation. Many of the operations are explained the OpenSSL Command Line
Elliptic Curve Operations wiki. You can list the curves supported by OpenSSL:

alice@node1:~$ openssl ecparam -list_curves
secp112r1 : SECG/WTLS curve over a 112 bit prime field
secp112r2 : SECG curve over a 112 bit prime field
secp128r1 : SECG curve over a 128 bit prime field
secp128r2 : SECG curve over a 128 bit prime field
...
brainpoolP512r1: RFC 5639 curve over a 512 bit prime field
brainpoolP512t1: RFC 5639 curve over a 512 bit prime field
SM2 : SM2 curve over a 256 bit prime field

For a selected curve, you can see the detailed parameters. For example, for the
secp256k1 curve:

alice@node1:~$ openssl ecparam -name secp256k1 -text -param_ecn explicit -noout
Field Type: prime-field
Prime:

00:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:
ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:fe:ff:
ff:fc:2f

A: 0

https://safecurves.cr.yp.to/
https://csrc.nist.gov/Projects/elliptic-curve-cryptography
https://www.secg.org/
https://wiki.openssl.org/index.php/Command_Line_Elliptic_Curve_Operations
https://wiki.openssl.org/index.php/Command_Line_Elliptic_Curve_Operations
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B: 7 (0x7)
Generator (uncompressed):

04:79:be:66:7e:f9:dc:bb:ac:55:a0:62:95:ce:87:
0b:07:02:9b:fc:db:2d:ce:28:d9:59:f2:81:5b:16:
f8:17:98:48:3a:da:77:26:a3:c4:65:5d:a4:fb:fc:
0e:11:08:a8:fd:17:b4:48:a6:85:54:19:9c:47:d0:
8f:fb:10:d4:b8

Order:
00:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:
ff:fe:ba:ae:dc:e6:af:48:a0:3b:bf:d2:5e:8c:d0:
36:41:41

Cofactor: 1 (0x1)

Public/private key pairs can be generated from named curve (e.g. secp256k1) or by
first outputting curve parameters to a file. Here we will show the latter:

alice@node1:~$ openssl ecparam -name secp256k1 -out secp256k1.pem
alice@node1:~$ openssl ecparam -in secp256k1.pem -genkey -noout -out alice-k
ey.pem

Alternatively, you could combine the above two commands into a single, by specifying
the -name of the curve rather than the -in file. The OpenSSL Command Line Elliptic
Curve Operations wiki explains the different options, as well as ensuring parameters are
in a format that can be used by different versions of OpenSSL.

Once the curve parameters file (e.g. secp256k1.pem is generated, you can use the
genpkey, key and pkeyutl operations in a similar manner as with Diffie-Hellman in
Section 14.5.

https://wiki.openssl.org/index.php/Command_Line_Elliptic_Curve_Operations
https://wiki.openssl.org/index.php/Command_Line_Elliptic_Curve_Operations
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Chapter 16

Hash Functions and MACs

This chapter introduces two primitives used in authentication and data integrity: cryp-
tographic hash functions and Message Authentication Codes. While these primitives can
be based on symmetric key ciphers (and occasionally public key ciphers), in many cases
they are custom-designed algorithms to meet the specific needs for authentication.

Presentation slides that accompany this chapter can be downloaded in the following
formats: slides only (PDF); slides with notes (PDF, ODP, PPTX).

16.1 Informal Overview of Hashes and MACs
We will start with an informal overview of the concepts, terminology, security goals
and applications. We will primarily refer to hash functions and Message Authentication
Codes.

• Hash functions

– Takes message as input and returns short, unique and random-looking output
– Different inputs will produce different outputs
– Also called: Modification Detection Code (MDC), unkeyed hash function
– Output called: hash (h), digital fingerprint, imprint, message digest
– h = H(M)

• Message Authentication Code (MAC)

– Takes message and a secret key as input and returns short, unique and random-
looking output

– Different inputs (key and/or data) will produce different outputs
– Also called: keyed hash function
– Output called: tag (t), code or MAC
– t = MAC(K,M)

File: crypto/hash.tex, r1951
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Chapter 9 of the Handbook of Applied Cryptography explains the different classifica-
tions of hash functions.

Also note that our focus is on cryptographic purposes of hashes and MACs. They
have other, non-crypto applications, e.g. hash functions for caching. To be more precise
we should refer to cryptographic hash functions, however for brevity we often just refer
to hash functions.

• Pre-image resistance (one-way)

– Given the output (hash/tag), attacker cannot find the input message

• Second pre-image resistance (weak collision resistance)

– Given one message, attacker cannot find another message with same output
(hash/tag)

• Collision resistance (strong collision resistance)

– Attacker cannot find any two messages that produce same output (hash/tag)

Note that there is different terminology used for the properties. The names in paren-
theses are an alternative form.

The first two properties are similar from a security perspective: most algorithms
that have one property also have the other. However the third property of (strong)
collision resistance is harder to provide. That is, some algorithms may have the first two
properties, but not the third of (strong) collision resistance.

• Digital signature (public key crypto + hash)

– preimage, 2nd preimage, collision resistance (if attacker can perform chosen
message attack)

• Message authentication with symmetric key encryption and hash

– none

• Message authentication with MAC only

– preimage, 2nd preimage, collision resistance (if attacker can perform chosen
message attack)

• Message authentication using hash only

– Assumes an authentic channel, where delivery of hash is trusted
– 2nd preimage resistant

• Password storage with hash

– preimage resistant

http://cacr.uwaterloo.ca/hac/
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16.2 Introduction to Hash Functions
Hash functions are algorithms used in different aspects of computing and IT, and espe-
cially important in cryptography. We often distinguish between different hash functions
used for general computing purposes versus those used in cryptography based on the
properties of the function.

• Hash function or algorithm H():

– Input: variable-length block of data M
– Output: fixed-length, small, hash value, h, where h = H(M)
– Another name for hash value is digest
– Output hash values should be evenly distributed and appear random

• A secure, cryptographic hash function is practically impossible to:

– Find the original input given the hash value
– Find two inputs that produce the same hash value

A hash function is an algorithm that usually takes any sized input, like a file or a
message, and produces a short (e.g. 128 bit, 512 bit) random looking output, the hash
value. If you apply the hash function on the same input, you will always get the exact
same hash value as output. In practice, if you apply the hash function on two different
inputs, you will get two different hash values as output.

• Message authentication

• Digital signatures

• Storing passwords

• Signatures of data for malicious behaviour detection (e.g. virus, intrusion)

• Generating pseudorandom number

Hash functions are important in many areas of security. They are typically used to
create a fingerprint/signature/digest of some input data, and then later that fingerprint
is used to identify if the data has been changed. However they also have uses for hiding
original data (storing passwords) and generating random data. Different applications may
have slightly different requirements regarding the security (and performance) properties
of hash functions.

There are three general approaches to design hash functions:

Based on Block Ciphers Well-known and studied block ciphers are used with a mode
of operation to produce a hash function. Generally, less efficient than customised
hash functions.

Based on Modular Arithmetic Similar motivation as to basing on block ciphers, but
based on public key principles. Output length can be any value. Precautions are
needed to prevent attacks that exploit mathematical structure.
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Customised Hash Functions Functions designed for the specific purpose of hashing.
Disadvantage is they haven’t been studied as much as block ciphers, so harder to
design secure functions.

Designing hash functions based on existing cryptographic primitives is advantageous
in that existing knowledge and implementations can be re-used. However as more time
has been spent studying customised hash functions, they are now the approach of choice
due to their security and efficiency.

While a number of cryptographic hash functions have been designed over the years,
the two main ones of interest are MD5 and SHA.

Credit: ECRYPT CSA Algorithms, Key Size and Protocols Report, 2018

Figure 16.1: Selected Cryptographic Hash Functions

Figure 16.1 shows selected hash functions, classified for legacy or future use. It is
taken from the ECRYPT-CSA 2018 report on Algorithms, Key Sizes and Protocols.
The authors classified hash functions as legacy, meaning secure for near future, and
future, meaning secure for medium term. It includes history hash functions no longer
recommended, such as MD5, RIPEMD-128 and SHA-1. There are many other hash
functions. Wikipedia has a nice comparison.

16.3 Properties of Cryptographic Hash Functions
Definition 16.1 (Pre-image of a Hash Value). For hash value h = H(x), x is pre-image
of h. As H is a many-to-one mapping, h has multiple pre-images. If H takes a b-bit input,
and produces a n-bit hash value where b > n, then each hash value has 2b−n pre-images.

A hash function takes a single input and produces a single output. The output is the
hash value and the input is the pre-image of that hash value.

Definition 16.2 (Hash Collision). A collision occurs if x 6= y and H(x) = H(y). Colli-
sions are undesirable in cryptographic hash functions.

https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://www.ecrypt.eu.org/csa/index.html
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://en.wikipedia.org/wiki/Comparison_of_cryptographic_hash_functions
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We will show shortly that collisions should be practically impossible to be found by
an attacker.

Exercise 16.1 (Number of Collisions). If H1 takes fixed length 200-bit messages as input,
and produces a 80-bit hash value as output, are collisions possible?

Solution 16.1 (Number of Collisions). Yes. In this simplistic example (since hash func-
tions normally take variable length messages), there are 2200 possible different inputs. A
hash function maps an input to an output hash value. There are 280 possible output
hash values. That means at least two of the inputs must map to the same output hash
value, i.e. a collision. Assuming the hash function distributes the pre-images to hash val-
ues in a uniformly random manner, then on average, each hash value has 2200−80 = 2120

pre-images.

The point is, that if the input message length is larger than the output hash value
(and in practice, it always is), then collisions are theoretically possible. One aspect of
designing cryptographically secure hash functions is to make it practical impossible for
an attacker to find useful collisions.

Now let’s restate the general requirements of a cryptographic hash function.

