
1

ITS 413 Internet Technologies and
Applications

Assignment: Phase 3 Report

By: Group04

Mr.Suppachai Suwanwatcharachat (5222781601)

Mr.Sonnatas Chaisorn (5222782096)

Mr.Rungsemund Chunvichit (5222791683)

Date: 28 March 2012

By submitting this report all members of the group listed above agree that each member has

contributed approximately equal amounts to designing and performing experiments, as well as to

preparing this report. All members agree that this report accurately reflects the experiments

conducted by the group members, and is their own work (not works of other groups).

Sirindhorn International Institute of Technology

Thammasat University

2

Aims

To determine how different parameters and scenarios impact on the performance of transport

protocols (TCP and UDP) in a wireless LAN and Ethernet link.

Network Diagram

Most of the experiment will use this diagram to test network, if have a special equipment you can

see in detail that will show in every experiment

Wired throughput test

Equipment Specifications

Computer A

 Brand: Compaq

 OS: Window 7 - 32bit

 Processor: Pentium Dual-Core CPU 2.20GHz

 Ram: 1.00 GB

 Wired LAN interface: Realtek RTL8102E/TRL8103E Family PCI-E Fast Ethernet NIC

 Wireless LAN interface: Broadcom 802.11g Network Adapter#2

Computer B

 Brand: Asus

 OS: Window 7 - 32bit

 Processor: Intel Core 2 Duo CPU 2.4GHz

 Ram: 2.00 GB

 Wired LAN interface:Atheros AR8151 PCI-E Gigabit Ethernet Controller (NDIS 6.20)

 Wireless LAN interface:Atheros AR9002WB-1NG Wireless Network Adapter

Client
Server WRT-54gl

3

Router: LINKSYS

Model: Linksys WRT54GL Ram: 16 MB OS: OpenWRT

Standards IEEE 802.3, IEEE 802.3u, IEEE 802.11g, IEEE 802.11b

Ports Internet: One 10/100 RJ-45 Port

Ethernet: Four 10/100 RJ-45 Switched Ports

One Power Port

Buttons One Reset Button

LEDs Power, DMZ, WLAN, Ethernet (1, 2, 3, 4), Internet

Cabling Type CAT 5

RF Power (EIRP) in dBm 18

UPnP able/cert Able

Security Features Stateful Packet Inspection (SPI) Firewall, Internet Policy

Wireless Security Wi-Fi Protected Access™ 2 (WPA2), WEP, Wireless MAC Filtering

Parameters

Parameter Value

Channel 6
Protocol Used TCP
Time to test 10 seconds
WEP off

Shell Script

We use shell script in this experiment to run iperf command. Shell script will create a command that

we can run code and loop it until you get result.

#!/bin/bash
COUNT=0
MAX=3
while [$COUNT –lt $MAX]; do
 Iperf -c 1.1.1.1 –t 10
 Let COUNT=COUNT+1
done

4

Experiments and Results

Experiment 1 – Impact of window sizes on TCP performance
 In this experiment we will test a performance of TCP, how impact when we change some

parameter between we send data such as: Maximum Segment Size (MSS), Window, and Length of

data

We measured the average throughput of the Wired Ethernet link by decreasing the sending

rate every time. The average was taking from 3 different tests. This is our result.

Network Diagram

Most of the experiment will use this diagram to test network, if have a special equipment you can

see in detail that will show in every experiment

Wired throughput test

Command

Experiment 1

Command Description

iperf –M #

set the MSS

iperf –w #

set the TCP buffer size

iperf –l #

set the data length

Client
Server WRT-54gl

5

1.1 Testing on maximum Segment Size

Protocol used: TCP
Client: Computer A
Server: Computer B
Sending Rate: From 1500 to 100 Bytes (reduce 100 Bytes per time)

First, we will test the maximum segment size, the command that we used in this step is:

iperf -M

And this is our result

Table: Maximum Segment Size result

MSS

(Bytes)

AVG

(Mbit/sec)

1500 94

1400 93

1300 93

1200 92

1100 91

1000 91

900 90

800 81

700 70

600 61

500 51

400 41

300 31

200 21

100 10

1.2 Testing on Window Size

Protocol used: TCP
Client: Computer A
Server: Computer B
Sending Rate: From 16 to 2 KB (decrease 1 Kb per time)

Next, we will test the window size that will set the buffer size, the command that we used in this

step is:

6

iperf -w

And this is our result

Table: Window size result

Window

size

(KB)

AVG

(Mbit/sec)

16 94

15 75

14 74

13 67

12 67

11 55

10 56

9 60

8 45

7 51

6 51

5 37

4 37

3 5

2 3

7

1.3 Testing on Datalength

Protocol used: TCP
Client: Computer A
Server: Computer B
Sending Rate: From 300 to 25 Bytes (reduce 25 Bytes per time)

