Transmission Media

Design Factors

Guided Media

Wireless Transmissio

Wireless Media

Transmission Media

ITS323: Introduction to Data Communications

Sirindhorn International Institute of Technology Thammasat University

Prepared by Steven Gordon on 6 June 2011 ITS323Y11S1L04, Steve/Courses/ITS323/Lectures/media.tex, r1796

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Transmission Media

Design Factors

Guided Media

Wireless Transmission

Wireless Media

Contents

Design Factors

Guided Media

Wireless Transmission

Wireless Media

Transmission Media

Design Factors

Guided Media

Wireless Transmission

Wireless Media

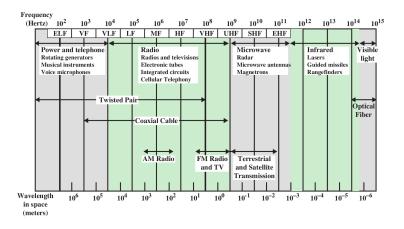
Design Factors

▶ Key concerns are data rate and distance: maximise both

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Design factors:
 - Bandwidth
 - Transmission impairments
 - Interference
 - Number of receivers

Transmission Media


Design Factors

Guided Media

Wireless Transmissio

Wireless Media

Electromagnetic Spectrum for Telecommunications

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Transmission Media

Design Factors

Guided Media

Wireless Transmission

Wireless Media

Contents

Design Factors

Guided Media

Wireless Transmission

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Wireless Media

Transmission Media

Design Factors

Guided Media

- Wireless Transmissior
- Wireless Media

Electrical Cables

- ► Transmit electrical signals on a conductor, e.g. copper
- Cable carrying electrical current radiates energy, and can pick-up energy from other sources
 - Can cause interference on other cables
 - Other sources can cause interference on the cable
 - Interference results in poor quality signals being received
- To minimise interference:
 - Keep the cable lengths short
 - Keep the cables away from other sources
 - Design the cables to minimise radiation and pick-up
 - Use materials to shield from interference
 - Organise multiple wires so they dont interfere with each other

Transmission Media

Design Factors

Guided Media

Wireless Transmissior

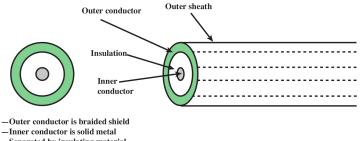
Wireless Media

Twisted Pair

- Two insulated copper wires arranged in spiral pattern
- Most commonly used and least expensive medium
 - Used in telephone networks and in-building communications
 - Telephone networks designed for analog signalling (but supporting digital data)
 - Also used for digital signalling
- Two varieties of twisted pair: shielded (STP) and unshielded (UTP); also multiple categories (CAT5)

- -Twisted together
- -Often "bundled" into cables
- Usually installed in building during construction

Transmission Media


Design Factors

Guided Media

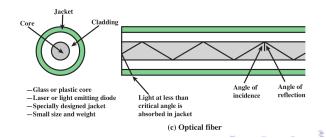
- Wireless Transmission
- Wireless Media

Coaxial Cable

- Two conductors, one inside the other
- Provide much more shielding from interference than twisted pair: Higher data rates; More devices on a shared line; Longer distances
- Widely used for cable TV, as well as other audio/video cabling
- Used in long-distance telecommunications, although optical fibre is more relevant now

- -Separated by insulating material
- -Covered by padding

Transmission Media


Design Factors

Guided Media

- Wireless Transmissior
- Wireless Media

Optical Fibre

- Light (optical rays) is guided within glass or plastic fibres
- Used in long-distance telecommunications, as well as telephone systems, LANs, and city-wide networks
- Advantages of optical fibre over electrical cables:
 - 1. Lower loss: can transfer larger distances
 - 2. Higher bandwidth: a single fibre is equivalent to 10's or 100's of electrical cables
 - 3. Small size, light weight: lowers cost of installation
 - 4. Electromagnetic isolation

Transmission Media

Design Factors

Guided Media

- Wireless Transmission
- Wireless Media

Comparison of Guided Media

Electrical Cables

- Moderate data rates: 1Gb/s
- Maximum distance: 2km (twisted pair); 10km (coaxial)
- Cheapest for low data rates
- ► UTP: easy to install, susceptible to interference
- STP, Coaxial Cable: rigid, protection against interference

Optical Cables

- Very high data rates: 100Gb/s+
- Maximum distance: 40km
- Expensive equipment, but cost effective for high data rates
- Difficult to install