Variable input size: H can be applied to input block of any size

Fixed output size: H produces fixed length output

Efficiency: H(x) relatively easy to compute (practical implementations)

Pseudo-randomness: Output of H meets standard tests for pseudo-randomness

Properties: Satisfies one or more of the properties: Pre-image Resistant, Second Pre-
image Resistant, Collision Resistant

Now let’s define several common required properties of cryptographic hash functions.

Definition 16.3 (Pre-image Resistant Property). For any given h, it is computationally
infeasible to find y such that H(y) = h. Also called the one-way property.

Informally, it is hard to inverse the hash function. That is, given the output hash
value, find the original input message.

Definition 16.4 (Second Pre-image Resistant Property). For any given x, it is compu-
tationally infeasible to find y 6= x with H(y) = H(x). Also called weak collision resistant
property.

To break this property, the attacker is trying to find a collision. That is, two input
messages x and y that produce the same output hash value. Importantly, the attacker
cannot choose x. They are given x and must find a different message y that produces a
collision.

Definition 16.5 (Collision Resistant Property). It is computationally infeasible to find
any pair (x, y) such that H(x) = H(y). Also called strong collision resistant property.
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To break this property, again the attacker is trying to find a collision. However in this
case the attacker has the freedom to find any messages x and y that produce a collision.
This freedom makes it easier for the attacker to perform an attack against this property
than against the Second Pre-image Resistant property.

• Pre-image and Second Pre-image Attack

– Find a y that gives specific h; try all possible values of y
– With b-bit hash code, effort required proportional to 2b

• Collision Resistant Attack

– Find any two messages that have same hash values
– Effort required is proportional to 2b/2

– Due to birthday paradox, easier than pre-image attacks

Exercise 16.2 (Brute Force Attack on Hash Function). Consider a hash function to
be selected for use for digital signatures. Assume an attacker has compute capabilities
to calculate 1012 hashes per second and is prepared to wait for approximately 10 days
for a brute attack. Find the minimum hash value length that the hash function should
support, such that a brute force is not possible.

Solution 16.2 (Brute Force Attack on Hash Function). There are two cases to consider.
If the hash function and network is subject to a chosen message attack, then the hash
function should support all three properties. Preimage and Second Preimage Resistant
properties required effort of approximately 2b for the attacker. But attacking Collision
Resistant property requires significantly less effort, 2b/2. Therefore the hash length, b,
must be sufficient so that an attack on Collision Resistant property is not possible.

2b/2

1012 > 10× 24× 60× 60

2b/2 > 1012 × 10× 86400
b/2 > log2(8.64× 1017)
b/2 > 59.583
b > 119.168

Therefore the hash length, b, should be at least 120 bits.
If however a chosen message attack is not possible, then the hash function only needs

to meet the Preimage and Second Preimage Resistant properties. Therefore only a 60
bit hash length is needed (i.e. a weaker hash function).

16.4 Introduction to Message Authentication Codes
In the above we looked at cryptographic hash functions that take a message as input and
produce a hash value as output. One application of hash functions is authentication, as
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we will see in depth in Chapter 17. However note that hash functions do not use any
secret key as input. A variation is to introduce a secret key as input, resulting in a keyed
hash function.

• Hash functions have no secret key

– Can be referred to as unkeyed hash function
– Also called Modification Detection Code

• A variation is to allow a secret key as input, in addition to the message

– h = H(K,M)
– Keyed hash function or Message Authentication Code (MAC)

• Hashes and MACs can be used for message authentication, but hashes also used
for multiple other purposes

• MACs are more common for authentication messages

Now we will shift our focus to MACs, first looking at the general design approaches.

Based on Block Ciphers CBC-MAC, OMAC, PMAC,

Customised MACs MAA, MD5-MAC, UMAC, Poly1305

Based on Hash Functions HMAC

The motivation for different design approaches is similar to that for hash function
design approaches.

Definition 16.6 (Computation Resistance of MAC). Given one or more text-tag pairs,
[xi,MAC(K, xi)], computationally infeasible to compute any text-tag pair [y,MAC(K, y)],
for a new input y 6= xi

Assume an attacker has intercepted messages (text) and the corresponding MACs
(tags). They have i such text-tag pairs. Now there is a new message y. It should
be practically impossible for the attacker to find the corresponding tag of y, that is,
MAC(K, y).

Given what the attacker must do, the security of MACs can be defined based on the
effort of brute force attacks.

• Brute Force Attack on Key

– Attacker knows [x1, T1] where T1 = MAC(K, x1)
– Key size of k bits: brute force on key, 2k

– But . . .many tags match T1

– For keys that produce tag T1, try again with [x2, T2]
– Effort to find K is approximately 2k
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• Brute Force Attack on MAC value

– For xm, find Tm without knowing K
– Similar effort required as one-way/weak collision resistant property for hash

functions
– For n bit MAC value length, effort is 2n

• Effort to break MAC: min(2k, 2n)



Chapter 17

Authentication and Data Integrity

This chapter shows how messages can be authenticated, including ensuring data integrity,
using various cryptographic primitives, especially hash functions and MACs from Chap-
ter 16.

Presentation slides that accompany this chapter can be downloaded in the following
formats: slides only (PDF); slides with notes (PDF, ODP, PPTX).

17.1 Aims of Authentication
There are different types of attacks that can occur with information transfer. In turn,
different mechanisms are available to prevent/detect such attacks.

1. Disclosure: encryption

2. Traffic analysis: encryption

3. Masquerade: message authentication

4. Content modification: message authentication

5. Sequence modification: message authentication

6. Timing modification: message authentication

7. Source repudiation: digital signatures

8. Destination repudiation: digital signatures

We have cover encryption primarily from the perspective of preventing disclosure
attacks, i.e. providing confidentiality. Now we will look at preventing/detecting mas-
querade, modification and repudiation attacks using authentication techniques. Note
that we consider digital signatures as a form of authentication.

• Receiver wants to verify:

1. Contents of the message have not been modified (data authentication)

File: crypto/auth.tex, r1951

183

https://sandilands.info/crypto/slides/crypto-authentication-and-data-integrity-slides-colour.pdf
https://sandilands.info/crypto/slides/crypto-authentication-and-data-integrity-handout-colour.pdf
https://sandilands.info/crypto/slides/crypto-authentication-and-data-integrity-slides-colour.odp
https://sandilands.info/crypto/slides/crypto-authentication-and-data-integrity-slides-colour.pptx


184 CHAPTER 17. AUTHENTICATION AND DATA INTEGRITY

2. Source of message is who they claim to be (source authentication)

• Different approaches available:

– Symmetric Key Encryption
– Hash Functions
– Message Authentication Codes (MACs)
– Public Key Encryption (i.e. Digital Signatures)

We will cover these different approaches in the following sections.

17.2 Authentication with Symmetric Key Encryp-
tion

Figure 17.1: Symmetric Encryption for Authentication

Figure 17.1 shows symmetric key encryption used for confidentiality. On the left is
the sender A, and on the right is the receiver B. In the middle (between the dashed lines)
is the information sent from A to B. Only B (and A) can recover the plaintext. However
in some cases this also provides:

• Source Authentication: A is only other user with key; B knows it must have come
from A

• Data Authentication: successfully decrypted implies data has not been modified

The source and data authentication assumes that the decryptor (B) can recognise that
the result of the decryption, i.e. the output plaintext, is correct.

The assumption about being able to recognise the correct plaintext is explored next.

Question 17.1 (Recognising Correct Plaintext in English). B receives ciphertext (sup-
posedly from A, using shared secret key K):

DPNFCTEJLYONCJAEZRCLASJTDQFY
B decrypts with key K to obtain plaintext:
SECURITYANDCRYPTOGRAPHYISFUN
Was the plaintext encrypted with key K (and hence sent by A)? Is the ciphertext

received the same as the ciphertext sent by A?
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The typical answer for above is yes, the plaintext was sent by A and nothing has
been modified. This is because the plaintext “makes sense”. Our knowledge of most
ciphers (using the English language) is that if the wrong key is used or the ciphertext has
been modified, then decrypting will produce an output that does not make sense (not a
combination of English words).

Question 17.2 (Recognising Correct Plaintext in English). B receives ciphertext (sup-
posedly from A, using shared secret key K):

QEFPFPQEBTOLKDJBPPXDBPLOOVX
B decrypts with key K to obtain plaintext:
FTUEUEFTQIDAZSYQEEMSQEADDKM
Was the plaintext encrypted with key K (and hence sent by A)? Is the ciphertext

received the same as the ciphertext sent by A?

Based on the previous argument, the answer is no. Or more precise, either the plain-
text was not sent by A, or the ciphertext was modified along the way. This is because
the plaintext makes no sense, and we were expected it to do so.

Question 17.3 (Recognising Correct Plaintext in Binary). B receives ciphertext (sup-
posedly from A, using shared secret key K):

0110100110101101010110111000010
B decrypts with key K to obtain plaintext:
0101110100001101001010100101110
Was the plaintext encrypted with key K (and hence sent by A)? Is the ciphertext

received the same as the ciphertext sent by A?

This is harder. We cannot make a decision without further understanding of the
expected structure of the plaintext. What are the plaintext bits supposed to represent?
A field in a packet header? A portion of a binary file? A random key? Without further
information, the receiver does not know if the plaintext is correct or not. And therefore
does not know if the ciphertext was sent by A and has not been modified.

• Many forms of information as plaintext can be recognised at correct

• However not all, and often not automatically

• Authentication should be possible without decryptor having to know context of the
information being transferred

• Authentication purely via symmetric key encryption is insufficient

• Solutions:

– Add structure to information, such as error detecting code
– Use other forms of authentication, e.g. MAC

We will see some of the alternatives in the following sections.
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Figure 17.2: Authentication by Hash and then Encrypt

17.3 Authentication with Hash Functions
Figure 17.2 shows a scheme where the hash function is used to add structure to the
message. Again, user A and B are on the left and right, respectively. The inputs (message
and secret key) and operations are shown in blue. The green values are used to refer to
intermediate values. In the middle in red is the information sent from A to B.