Next, we will on datalength that will set the length of data write or read, command that we used in

this step is:

iperf -l

And this is our result

Table : Datalength result

Datalength

(Bytes)

AVG

(Mbit/sec)

300 93

275 94

250 94

225 94

200 94

175 94

150 82

125 69

100 55

75 41

50 28

25 14

So, we summary plot into a table as following

8

Table 1: Maximum Segment Size result

Table 2 : Window Size result

0

10

20

30

40

50

60

70

80

90

100

1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100

MSS(Bytes)

0

10

20

30

40

50

60

70

80

90

100

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Window size (KB)

Mbit/sec

MSS(Bytes)

Mbit/sec

Window Size (KB)

9

Table 3 : Data length result

Conclusion

 All parameters that have been experimented shows an impact with TCP throughput.

Parameter MSS: TCP throughput linearly increases as Maximum Segment Size increases until MSS
reaches 1000 Bytes, TCP throughput is about 90 Mbps. MSS sizes over 1000 has insignificant effect
on TCP throughput.

Parameter Window Size: TCP throughput linearly increases as Window Size increases until Window
Size reaches 16KB, TCP throughput is maximized around 90 Mbps. Window size over 16 KB has
insignificant effect on TCP throughput.

Parameter Data Length: TCP throughput linearly increases as Data Length increases until Data
Length reaches 175 KB, TCP throughput is maximized around 93 Mbps. Data length over 175 KB has
insignificant effect on TCP throughput.
To summarize, increasing MSS, Window Size, or Data Length results in linear increasing throughput.

0

10

20

30

40

50

60

70

80

90

100

300 275 250 225 200 175 150 125 100 75 50 25

Data Length (KB)

Length(KBytes)

Mbit/sec

10

Experiment 2 – Impact of packet drops on TCP performance(Drop packet

with tc and iptables command)

In this experiment we will test a performance of TCP, how impact when we select to drop

some packet when we transmit data to destination. In addition, we create a rule by use iptables

command to specify how packets coming into your computer and going out of your computer are

treated (INPUT for incoming packet, OUTPUT for going out packet and FORWARD for a forward by

the router). In particular we will use a probability function to specify how many percentage of

packets will drop when transmit a data.

Another way, in this experiment we will use tc command that use to control the transmit

queue of your kernel for transmission on the network interface (in normal, the packet are transmit

in a first-in-first-out (FIFO)). tc will allow you to change a queuing mechanism, giving priority to

specific type of packets, as well as emulate links by delaying and dropping packets. Here we will see

the result in our experiment below.

We measured the average throughput of the wired Ethernet link by increasing the sending

rate by the step of 1. The average was taking from 3 different tests. This is our result.

Network Diagram

Wired throughput test

Client
Server WRT-54gl

11

Command

Experiment 2

Command Description

sudo iptables –L
List the rule of iptables that will contain Rule of
INPUT ,OUTPUT ,FORWARD that will specify how
packets coming into your computer or going out
of your computer (or forward by router).

sudo iptables -A INPUT -m statistic --mode
random --probability 0.01 -j DROP

 add a rule to the INPUT , by having a chance to
drop some incoming packets specify by value
that user used on computer B

sudo iptables -D INPUT -m statistic --mode
random --probability 0.01 -j DROP

sudo iptable –D INPUT #

delete a rule to the INPUT , by use –D mean
delete following with command that you use it
above
or you can write in a short term by use order
number(line of that command) instead of whole
command

iperf –s
Create a server

Iperf –c
Create a client

$ sudo tc qdisc add dev eth0 root netem loss #%

Tells the Linux kernel to drop on average that
user specify value (“#”) of the packets in the
transmit queue.

$ sudo tc qdisc show dev eth0

show the current queue discipline

$ sudo tc qdisc del dev eth0 root netem loss #%
delete the queue discipline

12

2. 1 Dropping packet with iptables

Protocol used: TCP
Client: Computer A
Server: Computer B
Sending Rate: From 1 to 15 (increase 1 per time)

First, we must set the rules to INPUT chain to have a chance to drop incoming packet on computer B.

