Switching

Switched Networks

Circuit Switch

Packet Switchin

Comparisor

Circuit and Packet Switching

ITS323: Introduction to Data Communications

Sirindhorn International Institute of Technology
Thammasat University

Prepared by Steven Gordon on 2 August 2011 ITS323Y11S1L09, Steve/Courses/ITS323/Lectures/switching.tex, r1902

Switched Networks

Circuit Switch

KEL SWILL

Switched Communications Networks

Circuit Switching

Packet Switching

Comparing Circuit and Packet Switching

Switched Networks

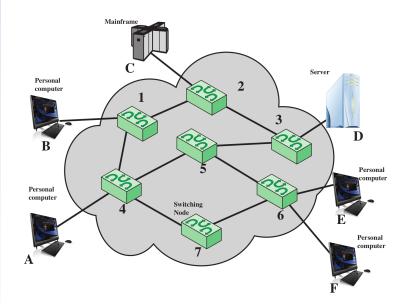
Circuit Switchi

Packet Switchin

Compariso

Switched Communications Networks

- ► So far focussed on encoding and transmitting information over a link
- Now how networks used to interconnect many devices
- Switched Communication Networks
 - Data transmitted from source to destination through network of switching nodes
 - Switching nodes are not concerned with content of data
 - Collection of nodes referred to as communications network
 - ► Devices attached to network are called stations
 - ► Node—station links often dedicated point-to-point links
 - Node—node links often multiplexed
 - Network is often not fully connected; but desirable to have multiple paths for each pair of stations
- Two technologies used in wide area switched networks: circuit switching and packet switching


Switched Networks

Circuit Switch

Packet Switch

Comparisoi

Simple Switching Network

Contents

Switched Network

Circuit Switching

Packet Switch

Compariso

Switched Communications Networks

Circuit Switching

Packet Switching

Comparing Circuit and Packet Switching

Example of Old-Style Circuit Switch

Switched Networks

Circuit Switching

Seattle Municipal Archives from Seattle, WA via Wikimedia Commons; CC BY 2.0

Switching

Example of Current-Style Circuit Switch

Circuit Switching
Packet Switching

Mudares via Wikimedia Commons; CC BY 2.5

cjwlabasst via Wikimedia Commons; Public domain

Compariso

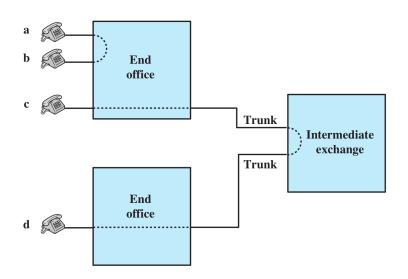
Circuit Switching Networks

- Dedicated communications path between two stations;
 path is sequence of links between nodes
- On each physical link, logical channel allocated to connection
- ► Three phases:
 - 1. Circuit establishment: Create station-to-station circuit, allocating resources as needed
 - 2. Data transfer: Analog or digital data transmitted from station to station
 - 3. Circuit disconnect: Circuit is terminated, de-allocation of resources

Packet Switch

Compariso

Circuit Switching Networks


- Path established before data transfer begins; channel capacity must be reserved between each pair of nodes in path, and switching capacity allocated at each switching node
- Developed to handle voice traffic, but also used for data traffic
- ► Examples: public telephone network, private telephone networks, prviate data networks

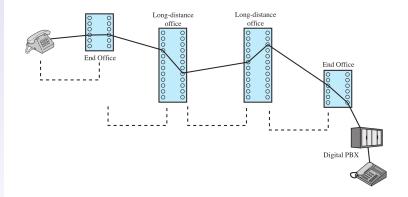
Circuit Establishment

Switched Networks
Circuit Switching

Packet Switching

C----

Switching


Switched Networks

Circuit Switching

Packet Switch

Comparisor

Example Connection Over a Public Circuit-Switching Network

Camananiana

Issues in Circuit-Switching

Efficiency

- Resources reserved for duration of connection (capacity in all links, circuit in all switches)
- ► Inefficient if applications do not use the capacity

Quality

▶ Data rate, delay guaranteed for duration of connection

Link Speeds

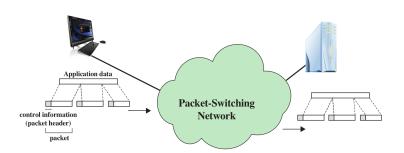
▶ End devices must be the same speed

Circuit Switching
Packet Switching

Switched Communications Networks

Circuit Switching

Packet Switching


Comparing Circuit and Packet Switching

Packet Switching

Compariso

Packet Switching

- For data connections, much of the time the line is idle; circuit-switching inefficient
- Packet switching: break data into packets, sending one at a time from source to destination

Switching

Switched Network

Packet Switching

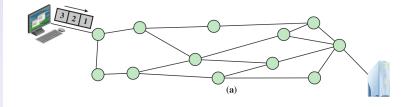
Compariso

Types of Packet Switching

Datagram Packet Switching

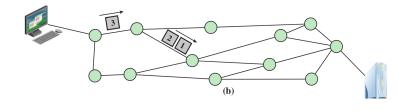
- ► Each packet is treated independently of all others
- ▶ Packets belonging to the same message may:
 - Take different paths across the network
 - Arrive at destination out of order and may be lost
- Packets need headers so switches know where to send them