At the receiver, the “received” message and hash are denoted with a subscript rx.
In the normal case (no attack or error), the received values will be identical to the sent
values, i.e. Mrx = M . However if an attack takes place, then it is possible the sent and
received values differ.

When the receiver decrypts, they will be able to determine if the plaintext is correct
by comparing the hash of the message component with the stored hash value. This is one
method of addressing the problem of using just symmetric key encryption on its own for
authentication. This scheme provides confidentiality of the message and authentication.

Figure 17.3: Authentication by Encrypting a Hash

Figure 17.3 shows a different scheme where only the hash value is encrypted. The
receiver can verify that nothing has been changed. This scheme provides authentica-
tion, but does not attempt to provide confidentiality. This is useful in reducing any
computation overhead when confidentiality is not required.

Exercise 17.1 (Attack of Authentication by Encrypting a Hash). If a hash function did
not have the Second Preimage Resistant property, then demonstrate an attack on the
scheme in Figure 17.3.

Solution 17.1 (Attack of Authentication by Encrypting a Hash). The attacker inter-
cepts the message M ||E(K,H(M)) before it reaches B. If the Second Preimage Resistant
property does not hold, then it is possible for an attacker to find another message M ′
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where H(M) = H(M ′). As a result, the attacker can modify M to M ′, but leave the
remainder of the sent information, E(K,H(M)) as is. They forward M ′||E(K,H(M))
to B. User B decrypts with the key shared with A, then compare the hash value with
H(M ′). They match. Therefore user B trusts the message, but in fact it has been subject
to a modification attack.

Figure 17.4: Authentication with Hash of a Shared Secret

Figure 17.4 shows a scheme the provides authentication, but without using any en-
cryption. Avoiding encryption can be desirable in very resource constrained environments.
S is a secret value shared by A and B. Concatenating the secret with the message, and
then hashing the result, allows the receiver the verify the plaintext is correct, and keeps
the secret confidential.

Exercise 17.2 (Attack of Authentication with Hash of Shared Secret). If a hash function
did not have the Preimage Resistant property, then demonstrate an attack on the scheme
in Figure 17.4.

Solution 17.2 (Attack of Authentication with Hash of Shared Secret). The attacker
intercepts the message M ||H(M ||S). If the Preimage Resistant property does not hold,
then it is possible for an attacker, given a hash value, to find the original input, i.e. the
preimage. That is the attacker find M ||S. Since they also know M , it is easy to find S,
i.e. the remaining bits. The attacker now knows the shared secret and could masquerade
as A.

In Section 17.5 we will see the role of hash functions in digital signatures.

17.4 Authentication with MACs
MACs can be used for authentication by themselves, or combined with symmetric key
encryption (e.g. when confidentiality is also required). First we look at using only MACs.

Figure 17.5 shows a scheme where authentication is provided using only a MAC. That
is, encryption is not used.

Now we consider the case of combining MACs with encryption.

• Common to what both confidentiality and authentication (data integrity)

• MACs have advantage over hashes in that if encryption is defeated, then MAC still
provides integrity
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Figure 17.5: Authentication with only MACs

• But two keys must be managed: encryption key and MAC key

• Recommended algorithms used for encryption and MAC are independent

• Three general approaches (following definitions), referred to as authenticated en-
cryption

Definition 17.1 (Encrypt-then-MAC). The sender encrypts the message M with sym-
metric key encryption, then applies a MAC function on the ciphertext. The ciphertext
and the tag are sent, as follows:

E(K1,M)||MAC(K2,E(K1,M))

Two independent keys, K1 and K2, are used.

Definition 17.2 (MAC-then-Encrypt). The sender applies a MAC function on the plain-
text, appends the result to the plaintext, and then encrypt both. The ciphertext is sent,
as follows:

E(K1,M ||MAC(K2,M))

Definition 17.3 (Encrypt-and-MAC). The sender encrypts the plaintext, as well ass
applying a MAC function on the plaintext, then combines the two results. The ciphertext
joined with tag are sent, as follows:

E(K1,M)||MAC(K2,M)

Which of the three approaches is better?

• There are small but important trade-offs between encrypt-then-MAC, MAC-then-
encrypt and encrypt-and-MAC

• Potential attacks on each, especially if a mistake in applying them

• Generally, encrypt-then-MAC is recommended, but are cases against it

• Some discussion of issues:

– Chapter 9.6.5 of Handbook of Cryptography
– Moxie Marlinspike

http://cacr.uwaterloo.ca/hac/
https://moxie.org/blog/the-cryptographic-doom-principle/
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– StackExchange
– Section 1 and 2 of Authenticated Encryption by J Black

• Other authenticated encryption approaches incorporate authenticate into encryp-
tion algorithm

– AES-GCM, AES-CCM, ChaCha20 and Poly1305

It is worth reading some of the discussion about the three approaches.

17.5 Digital Signatures
• Authentication has two aims:

– Authenticate data: ensure data is not modified
– Authenticate users: ensure data came from correct user

• Symmetric key crypto, MAC functions are used for authentication

– But cannot prove which user created the data since two users have the same
key

• Public key crypto for authentication

– Can prove that data came from only 1 possible user, since only 1 user has the
private key

• Digital signature

– Encrypt hash of message using private key of signer

A digital signature has the same purpose of a handwritten signature: to prove that a
document (or message or file) is approved by and originated from one particular person.
If a message is signed, the signer cannot claim they did not sign it (since they are the
only person that could create the signature). Similar, someone cannot pretend to be
someone else, since they cannot create that other persons signature. Of course hand-
written signatures are imprecise and sometimes forgeable. Digital signatures are much
more secure, making it practically impossible for someone to forge a signature or modify
a signed document without it being noticed.

In practice, a digital signature of a message is created by first calculating a hash of
that message, and then encrypting that hash value with the private key of the signer.
The signature is then attached to the message.

The hash function is not necessary for security, but makes signatures practical (the
signature is short fixed size, no matter how long the message is).

• User A has own key pair: (PUA, PRA)

• Signing

https://crypto.stackexchange.com/questions/202/should-we-mac-then-encrypt-or-encrypt-then-mac
https://www.cs.colorado.edu/~jrblack/papers/ae.pdf
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– User A signs a message by encrypting hash of message with own private key:
S = E(PRA, H(M))

– User attaches signature S to message M and sends to user B

• Verification

– User B verifies a message by decrypting signature with signer’s public key:
h = D(PUA, S)

– User B then compares hash of received message, H(M), with decrypted h; if
identical, signature is verified

Figure 17.6: Digital Signature Example
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Chapter 18

Key Distribution and Management

To be completed in the future.

18.1 Recommended Key Sizes
Users of cryptographic systems need to know what algorithms and parameters that should
use, without having to understand the details.

• Various governments, standardisation organisations and researchers have analysed
security level of cryptographic mechanisms

• Provide recommendations for:

– Ciphers to use
– Key lengths or hash lengths
– Security level

• BlueKrypt website summarises recommendations: www.keylength.com

– E.g. from NIST, German BSI, NSA, ECRYPT project, . . .

• ECRYPT-CSA Project 2018 report on Algorithms, Key Size and Protocols (PDF)

The BlueKrypt website summarises recommendations from various organisations. You
should visit the website and explore the different recommendations. While there are
differences, you can get an approximate idea of the key lengths that should be used.

The ECRYPT-CSA project is one effort to compare algorithms. The PDF report gives
a comprehensive summary of different cryptographic mechanisms, analysis of specific
algorithms, and recommendations.

Figure 18.1 shows recommended key (or hash) lengths, in bits, for symmetric key
algorithms (e.g. AES), public key algorithms based on factoring a modulus (e.g. RSA),
public key algorithms based on solving discrete logarithms (e.g. the secret key and mod-
ulus/group length in Diffie-Hellman), public key algorithms based on elliptic curve cryp-
tography, and hash functions.

File: crypto/keys.tex, r1969
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https://www.keylength.com/
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
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Credit: BlueKrypt www.keylength.com, CC-BY-SA 3.0

Figure 18.1: Recommend Key Lengths from ECRYPT-CSA 2018

Three different levels of security are given: legacy, current (near-term) and future
(long-term). Current or future levels of security should be used, although legacy levels
may still be secure for some cases.

https://www.keylength.com/


Chapter 19

Digital Certificates

To be added in the future.

File: crypto/cert.tex, r1792
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Chapter 20

Quantum Computing and
Cryptography

This chapter contains brief notes on concepts related to quantum computing and quantum
cryptography. The intention is to be able to understand the role of quantum computing
with respect to attacking ciphers, as well as the security mechanism quantum cryptogra-
phy provides.

Disclaimer: These are very rough notes. A lack of time and in-depth understanding
of quantum computing on my part means there are likely errors, some parts may be
confusing, and the presentation is quite poor (mainly definitions which are not actually
definitions; insufficient examples or diagrams). However it should be enough to gain an
idea what role quantum technology plays in cryptography. The plan is to update the
content after feedback from others.

This information comes from a collection of resources, including Wikipedia pages,
news articles and videos. Some, but definitely not all, of those sources are, in no particular
order:

• https://quantum.country/

• https://blogs.iu.edu/sciu/2019/07/13/quantum-computing-parallelism/

• https://arxiv.org/abs/quant-ph/0507023

• http://www.columbia.edu/~jpp2139/decoherence-superconducting-qubitsWEBv2.
pdf

• https://www.ibm.com/quantum-computing/

• https://qiskit.org/textbook/preface.html

Presentation slides that accompany this chapter can be downloaded in the following
formats: slides only (PDF); slides with notes (PDF, ODP, PPTX).