The command that we used in this step is:

-A INPUT -m statistic --mode random --probability 0.01 -j DROP

Then, we can check the rule is added or not by use this command and output will be:

$ sudo iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP all -- anywhere anywhere statistic mode random probability 0.010000

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

We demonstrate the packet dropping by run another iperf TCP with this command:

$ iperf -c 192.168.1.236 -t 10

And this is our result

13

Table: dropping packet with iptables result

Dropping packets at

reciever

(using iptables)

Throughput

(Mbits/s)

0 94

1 85

2 54

3 41

4 24

5 16

6 11

7 6

8 5

9 4

10 3

11 3

12 2

13 2

14 1

15 1

2. 2 Dropping packet with tc

Protocol used: TCP
Client: Computer A
Server: Computer B
Sending Rate: From 0 to 10 % (increase 1 % per time)

First, we must create a chance to randomly drop packets. The command that we used in this step is:

14

$ sudo tc qdisc add dev eth0 root netem loss 1%

Then, if you want to know what value of loss that you used, you can give a command to show the

current queue disciplines by use this command and output will be:

$ sudo tc qdisc show dev eth0
qdisc netem 8001: root refcnt 2 limit 1000 loss 1%

So, let run command to test(for client and server):

$ iperf -c 192.168.1.236 -t 10

$ iperf -s

And this is our result

Table: dropping packet with tc result

Dropping packets at
sender
(using tc)

 Throughput
(Mbits/s)

1 94

2 46

3 25

4 17

5 12

6 8

7 6

8 4

9 3

10 2

So, we plot into a table as following

15

Table 1: Droping packet with iptables

Table 2: Droping packet with tc

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Mbit/sec

Percentage

Mbit/sec

Percentage

16

Table 3: Compare between tc and iptables

Conclusion

From the experiment, we can see that packet drop has a drastic impact on TCP performance.

Using iptables: As packet drop percentage increase, TCP throughput decrease exponentially, until
packet drop percentage reaches 7%, the throughput is nearly zero.

Using tc: As packet drop percentage increase, TCP throughput decrease exponentially, until packet
drop percentage reaches 7%, the throughput is nearly zero.

The significance drop in performance from packet loss is explained by how TCP deals with lost
packets. In this case, the packet loss is due to timeout which simulate a heavy network congestion.
To decrease the congestion, TCP halves the congestion windows on each timeout, thus decreases
the TCP throughput as we have seen in experiment 1.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

using iptables

using tc

Mbit/sec

Percentage

17

Experiment 3 – Impact of different congestion control algorithms on TCP

(Using Reno and Cubic algorithm)
 In this experiment we will test a performance of TCP, how impact when we select to

use some various congestion control algorithm. Before we go that, we should know some topic and

parameter that related with this experiment.

Bandwidth Delay Product (BDP) the amount of data that can be in transit in the network. It

is the product of the available bandwidth and the latency, or RTT. BDP is a very important concept in

a Window based protocol such as TCP. It plays an especially important role in high-speed / high-

latency networks, such as most broadband internet connections. It is one of the most important

factors of tweaking TCP in order to tune systems to the type of network used.

Way to calculate BDP

BDP (bits) = total_available_bandwidth (bits/sec) x round_trip_time (sec)

or BDP (bytes) = total_available_bandwidth (KBytes/sec) x round_trip_time (ms)

Round-trip time (RTT), also called round-trip delay, is the time required for a signal pulse or

packet to travel from a specific source to a specific destination and back again. In this context, the

source is the computer initiating the signal and the destination is a remote computer or system that

receives the signal and retransmits it.

Selecting TCP Congestion Control Algorithm

 In this experiment we have 2 algorithms that we used:

1. Reno algorithms

2. Cubic algorithms

We measured the average throughput of the wired Ethernet link by increasing the sending

rate by the step of 4 KB. The average was taking from 3 different tests. This is our process below.

Network Diagram

 In this experiment we connect 2 computers directly with fast ethernet 100Mb/s switch ,Then

network diagram should be :

Client Server

javascript://%20What%20is%20bandwidth%20?
javascript://%20What%20is%20latency%20?
javascript://%20What%20is%20RTT%20?
javascript://%20What%20is%20BDP%20?
javascript://%20What%20is%20protocol%20?
javascript://%20What%20is%20latency%20?
http://www.speedguide.net/faq_in_q.php?qid=185
javascript://%20What%20is%20broadband%20?
http://www.speedguide.net/faq_in_q.php?qid=185
javascript://%20What%20is%20BDP%20?
javascript://%20What%20is%20BDP%20?

18

Command

Experiment 3

Command Description

$ sudo sysctl
net.ipv4.tcp_congestion_control=reno

Set the TCP congestion control algorithm to
Reno(or cubic)

$ sudo sysctl net.ipv4.tcp_moderate_rcvbuf=0(or
1)

 Turn off (or Turn on) auto-tuning of the
TCP receive buffer size.
0= turn off , 1=turn on

$ sudo tc qdisc add dev eth0 root netem delay #
ms

Set the delay on the path. On both sender and
receiver

$ iperf -s -w “values”

Create a server, measure the TCP throughput for
varying BDP and receive buffer sizes on the
receiver.

$ iperf -c “IP address”

Create a client (sender)

$ cat /proc/sys/net/ipv4/tcp_congestion_control
$ sysctl net.ipv4.tcp_congestion_control

Check what the algorithm use in operating
system.