Transmission Media

Design Factors

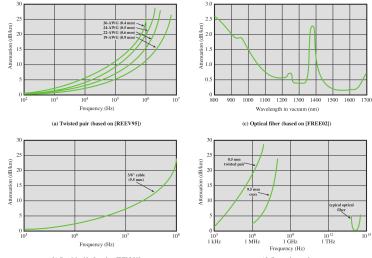
Guided Media

Wireless Transmission

Wireless Media

Point-to-Point Transmission Characteristics of Guided Media

	Frequency Range	Typical Attenuation	Typical Delay	Repeater Spacing
Twisted pair (with loading)	0 to 3.5 kHz	0.2 dB/km @ 1 kHz	50 µs/km	2 km
Twisted pairs (multipair cables)	0 to 1 MHz	0.7 dB/km @ 1 kHz	5 μs/km	2 km
Coaxial cable	0 to 500 MHz	7 dB/km @ 10 MHz	4 μs/km	1 to 9 km
Optical fiber	186 to 370 THz	0.2 to 0.5 dB/km	5 μs/km	40 km


Transmission Media

Design Factors

Guided Media

- Wireless Transmissior
- Wireless Media

Attenuation of Typical Guided Media

(b) Coaxial cable (based on [BELL90])

(d) Composite graph

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

Transmission Media

Design Factors

Guided Media

Wireless Transmission

Wireless Media

Contents

Design Factors

Guided Media

Wireless Transmission

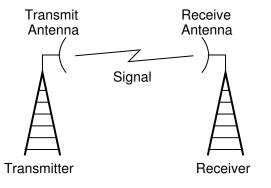
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Wireless Media

Transmission Media

Design Factors

Guided Media


Wireless Transmission

Wireless Media

Wireless Transmission Model

Common wireless systems for communications include:

- Terrestrial microwave, e.g. television transmission
- Satellite microwave, e.g. IPstar
- Broadcast radio, e.g. IEEE 802.11 WiFi (wireless LAN)
- Infrared, e.g. in-home communications

Transmission Media

Design Factors

Guided Media

Wireless Transmission

Wireless Media

Antennas

- Antenna converts between electrical current and electromagnetic waves
- Waves are within the Radio Frequency (RF) band of 3 kHz to 300 GHz
- Antenna characteristics are same whether sending or receiving
- Direction and propagation of a wave depends on antenna shape
- Isotropic antenna: power propagates in all directions equally (spherical pattern, ideal)
- Omni-directional antenna: power propagates in all directions on one plane (donut)
- Directional antenna: power concentrated in particular direction
- Power output in particular direction compared to power produced by isotropic antenna is antenna gain [dBi]

Transmission Media

Design Factors

Guided Media

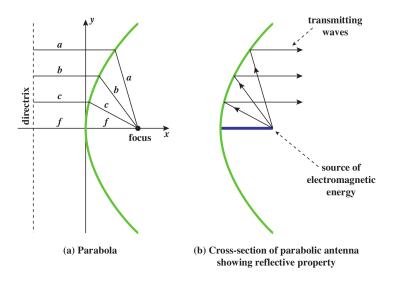
Wireless Transmission

Wireless Media

Antenna Examples

See http://www.cisco.com/en/US/products/hw/ wireless/ps469/

Transmission Media


Design Factors

Guided Media

Wireless Transmission

Wireless Media

Parabolic Reflective Antenna

Transmission Media

Design Factors

Guided Media

Wireless Transmission

Wireless Media

Calculating Antenna Gain

Relationship between effective area of antenna and its gain:

$$G = \frac{4\pi A_e}{\lambda^2}$$

where λ is signal carrier wavelength

- Effective area is related to physical size, but differs among antenna designs
- ► E.g. parabolic antenna may have effective area of 0.5× physical area

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Transmission Media

Design Factors

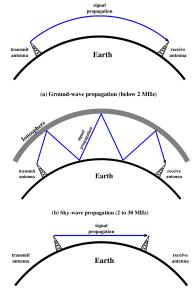
Guided Media

Wireless Transmission

Wireless Media

Wireless Propagation

- Ground Wave Propagation (below 2 MHz): signal follows contour of Earth, e.g. AM radio
- Sky Wave Propagation (2–30 MHz: signal reflected between ionosphere and Earth, e.g. amateur radio, international radio stations
- Line-of-Sight Propagation (above 30 MHz): signal not reflected; antennas must be in effective line-of-sight; used for most communications