File: crypto/quantum.tex, r1971
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https://quantum.country/
https://blogs.iu.edu/sciu/2019/07/13/quantum-computing-parallelism/
https://arxiv.org/abs/quant-ph/0507023
http://www.columbia.edu/~jpp2139/decoherence-superconducting-qubitsWEBv2.pdf
http://www.columbia.edu/~jpp2139/decoherence-superconducting-qubitsWEBv2.pdf
https://www.ibm.com/quantum-computing/
https://qiskit.org/textbook/preface.html
https://sandilands.info/crypto/slides/crypto-quantum-computing-and-cryptography-slides-colour.pdf
https://sandilands.info/crypto/slides/crypto-quantum-computing-and-cryptography-handout-colour.pdf
https://sandilands.info/crypto/slides/crypto-quantum-computing-and-cryptography-slides-colour.odp
https://sandilands.info/crypto/slides/crypto-quantum-computing-and-cryptography-slides-colour.pptx
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20.1 Quantum Computing
Definition 20.1 (Quantum Technology). Emerging technologies that build upon con-
cepts of quantum physics, especially superposition and entanglement. Includes quantum
computing and quantum cryptography.

Note that before quantum physics we had “classical” physics. Similar, we will differ-
entiate between quantum computers and classical computers (those that we know and
use everyday). Also, roughly, quantum physics and quantum mechanics means the same
thing in this discussion, and we refer to quantum-mechanical systems.

To arrive at an explanation of a quantum computer, as well as quantum cryptogra-
phy, we will step through some of the basic principles/ideas. First we will look at how
information is represented in

Definition 20.2 (bit). Binary digit, 0 or 1, as the basic unit of information in classical
computers. For example stored as electric charges in capacities or with magnets in hard
disks. Communicated with electrical or optical pulses. A bit has two states: 0 or 1.

A bit is defined, in an informal manner, just for reference.

Definition 20.3 (qubit). Quantum bit has states represented in a quantum-mechanical
system. The state of a qubit is a vector. A qubit has two basis states, |0〉 and |1〉, but
many possible states in between. Often represented using subatomic particles such as
electrons or photons.

The key distinguishing feature of qubits compared to bits is that qubits have many
possible states, not just 0 and 1.

The notation used is not so important here; it is just a short way that we can identify
the two basis states which are similar to bit 0 and bit 1. We will see next how the qubit
is expressed when in the “in between” states.

Definition 20.4 (Quantum Superposition). Any two (or more) quantum states can be
added together to form another quantum state. That result is a superposition of the
original states.

Superposition is a concept seen in other systems, but quantum superposition is the
main concept that delivers powerful innovations with quantum computers.

Example 20.1 (qubit Superposition). Basis state |0〉 is like bit 0. Basis state |1〉 is like
bit 1. The state 0.6|0〉 + 0.8|1〉 is an example of a superposition of the two basis states,
and forms another state of the qubit. Another example state is 0.866|0〉 + 0.5|1〉. In
general, a superposition state is α|0〉+ β|1〉, where α2 + β2 = 1.

You may think of the concept as superposition as follows. A classical bit has the value
0 or 1. A qubit has the value of 0 or 1, or a value that is both 0 and 1 at the same time.

An important point is that the weights, α and β, can be controlled. This is the key
part of how qubits are used in calculations, as next we see that measuring a qubit returns
0 or 1 with some probability.

Definition 20.5 (The Measurement Problem). Measuring a qubit gives the bit 0 with
probability α2 and bit 1 with probability β2. After measurement the qubit enters (col-
lapses into) the basis state.
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There are two important issues about measuring a qubit. First, the result will either
be 0 or 1. However when the qubit is in a superposition state of α|0〉 + β|1〉, then we
don’t know in advance which value will be output from the measurement. But we do
know that with probability α2 it will be bit 0 and with probability β2 it will be bit 1.
By controlling the weights, α and β, we can increase the probability that a useful output
will be measured.

The other issue is that upon measurement, the qubit reverts to one of the basis states.
It will no longer be a superposition of states.

Definition 20.6 (Quantum Entanglement). Pair of particles are dependent on each
other, meaning the quantum state of one particle impacts on the other.

Quantum entanglement is another concept, which you may hear about when referring
to quantum communications and quantum teleportation. We will not cover it in any
depth here, but present a simple example in the following.

Entanglement can be achieved for example by firing a laser at a crystal that causes
two photons to split but be entangled.

Example 20.2 (qubit Entanglement). If 2 qubits are entangled, then if one qubit is
measured to be 0, then the other qubit will also be measured to be 0 (and similar if
measured as 1).

Experiments have had qubits entangled over distances of 10’s of kilometres.
Now we have some properties of qubits, let’s start to define how computations are

performed.

Definition 20.7 (Quantum Computation (informal)). A quantum computation starts
with a set of qubits, modifies their states to perform some intended calculation, and then
measures the result.

This definition of quantum computation is quite vague. How are the states of the
qubits modified? Using logic gates to form circuits. One point to note is that at the
end the result is measured. As noted before, measuring a quantum system will return
some binary value with some probability and collapes any superpositions. This means
that any speed up to be potentially be obtained by quantum computing needs to be done
before the measurement.

Definition 20.8 (Classical Computer Circuits). Circuits in classical computers are built
from logic gates, such as AND, NOT, OR, XOR, NAND and NOR.

Note that AND and NOT gates are the universal set: everything else can be built
from them.

Definition 20.9 (Quantum Computer Circuits). Circuits in quantum computers are
built from quantum logic gates. Single-bit gates include NOT, Hadamard, Phase and
Shift gates; two-bit gates include Controlled NOT and SWAP; as well as 3-qubit Toffoli
and Fredkin gates. Not all quantum gates have analagous operation with classical gates.

A single-bit gate takes a single qubit as input and produces a single qubit as output.
Now we can arrive at a simple definition of a quantum computer.
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Definition 20.10 (Quantum Computer). A (digital) quantum computer is built from
a set of quantum logic gates, i.e. quantum circuits, and is said to perform quantum
computation on qubits. An analog quantum computer also operates on qubits, but rather
than using logic gates, using concepts of quantum simulation and quantum annealing.

We are only covering a digital quantum computer. The topics of quantum simulation
and quantum annealing are not covered here.

20.2 Quantum Algorithms
Definition 20.11 (Quantum Register). A quantum register is a set of n qubits. With a
classical 2-bit register, there are four possible states: 00, 01, 10 and 11. A quantum 2-bit
register can be in all four states at one time, as it is a superposition of the four states:
α|00〉 + β|01〉 + γ|10〉 + δ|11〉. Measuring the register will return one of the four states,
with probability depending on the weights.

For example, if the two qubits are constructed so that β = 0 and δ = 0, and α = γ =
1/
√

2, then there is 50% probability of measuring 00 and 50% probability of measuring
10. There is no chance of measuring 01 or 11.

Now we get to the benefit of quantum computing.

Definition 20.12 (Quantum Parallelism). Consider a circuit that takes x as input and
returns f(x) as output. Normally, passing in an input, sees the function applied once,
and one output produced. Using quantum gates, such as a Fredkin gate, if x is a quantum
register with a superposition of states, it is passed as input and the function is applied
once. But the function operates on all of the states of the quantum register, returning
output that contains information about the function applied to all states.

The parallelism that can be achieved is the promising feature of quantum computing.
The following example aims to illustrate the idea.

Example 20.3 (Classical Function). Consider the function f(x) = 3x mod 8. Assume
we want to calculate all possible answers for x = 0, 1, 2, . . . , 7. With a classical computer
we would have a 3-bit input to a circuit that calculates f(x), i.e. performs the modular
multiplication. To find all possible answers we would calculate f(0) = 0, f(1) = 3,
f(2) = 6, f(3) = 1, f(4) = 4, f(5) = 7, f(6) = 2, and f(7) = 5. The function/circuit is
applied 8 times.

The above example used decimal values, but also consider their binary values, i.e. the
function is applied to 8 values: 000, 001, 010, 011, 100, 101, 110 and 111.

Example 20.4 (Quantum Function). Now consider the same function, f(x) = 3x mod 8,
but implemented with a quantum circuit. We initialise a quantum register with 3 qubits.
This register is in a superposition of 8 states at once: 000, 001, 010, 011, 100, 101, 110
and 111. The quantum register is input to the circuit. The output register will have 3
qubits in a superposition that contains all 8 answers. By applying the function/circuit
only once, we obtain an output that has information about all 8 answers. This represents
a speedup of a factor of 8 compared to the classical example!
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While this a contrived example with many real flaws, it aims to demonstrate that
quantum parallelism is achieved by the fact that the quantum calculation is one all
states of the quantum register, rather than just a single value as in classical computing.

You should already recognise a problem with the above example. While the output
quantum register contains qubits in a superposition that contains information about all
8 answers, when we measure the output register we get just one of those answers with
some probability, i.e. the measurement problem. If the probabilities were all equal, i.e.
12.5%, then when we measure the output we would get a value of 000 with probability
12.5%. If we did it again, we may get 011 with probability 12.5%. So the answer is
essentialy useless to us; we’d need to calculate 8 times, resulting in the same effort as a
classical computer. Quantum algorithms are designed so that the weights/probabilities
of the output do give the “correct” answer with high probability.

Definition 20.13 (Quantum Algorithm). A quantum algorithms are usually a com-
bination of classical algorithms/computations and quantum computations. First pre-
processing is performed using classical techniques. Then the input quantum register is
prepared, a quantum calculation performed, and output quantum register is measured.
There may be some post-processing of the result with classical techniques. If the result
is as desired, then exit, otherwise repeat the process. Repetition is usually needed due
to both errors in quantum calculations and the probabilistic nature of the result.

The main point to note is that “quantum” algorithms actually are a hybrid of classical
algorithms and quantum calculations.