$ sysctl net.ipv4.tcp_available

To see the current set of available algorithms

$ sysctl net.ipv4.tcp_rmem

Set the buffer space available at the receiver for
TCP using a kernel configuration parameter.

$ sysctl net.ipv4.tcp_moderate_rcvbuf
Check that it perform auto-tuning BDP or not

Parameters

Parameter Value

Channel 6
Protocol Used TCP
Time to test 10 seconds
Bandwidth 100 Mb/s
RTT 10 seconds
BDP 125000 Bytes

http://sandilands.info/sgordon/impact-of-bandwidth-delay-product-on-tcp-throughput#congestion
http://sandilands.info/sgordon/impact-of-bandwidth-delay-product-on-tcp-throughput#window
http://sandilands.info/sgordon/impact-of-bandwidth-delay-product-on-tcp-throughput#throughput

19

We set parameter to be:

1. Bandwidth to 100 Mb/s

2. RTT to 10 seconds (Computer A = 5 seconds, Computer B= 5 seconds)

3. BDP (advertising window size to maximize throughput) to 125000 Bytes

Theorem

When we sets the receive buffer to some value using the -w option, kernel will doubles the

buffer size and allocates 75% of the buffer space for receiving segments. Then, when we set buffer

to 20KB kernel will double the buffer size to 40KB and use 30KB to receiving segments

 In the receive buffer we can calculate to get some optimal throughput. By use BDP * 4/3 and

set to kernel, so we try to create some value to test and calculate. Here is a short scenario.

Scenario Bandwidth
[Mb/s]

RTT [ms] BDP [Bytes] Receive Buffer
[Bytes]

Fast Ethernet, single

link
100 10 125000 166667

So we will know that we should set buffer size to be 83334 in the command we will use this

command to set it :

iperf –s –w 83334

So, we can summary a technique to calculate by:

Maximum Advertised Window = receiver buffer size *3/4

Expected throughput = awnt(maximum Advertised Window)/RTT

Here is a result

3. 1 Using Cubic algorithm

Protocol used: TCP
Client: Computer A
Server: Computer B
Sending Rate: From 0 to 7 KB (increase 0.5 per time)

First, we must set the TCP congestion control algorithm to Cubic, command that we used in this step

is:

$ sudo sysctl net.ipv4.tcp_congestion_control=cubic

http://sandilands.info/sgordon/impact-of-bandwidth-delay-product-on-tcp-throughput#congestion

20

Turn off auto-tuning of the TCP receives buffer size:

$ sudo sysctl net.ipv4.tcp_moderate_rcvbuf=0

set the delay on the path. On both sender and receiver with this command:

$ sudo tc qdisc add dev eth0 root netem delay 10ms

Measure the TCP throughput for varying BDP and receive buffer sizes, with this command:

$ iperf -c 1.1.1.1

And this is our result

http://sandilands.info/sgordon/impact-of-bandwidth-delay-product-on-tcp-throughput#window
http://sandilands.info/sgordon/impact-of-bandwidth-delay-product-on-tcp-throughput#throughput

21

Table:Cubic algorithm result

Using Cubic algorithm
With packet loss (%)

 Throughput
(Mbits/s)

0 93.97

0.5 92.93

1 86.77

1.5 65.83

2 54.17

2.5 42.67

3 33.47

3.5 29.70

4 27.77

4.5 19.10

5 12.17

5.5 12.50

6 9.68

6.5 8.47

7 6.72

22

3. 2 Using Reno algorithm

Protocol used: TCP
Client: Computer A
Server: Computer B
Sending Rate: From 0.5 to 7 KB (increase 0.5 per time)

First, we must set the TCP congestion control algorithm to Reno, command that we used in this step

is:

$ sudo sysctl net.ipv4.tcp_congestion_control=reno

Turn off auto-tuning of the TCP receives buffer size:

$ sudo sysctl net.ipv4.tcp_moderate_rcvbuf=0

set the delay on the path. On both sender and receiver with this command:

$ sudo tc qdisc add dev eth0 root netem delay 10ms

Measure the TCP throughput for varying BDP and receive buffer sizes, with this command(server,
client):

$ iperf -c 1.1.1.1

And this is our result

http://sandilands.info/sgordon/impact-of-bandwidth-delay-product-on-tcp-throughput#congestion
http://sandilands.info/sgordon/impact-of-bandwidth-delay-product-on-tcp-throughput#window
http://sandilands.info/sgordon/impact-of-bandwidth-delay-product-on-tcp-throughput#throughput

23

Table:Reno algorithm result

Using Reno algorithm
With packet loss (%)

 Throughput
(Mbits/s)