Virtual Circuit Packet Switching

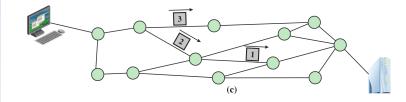

- Virtual circuit setup and teardown
- ▶ Once setup, data is transferred as individual packets
 - Take the same path across the network
 - Arrive in-order at the destination, but may be lost
- Packets need headers so switches know what is the next switch it must be sent to

Packet Switching: Datagram Approach: (a)

Switched Networks

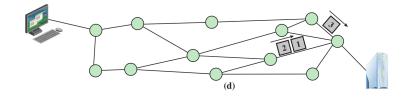

Packet Switching

Packet Switching: Datagram Approach: (b)


Switched Networks
Circuit Switching

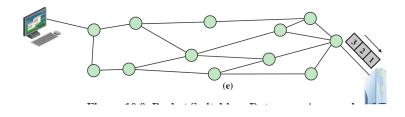
Packet Switching

Packet Switching


Packet Switching: Datagram Approach: (c)

Packet Switching: Datagram Approach: (d)

Switched Networks

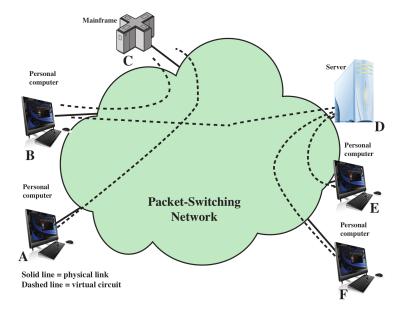

Packet Switching

Packet Switching: Datagram Approach: (e)

Switched Networks
Circuit Switching

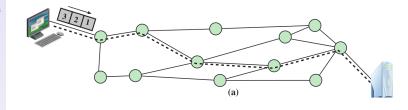
Packet Switching

Switching


Switched Networks

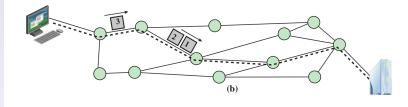
Circuit Switchin

Packet Switching


Comparisor

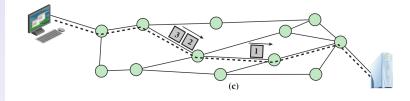
The Use of Virtual Circuits

Switched Networks


Packet Switching

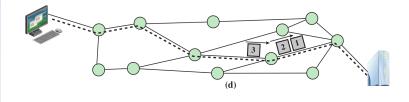
Packet Switching: Virtual-Circuit Approach: (b)

Switched Networks
Circuit Switching


Packet Switching

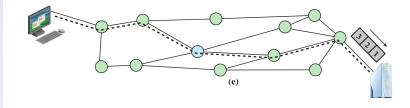
Packet Switching: Virtual-Circuit Approach: (c)

Switched Networks
Circuit Switching


Packet Switching

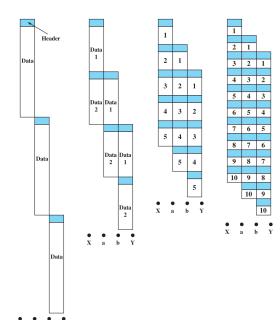
Packet Switching: Virtual-Circuit Approach: (d)

Switched Networks


Packet Switching

Packet Switching: Virtual-Circuit Approach: (e)

Switched Networks


Packet Switching

Effect of Packet Size on Transmission Time

Switched Networks

Packet Switching

Circuit Switching

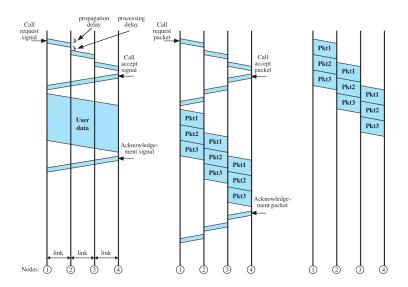
Switched Communications Networks

Comparison

Circuit Switching

Packet Switching

Comparing Circuit and Packet Switching


Switching

Switched Networks
Circuit Switching

Packet Switchi

Comparison

Event Timing for Circuit Switching and Packet Switching

Switching

Switched Networks

Dacket Switchi

Comparison

Comparison of Communication Switching Techniques

Circuit Switching	Datagram Packet Switching	Virtual Circuit Packet Switching
Dedicated transmission path	No dedicated path	No dedicated path
Continuous transmission of data	Transmission of packets	Transmission of packets
Fast enough for interactive	Fast enough for interactive	Fast enough for interactive
Messages are not stored	Packets may be stored until delivered	Packets stored until delivered
The path is established for entire conversation	Route established for each packet	Route established for entire conversation
Call setup delay; negligible transmission delay	Packet transmission delay	Call setup delay; packet transmission delay
Busy signal if called party busy	Sender may be notified if packet not delivered	Sender notified of connection denial
Overload may block call setup; no delay for established calls	Overload increases packet delay	Overload may block call setup; increases packet delay
Electromechanical or computerized switching nodes	Small switching nodes	Small switching nodes
User responsible for message loss protection	Network may be responsible for individual packets	Network may be responsible for packet sequences
Usually no speed or code conversion	Speed and code conversion	Speed and code conversion
Fixed bandwidth	Dynamic use of bandwidth	Dynamic use of bandwidth
No overhead bits after call setup	Overhead bits in each packet	Overhead bits in each packet