The following are two examples of quantum algorithms which are relevant to cryp-
tography.

Definition 20.14 (Grover’s Search Algorithm). Consider a database of N unstructured
data items (e.g. not sortable). Search is performed by applying a boolean function on
input that returns true if correct answer. Classical search takes O(N) applications of
function. Grover’s quantum search algorithm takes O(

√
N) applications of function.

Grover’s search algorithm can be used for a brute-force attack. For example with
a symmetric key cipher, assume we have a function that decrypts the ciphertext and
returns true of the obtained plaintext is correct.

Key length [bits] Classical Quantum
64 264

√
264 = 232

128 2128
√

2128 = 264

256 2256
√

2256 = 2128

512 2512
√

2512 = 2256

Table 20.1: Worst Case Brute Force Attempts with Classical and Quantum Algorithms

Table 20.1 shows worst case number of attempts a brute-force attack on a key , using
either a classical algorithm or Grover’s quantum search algorithm. Note that

√
2N = 2N/2.

While the quantum algorithm produces a significant speedup, with regards to protecting
symmetric key ciphers against brute force attacks using quantum computers, an easy
solution is to double the key length. That is, if a 128-bit key was recommended as secure
against brute force attacks using today’s classical computers, then to be secure against
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brute force attacks with future quantum computers, use a 256-bit key. While using a
double length key incurs a performance drop for AES, it is not so substantial that makes
AES too slow to use, and does not require a new algorithm design.

Now let’s look at the promising benefits of quantum computing regarding breaking
ciphers, factoring numbers. Recall that integer factorisation is a problem that public
key algorithms, such as RSA, are built around. That is, the security of RSA depends
on the difficulty of integer factorisation. Let’s look at how the best known algorithms
on classical and quantum computers perform (we will not look at how those algorithms
actually work).

Definition 20.15 (Integer Factorisation with General Number Field Sieve). Given an
integer N , find its prime factors. A general number field sieve on classical computer takes
subexponential time, about 2O(N1/3).

Definition 20.16 (Integer Factorisation with Schor’s Algorithm). Given an integer N ,
find its prime factors. Shor’s algorithm on a quantum computer takes polynominal time,
about logN .

The paper A Blueprint For Building a Quantum Computer by Rodney Van Meter and
Clare Horsman, published in Communications of the ACM, October 2013, has compared
the speeds for specific implementations of algorithms on classical and quantum computers.
Note that the following results are mainly theoretical, estimating the performance based
on several actual measurements with smaller numbers.

Credit: Figure 1 from A Blueprint For Building a Quantum Computer by Van Meter and Horsman, Communications of the ACM, Oct 2013.

Copyright by Van Meter and Horsman and ACM.

Figure 20.1: Scaling the classical number field sieve (NFS) vs. Shor’s quantum algorithm
for factoring

Figure 20.1 shows estimated time to factor a L-bit number. The number field sieve on
the solid black line is using a classical computer. The cross on that line is for the point
of L=768 bits and 3300 CPU years. The NIST recommended key length is L=2048 bits.
The lines labelled with Shor are using a quantum computer. The four lines for Shor are

http://doi.acm.org/10.1145/2494568
http://doi.acm.org/10.1145/2494568
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different algorithms and architectures, as well as different quantum clock speeds (1Hz vz
1MHz).

One way to read the figure is to look at the number of bits that can be factored in 1
year. A 1GHz classical computer using number field sieve could factor a 500 bit number.
A quantum computer using Shor’s algorithm and with a 1 Hz clock could factor a 80 bit
number. But with a 1 MHz clock it could factor a 8000 bit number.

Is it likely that quantum computers will break RSA in the near future? Michele
Mosca and Marco Piani, from evolutionQ and the Global Risk Institute, interviewed 22
experts in quantum computing, and one question was about the likelihood that quantum
computers being a significant threat to public-key cryptosystems in the future.

Credit: Quantum Threat Timeline Report, Michele Mosca and Marco Piani, from evolutionQ and the Global Risk Institute, 2019.

Figure 20.2: Likelihood quantum computers significant threat to public-key cryptosys-
tems

Figure 20.2, from the Quantum Threat Timeline Report, shows the opinions of 22
quantum computing experts. Most think quantum computing will not be a threat to
public-key cryptosystems in the next 5 years, and more than half, also in the next 10
years. Almost all think there is a 50% or greater chance that quantum computing will
threaten RSA in the next 20 years.

20.3 Issues in Quantum Computing
Definition 20.17 (Decoherence in Quantum Computing). In their coherent state, qubits
are described as a superposition of states. The loss of coherence (i.e. decoherence) means
the qubits revert to their “classical” basis states. They no longer exhibit the unique
quantum properties. Decoherence times vary for different system; for example IBM
quantum computers about 100 µs.

Increasing the time that qubits can hold their coherent state is one practical aim of
quantum computing. See the T2 column in the Quantum Computing Report for example
values.

https://globalriskinstitute.org/publications/quantum-threat-timeline/
https://globalriskinstitute.org/publications/quantum-threat-timeline/
https://quantumcomputingreport.com/scorecards/qubit-quality/
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Definition 20.18 (Errors in Quantum Computing). Errors frequently occur due to var-
ious reasons including: decay of individual qubits; environmental defects that impact
multiple qubits; interference between qubits and other systems; accidental measurement
of qubits; and even loss of qubits. Significant research effort is on designing error cor-
recting schemes.

Error correcting schemes introduce an overhead, and one concern is that the overhead
needed to deal with errors may mean quantum computing does not produce significant
advantages over classical computing.

Credit: Google Research, A Preview of Bristlecone, Google’s New Quantum Processor

Figure 20.3: Quantum error rates vs qubits and intended direction of Google Quantum
Research

Figure 20.3, taken from A Preview of Bristlecone, Google’s New Quantum Processor
by Google Quantum AI Lab, illustrates the conceptual relationship between error rates
and qubits. The error correction threshold indicates error rates below this are needed for
error correction to work.

Definition 20.19 (Cooling). For qubits to maintain coherence, quantum circuits need
to be very cold, approaching 0 Kelvin or -273 C.

Finally, what are the quantum computers available today?

• For more detailed comparison see the Quantum Computing Report

• Google: Sycamore 53-qubit (2019)

• IBM: 5- and 16-qubit machines available for free; 20-qubit machine available via
cloud; 53-qubit machine (2019)

• Rigetti: Aspen-7 28-qubits (2019)

• D-Wave systems: 2000Q has 2048-qubits, however using different technology (quan-
tum annealing) that cannot be used to solve Shor’s algorithm

https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://quantumcomputingreport.com/scorecards/qubit-count/
https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html
https://www.ibm.com/blogs/research/2020/01/quantum-volume-32/
https://rigetti.com/
https://www.dwavesys.com/
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20.4 Quantum Cryptography
Definition 20.20 (Quantum Cryptography). Quantum cryptography refers to tech-
niques that apply principles of quantum systems to build cryptographic mechanisms.
The most widely technique is quantum key distribution. Others approaches often involve
agreements between parties that do not trust each other.

Note that while quantum computers can be used to break cryptographic mechanisms
(e.g. using Schor’s algorothm), quantum cryptography is separate topic of quantum sys-
tems that is about creating cryptographic mechanisms. Quantum cryptographic mecha-
nisms will use quantum computers.

Definition 20.21 (Quantum Key Distribution (informal)). The aim of Quantum Key
Distribution (QKD) is for two parties to exchange a secret key (similar to DHKE). A
chooses random bits, as well as corresponding random modification of states (called
sending basis). Applied together using a fixed scheme, A generates and sends photons in
quantum states. B chooses own random measuring basis and measures the photons. A
then informs B their sending basis, and allowing B to recognise which of the measured
photons to consider (i.e. those where the measuring basis and sending basis match). B
uses the resulting bits as a secret key, however only after confirming with A that there
are no errors in the key (e.g. sending a challenge encrypted with the key).

For a formal explanation of QKD, with an example see: https://www.cse.wustl.
edu/~jain/cse571-07/ftp/quantum/ or the original paper on one scheme BB84 at
https://doi.org/10.1016/j.tcs.2014.05.025.

Credit: Bennett and Brassard, Quantum cryptography: Public key distribution and coin tossing, Theoretical Computer Science, Dec 2014,

Copyright Elsevier.

Figure 20.4: Example of BB84 Quantum Key Distribution

Figure 20.4 is taken from the original 1984 article by Bennet and Brassard, which was
re-published by Elsevier in the journal Theoretical Computer Science in 2014. BB84 is
a scheme still used for quantum key distribution. The paper, in section III, has a nice
explanation of the protocol.

Definition 20.22 (QKD security (informal)). An attacker C tries to learn the secret
key between A and B, without A or B knowing. Therefore the attacker has to measure
the photons sent by A. However, as the photons are a superposition of states, when C
measures them, they are changed. As a result, B will receive changed photons, and when
they check the secret key with A, the check will fail.

https://www.cse.wustl.edu/~jain/cse571-07/ftp/quantum/
https://www.cse.wustl.edu/~jain/cse571-07/ftp/quantum/
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1016/j.tcs.2014.05.025
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The security of quantum key distribution depends on that measurement problem, i.e.
that measuring a quantum superposition state, changes the state. The attacker cannot
measure the communications between A and B without changing the communications.
It is easy for A and B to recognise if the communications have been changed.

20.5 Cryptography in the Quantum Era
Given that attacks on existing, widely-used ciphers such as RSA may be possible in the
(long-term) future using quantum computers, researchers and standardisation organisa-
tions are working on ciphers that are resistant to attacks with quantum technologies.
This is referred to as post-quantum cryptography.