0 94.60

0.5 93.77

1 88.80

1.5 77.83

2 64.40

2.5 55.30

3 49.17

3.5 33.63

4 25.10

4.5 20.43

5 19.77

5.5 12.30

6 10.17

6.5 8.00

7 7.09

So, we plot into a table as following

24

Table 1 :Cubic algorithm result

Table 2 :Reno algorithm result

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

Cubic Throughput

Cubic Throughput

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

Reno Throughput

Reno …

25

Table 3 :Compare between Cubic and Reno algorithm

 Conclusion

Different congestion control algorithm behaves differently to deal with network congestion. In the
experiment, we have chosen 2 algorithms; cubic and reno. They both have similar TCP throughput,
but cubic has slightly lower throughput at packet loss between 1-4%.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

Cubic Throughput

Reno Throughput

26

PART 2 : Change window size parameter

1. Using Cubic algorithm

Protocol used: TCP
Client: Computer A
Server: Computer B
Sending Rate: From 4 to 100 KB (increase 4 per time)

First, we must set the TCP congestion control algorithm to Cubic, command that we used in this step

is:

$ sudo sysctl net.ipv4.tcp_congestion_control=cubic

Turn off auto-tuning of the TCP receives buffer size:

$ sudo sysctl net.ipv4.tcp_moderate_rcvbuf=0

set the delay on the path. On both sender and receiver with this command:

$ sudo tc qdisc add dev eth0 root netem delay 10ms

Measure the TCP throughput for varying BDP and receive buffer sizes, with this command(server,
client):

$ iperf -s -w 50000

$ iperf -c 1.1.1.1

And this is our result

http://sandilands.info/sgordon/impact-of-bandwidth-delay-product-on-tcp-throughput#congestion
http://sandilands.info/sgordon/impact-of-bandwidth-delay-product-on-tcp-throughput#window
http://sandilands.info/sgordon/impact-of-bandwidth-delay-product-on-tcp-throughput#throughput

27

Table 1 :Cubic algorithm result

BDP -w Buffe

r

Size

Max

Adv.

Wind

ow

Expecte

d

Through

put

Measeur

ed

Through

put 1

Measeured

Throughpu

t 2

Measeur

ed

Through

put 3

Average

Through

put

Accur

acy

[KByt

es]

[KByt

es]

[KByt

es]

[KByt

es]

[Mb/s] [Mb/s] [Mb/s] [Mb/s] [Mb/s] [%]

125 4 8 6 4.8 2.23 2.23 2.23 2 46.46

125 8 16 12 9.6 6.64 6.66 6.67 7 69.34

125 12 24 18 14.4 11.1 11.1 11.1 11 77.08

125 16 32 24 19.2 15.6 15.6 15.6 16 81.25

125 20 40 30 24 22 22 22 22 91.67

125 24 48 36 28.8 26.5 26.4 26.5 26 91.90

125 28 56 42 33.6 30.9 30.9 30.9 31 91.96

125 32 64 48 38.4 35.4 35.2 35.3 35 91.93

125 36 72 54 43.2 40.2 40.1 40.1 40 92.90

125 40 80 60 48 44.7 44.7 44.7 45 93.13

125 44 88 66 52.8 49.2 49.2 49.2 49 93.18

125 48 96 72 57.6 53.6 53.7 53.6 54 93.11

125 52 104 78 62.4 59.7 59.7 59.7 60 95.67

125 56 112 84 67.2 64.1 64.2 64.1 64 95.44

125 60 120 90 72 68.4

68.4

68.4 68 95.00

125 64 128 96 76.8 73 73 73.1 73 95.10

125 68 136 102 81.6 77.9 77.9 77.8 78 95.42

125 72 144 108 86.4 82.8 82.8 82.8 83 95.83

125 76 152 114 91.2 91.1 91.2 91.1 91 99.93

125 80 160 120 96 93.4 93.1 93.3 93 97.15

125 84 168 126 100 93.3 93.3 93.4 93 93.33

125 88 176 132 100 93.5 93.4 93.5 93 93.47

125 92 184 138 100 93.5 93.3 93.3 93 93.37

125 96 192 144 100 93.5 93.5 93.4 93 93.47

125 100 200 150 100 93.5 93.5 93.5 94 93.50

28

2. 2 Using Reno algorithm

Protocol used: TCP
Client: Computer A
Server: Computer B
Sending Rate: From 4 to 100 KB (increase 4 per time)

First, we must set the TCP congestion control algorithm to Reno, command that we used in this step

is:

$ sudo sysctl net.ipv4.tcp_congestion_control=reno

Turn off auto-tuning of the TCP receives buffer size:

$ sudo sysctl net.ipv4.tcp_moderate_rcvbuf=0

set the delay on the path. On both sender and receiver with this command:

$ sudo tc qdisc add dev eth0 root netem delay 10ms

Measure the TCP throughput for varying BDP and receive buffer sizes, with this command(server,
client):

$ iperf -s -w 50000

$ iperf -c 1.1.1.1

And this is our result

http://sandilands.info/sgordon/impact-of-bandwidth-delay-product-on-tcp-throughput#congestion
http://sandilands.info/sgordon/impact-of-bandwidth-delay-product-on-tcp-throughput#window
http://sandilands.info/sgordon/impact-of-bandwidth-delay-product-on-tcp-throughput#throughput

29

Table 2 :Reno algorithm result

Bandwidt

h

RTT BDP -w Buffer

Size

Max

Adv.