• NIST Post-Quantum Cryptography project called for proposals on quantum-resistant
public key cryptography algorithms

– Digital signatures, public-key encryption, key exchange
– 69 submissions in round 1 (2017)
– 26 algorithms in round 2 (2019)
– 7 finalists in round 3 (2020)
– Plan to standardise in 2022/2023

• Open Quantum Safe has open-source software for prototyping quantum-resistant
cryptography, including forks of OpenSSL, OpenSSH and OpenVPN

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
https://openquantumsafe.org/
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Appendix A

Cryptography Assumptions and
Principles

Cryptography is a large, complex topic. However even if the details are not understood,
we can still apply concepts from cryptography to design secure systems. This chapter
lists some common assumptions that are made about cryptographic techniques as well
as some principles that are used in designing secure systems. Although in theory the
assumptions do not always hold, they are true in many practical situations (and when
they are not true, it will be made clear).

A.1 Assumptions

A.1.1 Encryption
A1. Symmetric key cryptography is also called conventional or secret-key cryptography.

A2. Public key cryptography is also called asymmetric key cryptography.

A3. In symmetric key crypto, the same secret key, K, is used for encryption, E(), and
decryption, D(). The secret is shared between two entities, i.e. KAB.

A4. In public key crypto, there is a pair of keys, public (PU ) and private (PR). One key
from the pair is used for encryption, the other is used for decryption. Each entity
has their own pair, e.g. (PUA, PRA).

A5. Encrypting plaintext (or a message), P or M , with a key, produces ciphertext C,
e.g. C = E(KAB, P ) or C = E(PUA,M).

A6. Decrypting ciphertext with the correct key will produce the original plaintext. The
decrypter will be able to recognise that the plaintext is correct (and therefore the
key is correct). E.g. P = D(KAB, C) or M = D(PRA, C).

A7. Decrypting ciphertext using the incorrect key will not produce the original plain-
text. The decrypter will be able to recognise that the key is wrong, i.e. the decryp-
tion will produce unrecognisable output.

File: crypto/secassume.tex, r1697
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A.1.2 Knowledge of Attacker
A8. All algorithms used in cryptography, e.g. encryption/decryption algorithms, hash

functions, are public.

A9. An attacker knows which algorithm is being used, and any public parameters of
the algorithm.

A10. An attacker can intercept any message sent across a network.

A11. An attacker does not know secret values (e.g. symmetric secret key KAB or private
key PRA).

A12. Brute force attacks requiring greater than 280 operations are impossible.

A.1.3 Authentication with Symmetric Key and MACs
A13. An entity receiving ciphertext that successfully decrypts with symmetric secret key

KAB knows that the original message has not been modified and that it originated
at one of the owners of the secret key (i.e. A or B).

A14. An entity receiving a message with attached MAC that successfully verifies, knows
that the message has not been modified and originated at one of the owners of the
MAC secret key.

A.1.4 Hash Functions
A15. A cryptographic hash function, H(), takes a variable sized input message, M , and

produces a fixed size, small output hash, h, i.e. h = H(M).

A16. Given a hash value, h, it is impossible to find the original message M .

A17. Given a hash value, h, it is impossible to find another message M ′ that also has a
hash value of h.

A18. It is impossible to find two messages, M and M ′, that have the same hash value.

A.1.5 Digital Signatures
A19. A digital signature of a message M is the hash of that message encrypted with the

signers private key, i.e. S = E(PR,H(M))

A20. An entity receiving a message with an attached digital signature knows that that
message originated by the signer of the message.

A.1.6 Key Management and Random Numbers
A21. A secret key can be exchanged between two entities without other entities learning

its value.

A22. Any entity can obtain the correct public key of any other entity.
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A23. Pseudo-random number generators (PRNG) can generate effectively true random
numbers.

A.2 Principles
P1. Experience: Algorithms that have been used over a long period are less likely to

have security flaws than newer algorithms.

P2. Performance: Symmetric key algorithms are significantly faster than public key
algorithms.

P3. Performance: The time to complete a cryptographic operation is linearly propor-
tional with the input data size.

P4. Key Distribution: Keys should be distributed using automatic means.

P5. Key Re-use: The more times a key is used, the greater the chance of an attacker
discovering that key.

P6. Multi-layer Security: Using multiple overlapping security mechanisms can increase
the security of a system.
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Appendix B

Data Formats

Information that is to be secured can be represented in a variety of data formats. In
this chapter we list key data formats used throughout the book, and more generally in
cryptography. We demonstrate tools for manipulating the data.

B.1 Common Data Formats

B.1.1 English Alphabet
A character set of the 26 letters in the English alphabet:

a b c d e f g h i j k l m n o p q r s t u v w x y z
Unless otherwise stated, case insensitive. A case sensitive variation would have 52

characters in the set. Other variations are possible, where additional characters are
included (e.g. digits, punctuation) or different languages are used.

Alphabetical ordering is used, and often the letters are mapped to integers, starting
at a = 0.

Primarily seen in classical ciphers.

B.1.2 Printable Keyboard Characters
A character set consisting of the characters printable from the keys on a typical keyboard.
On US/English keyboards, usually 94 characters:

• 26 uppercase English letters

• 26 lowercase English letters

• 10 digits

• 32 punctuation characters (see your keyboard)

Keys such as SPACE, TAB and ENTER are usually not considered printable.
Primarily seen in applications dealing with user input, e.g. passwords.

File: crypto/formats.tex, r1766
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B.1.3 Binary Data
In modern systems, all data is represented as binary values. This includes text, docu-
ments, images, applications, audio and video. There are different encodings to map these
data into binary (some of which are described in this chapter).

In this book, when referring to sequence of bits, the 1st bit refers to the left most bit
in the sequence. (In some cases, bits are indexed starting at 0, e.g. the 0th bit, the 1st
bit; it is made clear when this is the case). For example, for the sequence 01001111, the
1st bit is 0, the 2nd bit is 1, the 3rd bit is 0 and the last (8th) bit is 1. Also, the most
significant bit is the left most bit. In the previous example, the 2nd bit has the decimal
value of 64, and the last (8th) has the decimal value of 1.

Note that encoding and decoding is not equivalent to encryption and decryption.
That is, encoding (from say ASCII to Base64) does not provide any significant security
value as there is not key involved. Even if an attacker did not know the encoding used,
they could easily try all possible encodings.

B.1.4 ASCII
American Standard Code for Information Interchange (ASCII) is a common standard
for representing keyboard/computer characters in a digital format. Also referred to as
the International Reference Alphabet and a subset of Unicode, there are 128 characters
in the ASCII character set. Section B.1 shows the mappings to decimal values, while
Section B.2 shows the mapping to 7-bit binary values (take the 3 bits from the column
and then the 4 bits from the row).

Figure B.1: International Reference Alphabet, or ASCII, Table in Decimal

While ASCII can be represented in 7-bits, it is commonly used in computer files as
8-bit values, where the 1st bit is always a binary 0. For example, uppercase A is binary
01000001.

Ordering is by the numerical value, e.g. ! comes before A, which comes before a.
You can see the standard 94 printable keyboard characters from ! through to ˜.
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Figure B.2: International Reference Alphabet, or ASCII, Table in Binary

B.1.5 Hexadecimal
A character set with 16 characters:

0 1 2 3 4 5 6 7 8 9 A B C D E F
When communicating binary data (to humans), it is sometimes represented in hex-

adecimal as it uses four times less characters (4 bits per character), and has less chance
of reading/writing errors.

Examples of using hexadecimal to illustrate binary data includes: secret keys, public
key pair values, very large numbers (e.g. large primes), ciphertext, and addresses.

B.1.6 Base64
An alternative to hexadecimal representation of binary data is using Base64 encoding.
Base64 is a character set of 64 characters:

• 26 uppercase English letters

• 26 lowercase English letters

• 10 digits

• 2 punctuation characters which are + and /

The = character is used to indicate padding (and is not part of the 64 characters).
See online resources for an explanation of padding.

https://en.wikipedia.org/wiki/Base64
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Base64 maps 6 bits to a character and therefore is more concise than hexadecimal. It
is often used when communicating binary data in text-based protocols in networks (e.g.
including binary data in a HTML page or email).

B.2 Conversions using Linux
In Linux, xxd is useful for viewing text files (containing ASCII) in binary and hexadeci-
mal. See Section 3.1.1.

For Base64, the command base64 can be used:

$ echo -n "This is a message." > data.txt
$ xxd data.txt
00000000: 5468 6973 2069 7320 6120 6d65 7373 6167 This is a messag
00000010: 652e e.
$ base64 data.txt
VGhpcyBpcyBhIG1lc3NhZ2Uu
$ base64 data.txt > data.b64
$ base64 -d data.b64
This is a message.$

To convert ASCII characters to their decimal value, in a Linux Bash terminal you can
use printf (newlines have been added below to make the output clearer):

$ printf ’%d’ "’A"
65
$ printf ’%d’ "’a"
97
$ printf ’%d’ "’!"
33
$ printf ’%d’ "’~"
126

It is a little more cumbersome in the opposite direction:

$ printf "\\$(printf ’%03o’ "65")"
A
$ printf "\\$(printf ’%03o’ "97")"
a
$ printf "\\$(printf ’%03o’ "33")"
!
$ printf "\\$(printf ’%03o’ "126")"
~

You are advised to simply lookup the table or find another tool, rather than use the
Bash commands as above.

B.3 Conversions using Python
There are different ways to convert between varying formats in Python. The following
code shows some examples. The code is also available in the Steve’s Workshops GitHub

https://github.com/steve-cqu/workshops/blob/master/python/demos/conversions.py
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repository. The code below is version 4c0faec. An example of the output from running
the conversion functions follows the code.