Windo

w

Expected

Throughpu

t

Average

Throughpu

t

Accurac

y

[Mb/s] [ms

]

[KBytes

]

[KBytes

]

[KBytes

]

[KBytes] [Mb/s] [Mb/s] [%]

100 10 125 4 8 6 4.8 2.21 46.04

100 10 125 8 16 12 9.6 6.64 69.13

100 10 125 12 24 18 14.4 11.10 77.08

100 10 125 16 32 24 19.2 15.53 80.90

100 10 125 20 40 30 24 22.00 91.67

100 10 125 24 48 36 28.8 26.40 91.67

100 10 125 28 56 42 33.6 30.80 91.67

100 10 125 32 64 48 38.4 35.20 91.67

100 10 125 36 72 54 43.2 40.00 92.59

100 10 125 40 80 60 48 44.50 92.71

100 10 125 44 88 66 52.8 49.27 93.31

100 10 125 48 96 72 57.6 53.80 93.40

100 10 125 52 104 78 62.4 59.47 95.30

100 10 125 56 112 84 67.2 64.93 95.14

100 10 125 60 120 90 72 68.37 94.95

100 10 125 64 128 96 76.8 73.77 94.75

100 10 125 68 136 102 81.6 78.03 95.63

100 10 125 72 144 108 86.4 82.63 95.64

100 10 125 76 152 114 91.2 91.47 100.29

100 10 125 80 160 120 96 93.33 97.22

100 10 125 84 168 126 100 93.33 93.33

100 10 125 88 176 132 100 93.40 93.40

100 10 125 92 184 138 100 93.57 93.57

100 10 125 96 192 144 100 93.60 93.60

100 10 125 100 200 150 100 93.57 93.57

30

So, we plot into a table as following

Table 1: Cubic algorithm (plot from average throughput)

Table 2: Reno algorithm (plot from average throughput)

0

10

20

30

40

50

60

70

80

90

100

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

0

10

20

30

40

50

60

70

80

90

100

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

KBytes

Mb/s

KBytes

Mb/s

31

Conclusion

Throughput increases, as window size increases. But reno and cubic algorithms have no
effects on the TCP throughput.

Appendix

32

Maximum Segment size

MSS

(Bytes)

Throughput1

(Mbit/s)

 Throughput2

(Mbit/s)

 Throughput3

(Mbit/s)

Throughput(average)

(Mbit/s)

1500 93.7 94 94 93.9

1400 92.8 93.4 93.5 93.23333333

1300 93.2 93.3 93.2 93.23333333

1200 92 90.8 92.4 91.73333333

1100 91.7 89.5 91.7 90.96666667

1000 91.1 91 91.2 91.1

900 90.1 90.1 87.2 89.13333333

800 81.2 80.4 81.4 81

700 70.2 69.5 70.4 70.03333333

600 60.1 61 60.4 60.5

500 51.4 50.7 50.4 50.83333333

400 41 40.6 40 40.53333333

300 30.7 30.7 30.6 30.66666667

200 20.5 20.5 20.6 20.53333333

100 9.75 9.76 9.78 9.763333333

Window size

Window size

(kB)

 Throughput1

(Mbit/s)

 Throughput2

(Mbit/s)

 Throughput3

(Mbit/s)

 AVG

16 94.1 94.1 94.2 94.13333333

14.6 75.5 74.9 74.5 74.96666667

13.7 73.8 74.4 73.9 74.03333333

12.7 66.2 66.1 67.4 66.56666667

11.7 66.2 67.7 68 67.3

10.7 55.8 55.7 53.8 55.1

9.77 56.3 55.5 55.7 55.83333333

8.79 58.5 59.8 59.6 59.3

7.81 46.1 43.7 45.3 45.03333333

6.84 49.5 51.9 50.6 50.66666667

5.86 50.2 51.7 52.3 51.4

4.88 36.9 37 36.5 36.8

3.91 37.1 37 36.4 36.83333333

2.93 4.77 4.33 5.25 4.783333333

2 2.34 3.02 2.42 2.593333333

Data length

33

Data

length(KBytes)

 Throughput1

(Mbit/s)