Listing B.1: Demonstration of converting between different formats in Python
1 ’’’
2 Convert data between different formats. No (or very little) error checking
3 is performed. You need to make sure the input data for the conversion is
4 in the format specified.
5 ’’’
6
7 import base64
8 import logging
9 logger = logging.getLogger("Conversions")
10
11 def bytes_to_text(b):
12 return b.decode(’utf-8’)
13
14 def text_to_bytes(s):
15 return s.encode(’utf-8’)
16
17 def bytes_to_base64(b):
18 return bytes_to_text(base64.b64encode(b))
19
20 def base64_to_bytes(b64):
21 return base64.b64decode(b64)
22
23 def bytes_to_hex(b):
24 return b.hex()
25
26 def hex_to_bytes(h):
27 return bytes.fromhex(h)
28
29 def base64_to_text(b64):
30 return bytes_to_text(base64_to_bytes(b64))
31
32 def base64_to_hex(b64):
33 return bytes_to_hex(base64_to_bytes(b64))
34
35 def text_to_base64(s):
36 return bytes_to_base64(text_to_bytes(s))
37
38 def hex_to_base64(h):
39 return bytes_to_base64(hex_to_bytes(h))
40
41 def text_to_hex(s):
42 return bytes_to_hex(text_to_bytes(s))
43
44 def hex_to_text(h):
45 return bytes_to_text(hex_to_bytes(h))
46
47 def text_to_list(s):
48 return list(s)
49
50 def list_to_text(l):
51 return "".join(l)
52

https://github.com/steve-cqu/workshops/blob/master/python/demos/conversions.py
https://github.com/steve-cqu/workshops/blob/master/python/demos/conversions.py
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53 def hex_to_binary(h):
54 return bin(int(h,16))[2:]
55
56 def binary_to_hex(bi):
57 return hex(int(bi,2))[2:]
58
59 def binary_to_bytes(bi):
60 return hex_to_bytes(binary_to_hex(bi))
61
62 def bytes_to_binary(b):
63 return hex_to_binary(bytes_to_hex(b))
64
65 def text_to_binary(s):
66 return bytes_to_binary(text_to_bytes(s))
67
68 def binary_to_text(bi):
69 return bytes_to_text(binary_to_bytes(bi))
70
71 def base64_to_binary(b64):
72 return bytes_to_binary(base64_to_bytes(b64))
73
74 def binary_to_base64(bi):
75 return bytes_to_base64(binary_to_bytes(bi))
76
77
78 def letter_to_number(c, charset="lowercase"):
79 ’’’
80 Convert a single character into a number
81 Converts a -> 0, b -> 1, c -> 2, ... or
82 if uppercase A -> 0, B -> 1, C -> 2, ...
83 ’’’
84
85 if charset == "uppercase":
86 return ord(c) - 65
87 else:
88 return ord(c) - 97
89
90 def number_to_letter(n, charset="lowercase"):
91 ’’’
92 Convert a number into a single character
93 See char_to_num(c) - this is the opposite
94 ’’’
95
96 if charset == "uppercase":
97 return chr(n + 65)
98 else:
99 return chr(n + 97)
100
101 def text_to_numbers(text, charset="lowecase"):
102 ’’’
103 Convert a string into a list of numbers
104 :Example:
105 - input: str = "abc"
106 - output: list = [0, 1, 2]
107 ’’’
108
109 return [letter_to_number(c, charset) for c in text]
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110
111 def numbers_to_text(nums, charset="lowercase"):
112 ’’’
113 Convert a list of numbers into a string
114 See text_to_nums(text) - this is the opposite
115 ’’’
116
117 return ’’.join([num_to_char(n, charset) for n in nums])
118
119
120 if __name__==’__main__’:
121 import sys
122 import argparse
123
124 # Process command line arguments
125 parser = argparse.ArgumentParser(
126 description="Convert␣between␣different␣formats␣for␣cryptography",
127 formatter_class=argparse.RawDescriptionHelpFormatter,
128 epilog=’’’
129 example (command-line):
130 $ python conversions.py
131 ’’’)
132 parser.add_argument("-l", "--log",
133 choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"])
134 args = parser.parse_args()
135
136 # Enable logging based on command line input
137 if args.log is None:
138 numeric_log_level = logging.ERROR
139 else:
140 numeric_log_level = getattr(logging, args.log.upper(), None)
141 if not isinstance(numeric_log_level, int):
142 raise ValueError(’Invalid␣log␣level:␣%s’ % args.log)
143 logging.basicConfig(level=numeric_log_level)
144
145 data1_str = "Hello"
146 data1_bytes = text_to_bytes(data1_str)
147 data1_b64 = text_to_base64(data1_str)
148 data1_hex = text_to_hex(data1_str)
149 data1_bin = text_to_binary(data1_str)
150 data1_list = text_to_list(data1_str)
151
152 print("Converting␣Text␣to␣...")
153 print("␣␣␣Text:" + str(data1_str))
154 print("␣␣␣Bytes␣:" + str(data1_bytes))
155 print("␣␣␣Base64:" + str(data1_b64))
156 print("␣␣␣Hex␣␣␣:" + str(data1_hex))
157 print("␣␣␣Binary:" + str(data1_bin))
158 print("␣␣␣List␣␣:" + str(data1_list))
159
160 data2_b64 = "SGVsbG8="
161 data2_bytes = base64_to_bytes(data2_b64)
162 data2_str = base64_to_text(data2_b64)
163 data2_hex = base64_to_hex(data2_b64)
164 data2_bin = base64_to_binary(data2_b64)
165
166 print("Converting␣Base64␣to␣...")
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167 print("␣␣␣Text:" + str(data2_str))
168 print("␣␣␣Bytes␣:" + str(data2_bytes))
169 print("␣␣␣Base64:" + str(data2_b64))
170 print("␣␣␣Hex␣␣␣:" + str(data2_hex))
171 print("␣␣␣Binary:" + str(data2_bin))
172
173 data3_hex = "48656c6c6f"
174 data3_bytes = hex_to_bytes(data3_hex)
175 data3_str = hex_to_text(data3_hex)
176 data3_b64= hex_to_base64(data3_hex)
177 data3_bin = hex_to_binary(data3_hex)
178
179 print("Converting␣Hex␣to␣...")
180 print("␣␣␣Text:" + str(data3_str))
181 print("␣␣␣Bytes␣:" + str(data3_bytes))
182 print("␣␣␣Base64:" + str(data3_b64))
183 print("␣␣␣Hex␣␣␣:" + str(data3_hex))
184 print("␣␣␣Binary:" + str(data3_bin))
185
186 data4_chr = ’c’
187 data4_num = letter_to_number(data4_chr)
188 data5_str = "hello"
189 data5_nums = text_to_numbers(data5_str)
190
191 print("Letter␣" + data4_chr + "␣is␣" + str(data4_num))
192 print("Text␣" + data5_str + "␣is␣" + str(data5_nums))

sgordon@chilli:~/git/workshops/python/demos$ python3 conversions.py
Converting Text to ...

Text:Hello
Bytes :b’Hello’
Base64:SGVsbG8=
Hex :48656c6c6f
Binary:100100001100101011011000110110001101111
List :[’H’, ’e’, ’l’, ’l’, ’o’]

Converting Base64 to ...
Text:Hello
Bytes :b’Hello’
Base64:SGVsbG8=
Hex :48656c6c6f
Binary:100100001100101011011000110110001101111

Converting Hex to ...
Text:Hello
Bytes :b’Hello’
Base64:SGVsbG8=
Hex :48656c6c6f
Binary:100100001100101011011000110110001101111

Letter c is 2
Text hello is [7, 4, 11, 11, 14]
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Organisations and People in
Cryptography

C.1 Organisations in Cryptography and Security

C.1.1 National Institute of Standards and Technology
National Institute of Standards and Technology (NIST) https://www.nist.gov/

C.1.2 International Association for Cryptologic Research
International Association for Cryptologic Research (IACR) https://www.iacr.org/

C.1.3 Australian Signals Directorate
Australian Signals Directorate (ASD) https://www.asd.gov.au/

C.1.4 National Security Agency
National Security Agency (NSA) https://www.nsa.gov/

C.1.5 Government Communications Headquarters
Government Communications Headquarters (GCHQ) https://www.gchq.gov.uk/

C.1.6 Institute of Electrical and Electronics Engineers
Institute of Electrical and Electronic Engineers (IEEE) https://www.ieee.org/

C.1.7 Internet Engineering Task Force
Internet Engineering Task Force (IETF) https://www.ietf.org/

File: crypto/orgs.tex, r1805
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C.2 People in Cryptography and Security
This section lists a selection of people that have made important and/or interesting
contributions to security and cryptography. The list does not attempt to be definitive,
and some key people are omitted. The biographies are brief, with information mainly
taken from Wikipedia. Again, the biographies doe not attempt to cover all aspects of
the person’s life, but rather to trigger your interest to explore the backgrounds of these
and other people further.

C.2.1 Diffie, Hellman and Merkle

Figure C.1: Diffie, Hellman and Merkle

While studying his Bachelor degree in computer science in 1974, Ralph Merkle de-
veloped a set of puzzles that allowed two users to agree upon a shared secret key by
exchanging messages over an unsecure channel, even if they have no common secrets
known beforehand. This was unique as up until then, as it was normally assumed users
must manually exchange a secret before than can send messages. Ralph continued his
studies in a PhD with Martin Hellman as his adviser.

In 1976 Whitfield Diffie and Martin Hellman used Merkle’s scheme as motivation
for their own, improving the security by basing the problem of the attacker on solving
discrete logarithms (Merkle’s puzzles only involved quadratic complexity problems, much
easier than discrete logarithms). Their scheme, called Diffie-Hellman key exchange, was
the first secure example of public key cryptography. It is still in use today, in particular
in TLS (e.g. when you SSH into another computer).

In the 1990’s it was announced that Clifford Cocks and others at GCHQ had designed
similar public key cryptography concepts earlier than Merkle, Diffie and Hellman.