 Throughput2

(Mbit/s)

 Throughput3

(Mbit/s)

 AVG

300 93.8 93.9 94 93.9

275 94 93.8 94 93.93333333

250 94 93.8 93.9 93.9

225 93.9 94.1 93.8 93.93333333

200 93.4 93.9 93.7 93.66666667

175 94.1 94.1 94 94.06666667

150 82.7 81.2 82.5 82.13333333

125 68.9 68.9 68.9 68.9

100 55.1 55.1 55.1 55.1

75 41.3 41.3 41.3 41.3

50 27.5 27.5 27.5 27.5

25 13.7 13.8 13.8 13.76666667

Dropping packet (with iptables command)

Dropping

packets at

reciever

Throughput1

(Mbit/s)

 Throughput2

(Mbit/s)

 Throughput3

(Mbit/s)

Throughput(average)

(Mbit/s)

0 93.8 93.8 93.8 93.80

1 84.3 84.7 86.2 85.07

2 54.5 58.1 49.8 54.13

3 39.3 40.9 42.1 40.77

4 27 21.1 25.2 24.43

5 15 15.3 17 15.77

6 8.69 11.2 11.8 10.56

7 5.12 5.79 6.91 5.94

8 5.99 3.27 5.93 5.06

9 4.2 2.94 3.82 3.65

10 3.85 4.17 2.25 3.42

11 2.51 2.21 2.88 2.53

12 2.15 2.61 1.97 2.24

13 1.97 1.28 1.45 1.57

14 2.04 1.16 0.972 1.39

15 1.31 1.26 1.2 1.26

Dropping packet (with tc command)

34

Dropping

packets at

sender

 Throughput1

(Mbit/s)

 Throughput2

(Mbit/s)

 Throughput3

(Mbit/s)

 Throughput(average)

(Mbit/s)

1 78.5 89.3 78.8 82.20

2 44.6 44 48 45.53

3 22.4 26.3 26.1 24.93

4 14.9 17.7 17.4 16.67

5 10.4 13.3 11.9 11.87

6 7.41 7.53 8.23 7.72

7 5.45 5.34 6.1 5.63

8 4.92 4.31 3.44 4.22

9 2.79 3.21 2.8 2.93

10 2.76 1.75 2.48 2.33

Using Cubic algorithm

cubic Packet Loss

(%)

Throughput

1

Throughput

2

Throughput

3

Cubic

Throughput

 0 94 93.9 94.00 93.97

 0.5 93.4 91.6 93.80 92.93

 1 86.7 90.1 83.50 86.77

 1.5 63.5 68.3 65.70 65.83

 2 57.4 50.9 54.20 54.17

 2.5 46.3 40.4 41.30 42.67

 3 35.9 31.4 33.10 33.47

 3.5 28.6 34.5 26.00 29.70

 4 22.8 34.5 26.00 27.77

 4.5 16.5 18.9 21.90 19.10

 5 16.5 3.5 16.50 12.17

 5.5 15 11.5 11.00 12.50

 6 9.33 10.8 8.92 9.68

 6.5 9.1 8.42 7.89 8.47

 7 6.26 7.53 6.37 6.72

Using Reno algorithm

35

Reno Packet Loss

(%)

Throughput

1

Throughput

2

Throughput

3

Reno

Throughput

 0 94.6 94.6 94.60 94.60

 0.5 93.9 93.7 93.70 93.77

 1 89.4 87.5 89.50 88.80

 1.5 76.9 81.1 75.50 77.83

 2 65.8 58 69.40 64.40

 2.5 55.8 60.3 49.80 55.30

 3 46.5 47.8 53.20 49.17

 3.5 39.8 32.1 29.00 33.63

 4 23.7 26.1 25.50 25.10

 4.5 22.1 19.1 20.10 20.43

 5 25.3 14.6 19.40 19.77

 5.5 16.8 10.3 9.81 12.30

 6 11.9 10.1 8.52 10.17

 6.5 9.24 7.21 7.55 8.00

 7 6.83 7.01 7.42 7.09

PART 2 : Change window size

36

Using Reno algorithm

Band

width

R

TT

BDP -w Buff

er

Size

Max

Adv.

Win

dow

Expect

ed

Throug

hput

Mease

ured

Throug

hput 1

Mease

ured

Throug

hput 2

Mease

ured

Throug

hput 3

Averag

e

Throug

hput

Accu

racy

[Mb/s] [

m

s]

[KBy

tes]

[KBy

tes]

[KBy

tes]

[KByt

es]

[Mb/s] [Mb/s] [Mb/s] [Mb/s] [Mb/s] [%]

100 10 125 4 8 6 4.8 2.21 2.21 2.21 2.21 46.04

100 10 125 8 16 12 9.6 6.63 6.64 6.64 6.64 69.13

100 10 125 12 24 18 14.4 11.1 11.1 11.1 11.10 77.08

100 10 125 16 32 24 19.2 15.5 15.6 15.5 15.53 80.90

100 10 125 20 40 30 24 22 22 22 22.00 91.67

100 10 125 24 48 36 28.8 26.4 26.4 26.4 26.40 91.67

100 10 125 28 56 42 33.6 30.8 30.8 30.8 30.80 91.67

100 10 125 32 64 48 38.4 35.2 35.2 35.2 35.20 91.67

100 10 125 36 72 54 43.2 40 40 40 40.00 92.59

100 10 125 40 80 60 48 44.5 44.5 44.5 44.50 92.71

100 10 125 44 88 66 52.8 49.2 49.3 49.3 49.27 93.31

100 10 125 48 96 72 57.6 53.8 53.8 53.8 53.80 93.40

100 10 125 52 104 78 62.4 59.6 59.5 59.3 59.47 95.30

100 10 125 56 112 84 67.2 63.9 64 63.9 63.93 95.14

100 10 125 60 120 90 72 68.4 68.4 68.3 68.37 94.95

100 10 125 64 128 96 76.8 72.8 72.7 72.8 72.77 94.75

100 10 125 68 136 102 81.6 78.1 78 78 78.03 95.63

100 10 125 72 144 108 86.4 82.6 82.6 82.7 82.63 95.64

100 10 125 76 152 114 91.2 91.4 91.5 91.5 91.47 100.2

9

100 10 125 80 160 120 96 93 93.5 93.5 93.33 97.22

100 10 125 84 168 126 100 93 93.5 93.5 93.33 93.33

100 10 125 88 176 132 100 93.5 93.3 93.4 93.40 93.40

100 10 125 92 184 138 100 93.6 93.5 93.6 93.57 93.57

100 10 125 96 192 144 100 93.6 93.6 93.6 93.60 93.60

100 10 125 100 200 150 100 93.6 93.5 93.6 93.57 93.57

37

Using Cubic algorithm

Band

width

R

TT

BDP -w Buff

er

Size

Max

Adv.

Win

dow

Expect

ed

Throug

hput

Mease

ured

Throug

hput 1

Mease

ured

Throug

hput 2

Mease

ured

Throug

hput 3

Averag

e

Throug

hput

Accu

racy

[Mb/s] [

m

s]

[KBy

tes]

[KBy

tes]

[KBy

tes]

[KByt

es]

[Mb/s] [Mb/s] [Mb/s] [Mb/s] [Mb/s] [%]

100 10 125 4 8 6 4.8 2.23 2.23 2.23 2.23 46.46

100 10 125 8 16 12 9.6 6.64 6.66 6.67 6.66 69.34

100 10 125 12 24 18 14.4 11.1 11.1 11.1 11.10 77.08

100 10 125 16 32 24 19.2 15.6 15.6 15.6 15.60 81.25

100 10 125 20 40 30 24 22 22 22 22.00 91.67

100 10 125 24 48 36 28.8 26.5 26.4 26.5 26.47 91.90

100 10 125 28 56 42 33.6 30.9 30.9 30.9 30.90 91.96

100 10 125 32 64 48 38.4 35.4 35.2 35.3 35.30 91.93

100 10 125 36 72 54 43.2 40.2 40.1 40.1 40.13 92.90

100 10 125 40 80 60 48 44.7 44.7 44.7 44.70 93.13

100 10 125 44 88 66 52.8 49.2 49.2 49.2 49.20 93.18

100 10 125 48 96 72 57.6 53.6 53.7 53.6 53.63 93.11

100 10 125 52 104 78 62.4 59.7 59.7 59.7 59.70 95.67

100 10 125 56 112 84 67.2 64.1 64.2 64.1 64.13 95.44

100 10 125 60 120 90 72 68.4 68.4 68.4 68.40 95.00

100 10 125 64 128 96 76.8 73 73 73.1 73.03 95.10

100 10 125 68 136 102 81.6 77.9 77.9 77.8 77.87 95.42

100 10 125 72 144 108 86.4 82.8 82.8 82.8 82.80 95.83

100 10 125 76 152 114 91.2 91.1 91.2 91.1 91.13 99.93

100 10 125 80 160 120 96 93.4 93.1 93.3 93.27 97.15

100 10 125 84 168 126 100 93.3 93.3 93.4 93.33 93.33

100 10 125 88 176 132 100 93.5 93.4 93.5 93.47 93.47

100 10 125 92 184 138 100 93.5 93.3 93.3 93.37 93.37

100 10 125 96 192 144 100 93.5 93.5 93.4 93.47 93.47

100 10 125 100 200 150 100 93.5 93.5 93.5 93.50 93.50