C.2.2 Rivest, Shamir and Adleman
At MIT in the 1970’s, Rivest, Shamir and Adleman created the RSA algorithm for public
key cryptography. The algorithm defines how a user creates a public-private key pair,
and can then encrypt a message using one of the keys such that it can only be successfully
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Figure C.2: Rivest, Shamir and Adleman

be decrypted by the other key of the pair. The strength of RSA is based on the difficult
to factor large numbers into their prime factors.

Although their were other public key algorithms developed, before RSA symmetric
key encryption was primarily used in practice. With RSA patented, Rivest, Shamir and
Adleman co-founded RSA Security to commercialise the use of the algorithm. In 2006 it
was acquired by EMC for $US2 billion. RSA is mainly used for digital signatures and
authentication tokens. Verisign was formed as a spin-off company from RSA Security
that used the algorithm to sign digital certificates.

Rivest, Shamir and Adleman continue their cryptography research. Rivest developed
ciphers RC2, RC4, RC5 and RC6 and hash functions MD2, MD4, MD5 and MD6; Shamir
discovered differential crytpanalysis; Adleman is a leader of DNA computing and coined
the term ’computer virus’.

C.2.3 Alan Turing

Figure C.3: Alan Turing

In 1934 Alan Turing obtained a Bachelor degree in Mathematics at King’s College,
Cambridge. He continued there as a researcher and in 1936 published his famous paper
that: presented a Turing machine; provided that the halting problem is undecidable;
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and therefore proved that there is no solution for the Entscheidungsproblem (“decision
problem”).

Turing then worked at Princeton, obtaining his PhD in 1938, which introduced ordi-
nal logic and the computing oracle, which has been highly influential in computational
complexity theory.

In 1938 Turing returned to the England, and during World War II worked for the
British code breaking organisation (which is now GCHQ) in Bletchley Park. He made
major contributions to breaking the Enigma cryptosystem used by Germans, as well as
developing a secure voice scrambler and using statistical techniques to break codes. In
1948 Turing lead the development of one of the first computers. As a contribution to
artificial intelligence, he also developed the Turing test, a way to determine if a machine
is “intelligent”. He also developed LU decomposition, a method used to solve matrix
equations.

Turing was convicted and chemically castrated for being homosexual in 1952. He
committed suicide in 1954.

C.2.4 Claude Shannon

Figure C.4: Claude Shannon

After obtaining bachelor degrees in electrical engineering and mathematics at the
University of Michigan, Claude Shannon studied a Masters at MIT where he applied
Boolean algebra to design telephone circuit switches. The ideas presented in his thesis
had a significant impact on the design of digital circuits used in computers today. In
1940 Shannon completed his PhD at MIT, applying similar techniques to genetics.

During World War II Shannon worked at Bell Labs and started developing ideas
which would become key contributions to communications theory and cryptography. In
particular, he investigated the theoretical limits of storing and communication data; this
is now known as the field of information theory. Shannon and others developed theorems
for the maximum amount of data that can be communicated over a bandwidth limited
channel in the presence of noise (Shannon capacity), the average amount of information
contained in a message (Shannon entropy), and the rate at which analog signals should
be sampled to create accurate digital signals (Nyquist-Shannon sampling theorem). He
also proved the one-time pad is unbreakable, that other unbreakable ciphers must have
the same characteristics as the OTP, and defined diffusion and confusion to be used to
secure practical ciphers.
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Shannon and others used principles of information theory to make substantial win-
nings in Las Vegas casinos and on the stock market.

C.2.5 Hedy Lamarr

Figure C.5: Hedy Lamarr

In the early 1930’s Hedy Lamarr acted in several movies in Europe, before moving the
Hollywood in 1938. She had a leading role in multiple top movies in the 1940’s, alongside
the most popular actors of the time.

While acting during World War II, Lamar was inspired to contribute to the war
effort and worked with George Antheil on inventions. They focussed on remote control
torpedoes, in particular how to design communications between a ship and torpedo so
that the signal could not jammed. They developed a method of rapidly switching or
“hopping” between different frequencies (initially 88 frequencies, matching the number
of keys on the piano of Antheil). An attacker would need to transmit on all frequencies
to jam the signal, which would require too much power, making the attack impractical.
Lamarr and Antheil were granted a US patent in 1942.

Although Lamarr did not commercialise the technique, it started to be used by the
US military in the 1960’s, and more widely in the 1990’s. The concept of frequency
hopping serves as the basis of spread spectrum communications used today. It is used in
Bluetooth, WiFi and CDMA mobile phones.

Lamarr continued acting, gaining a star on the Hollywood Walk of Fame, as well as
being inducted into the Inventors Hall of Fame.

C.2.6 Phil Zimmermann
In 1991 Phil Zimmermann wrote Pretty Good Privacy (PGP), which used public key
cryptography for email encryption. PGP encrypts the email message with a symmetric
key cipher using a random key, and then encrypts that random key with a public key
cipher, such as RSA. The sender uses the receives public key to encrypt the random key.
For PGP to be useful, people must have potential destinations public keys. Zimmermann
used the web of trust to ensure public keys were valid: the more people that you trust
that trust a public key, the more you trust that public key.

At the time, exporting cryptography software from the US was illegal, and Zimmer-
mann was investigated for 3 years. He even published the entire source code in a book;
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Figure C.6: Phil Zimmermann

the US government were unlikely to stop the exportation of a book that could be legally
purchased.

Zimmermann continues activities in security and privacy, developing ZRTP for en-
crypted real-time VOIP calls, and founding Silent Circle which offers secure text, email
and phones.

C.2.7 Other People
• Bruce Schneier

• Ross Anderson

• Daniel J. Bernstein

• Dan Boneh

• Joan Daemen
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Versions of this Book

This book is work-in-progress. It is expected errors will be fixed, improvements made
and new content added on a regular basis. The intention is that:

• A new major version will be released (if necessary) at the start of each teaching term.
That is currently March (03), July (07) and November (11). If no significant updates
are made between teaching terms, then a new major version may be skipped. The
major versions will be named by year and month, e.g. 20.03, 20.07, 20.11, 21.03.

• Minor versions will be released to fix bugs, typos and formatting issues. They
may contain new content (e.g. new chapter or new section), so long as the existing
chapters and sections are not re-numbered (e.g. new chapters will be added at the
end of the book). Apart from this, they will not contain significant changes to the
content. The minor versions will be identified by the Subversion (SVN) revision
number on the first page of the book.

Summary of changes between versions are listed below.

Crypto 20.03
r1671, 1 March 2020: First public release of the book.

Crypto 22.03
r1972, 4 January 2022: Replaced many images with own images or Creative Commons
images (e.g. DES, AES, Authentication, Classical chapters); changed slides from 4:3 to
16:9 aspect ratio; several additional examples (e.g. Block Cipher Design Principles); new
videos for Encryption and Number Theory chapters.
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Index

/dev/random, 16
/dev/urandom, 15

accounting, 6
additive inverse, 35
asymmetric cryptography, see public key cryp-

tography
asymmetric key crypto, see public-key crypto
attacks

brute force, see brute force attack
frequency analysis, see frequency anal-

ysis
authentication, 6
authorisation, 6
availability, 5

base64, 218
bc, 13
brute force attack, 48

example, 48
monoalphabetic cipher, 51
Python, 48

Caesar cipher, 45
definition, 45, 47
example, 45–47
Python, 48

CIA, 5
cipher, 7
ciphers

Caesar, see Caesar cipher
monoalphabetic, see monoalphabetic ci-

pher
Playfair, see Playfair cipher
polyalphabetic, see polyalphabetic cipher

ciphertext, 7
cmp

example, 163
confidentiality, 5

congruence, 34
congruent modulo, 34
conventional crypto, see symmetric key crypto
cryptanalysis, 7
cryptography, 7
cryptology, 7
cut, 12

example, 15

decryption, 7, 102
diff

example, 102, 116
digital signature, 149
discrete logarithm, 39
divides, 31
divisor, 31

echo
example, 103

encryption, 6, 7, 102
Euler’s totient, 33

Feistel network, 67
Fermat’s theorem, 37
frequency analysis, 52

monoalphabetic, 52

gcd(), see greatest common divisor
git

example, 20
greatest common divisor, 31

integer factorisation, 41
integrity, 5

key, 7

Linux, 11
Ubuntu, 11

logarithm, 38
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md5sum, 16
mod, 34
mode of operation, 103
modular addition, 35
modular arithmetic, 34
modular division, 37
modular exponentiation, 38
modular logarithm

see discrete logarithm 39
modular multiplication, 36
modular subtraction, 35
modulus, 34
monoalphabetic cipher, 50

definition, 50
example, 50

multiplicative inverse, 36

One-Time Pad, 60
OpenSSL, 17

dgst, 149
enc, 102
genpkey, 145, 159
help, 17
list, 18
padding, 103
pkey, 146
pkeyparam, 160
pkeyutl, 149, 162
rand, 19, 104
smime, 150
speed, 116
version, 18

passwords
salt, 103

permutation, 50, 67
plaintext, 7
Playfair cipher, 54

definition, 54, 55
example, 54, 55

polyalphabetic cipher, 56
definition, 56

prime factorisation, 33
prime factors, 32
prime number, 32
primitive root, 39
public key cryptography, 131, 145
public-key crypto, 65

pycipher, 20
Python, 20

rail fence cipher, 62
random numbers

/dev/random, 16
/dev/urandom, 15
$RANDOM, 15

relatively prime, 31
rows columns cipher, 62
RSA, 145

S-DES, 91
security protections, 5
sha1sum, 16
sha256sum, 16
sha512sum, 16
shared-key crypto, see symmetric key crypto
Simplified-DES, see S-DES
single-key crypto, see symmetric key crypto
SPN, 67
substitution, 67
symmetric key crypto, 65

transposition, 61

Ubuntu, see Linux

Vernam cipher, 59
Vigenère cipher, 57

example, 57

wc
example, 103

XOR
Python, 59

xxd, 11
example, 15, 19, 103, 116
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