Design Factors

Guided Media

Wireless Transmission

Wireless Media

Different Propagation Characteristics

Transmission Media

Design Factors

Guided Media

Wireless Transmission

Wireless Media

Frequency Bands

Band	Frequency Range	Free-Space Wavelength Range	Propagation Characteristics	Typical Use
FIF() I	20 - 200 II	10.000 to 1000 km	GW	D 11 0 1 1
ELF (extremely	30 to 300 Hz	10,000 to 1000 km	Gw	Power line frequencies; used by some home control
low frequency)				systems.
VF (voice	300 to 3000 Hz	1000 to 100 km	GW	Used by the telephone system
frequency)	500 to 5000 Hz	1000 to 100 km	0	for analog subscriber lines.
VLF (very low	3 to 30 kHz	100 to 10 km	GW: low attenuation	Long-range navigation;
frequency)	5 10 50 KHZ	100 10 10 km	day and night; high	submarine communication
inequency)			atmospheric noise level	submarine communication
LF (low frequency)	30 to 300 kHz	10 to 1 km	GW; slightly less	Long-range navigation;
La (los nequency)	50 10 500 km2	10 10 1 111	reliable than VLF:	marine communication radio
			absorption in daytime	beacons
MF (medium	300 to 3000 kHz	1.000 to 100 m	GW and night SW;	Maritime radio: direction
frequency)			attenuation low at night,	finding; AM broadcasting.
			high in day;	
			atmospheric noise	
HF (high	3 to 30 MHz	100 to 10 m	SW; quality varies with	Amateur radio; military
frequency)			time of day, season, and	communication
			frequency.	
VHF (very high	30 to 300 MHz	10 to 1 m	LOS; scattering because	VHF television; FM broadcast
frequency)			of temperature	and two-way radio, AM
			inversion; cosmic noise	aircraft communication;
				aircraft navigational aids
UHF (ultra high	300 to 3000 MHz	100 to 10 cm	LOS; cosmic noise	UHF television; cellular
frequency)				telephone; radar; microwave
				links; personal communications systems
CHE (many bish	3 to 30 GHz	10 to 1 cm	LOS: rainfall	Satellite communication:
SHF (super high frequency)	3 to 30 GHZ	10 to 1 cm	attenuation above 10	radar: terrestrial microwave
(requency)			GHz; atmospheric	links; wireless local loop
			attenuation due to	links; wireless local loop
			oxygen and water vapor	
EHF (extremely	30 to 300 GHz	10 to 1 mm	LOS; atmospheric	Experimental: wireless local
high frequency)	20102000112	10 to 1 mild	attenuation due to	loop; radio astronomy
			oxygen and water vapor	
Infrared	300 GHz to 400	1 mm to 770 nm	LOS	Infrared LANs; consumer
	THz			electronic applications
Visible light	400 THz to 900	770 nm to 330 nm	LOS	Optical communication
2	THz			

Transmission Media

Design Factors

Guided Media

Wireless Transmission

Wireless Media

Wireless Transmission Impairments

Free Space Loss: Signal disperses with distance; therefore signal attenuates over distance

Atmospheric Absorption: Water vapour and oxygen in atmosphere may attenuate signals; only significant for specific frequencies (e.g. 22GHz, > 30 GHz)

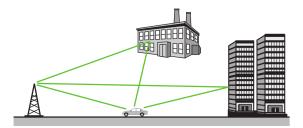
Multipath: Signals reflect off obstacles; multiple copies of signal arrive at receiver with varying delays causing reinforcement or cancellation

Refraction: Signals are refracted through atmosphere; only part of wave received

Transmission Media

Design Factors

Guided Media


Wireless Transmission

Wireless Media

Examples of Multipath Interference

(a) Microwave line of sight

(b) Mobile radio

Transmission Media

Design Factors

Guided Media

Wireless Transmission

Wireless Media

Free Space Loss Model

Ideal model to determine amount of power loss between transmitter and receiver

$$\frac{P_t}{P_r} = \frac{(4\pi d)^2}{G_t G_r \lambda^2}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Assumes no obstacles, operating in vacuum and perfect antennas
- Other models: Okumura-Hata (urban, suburban); Longley-Rice (TV broadcast); Log-distance (indoor)

Transmission Media

Design Factors

Guided Media

Wireless Transmission

Wireless Media

Example of Path Loss

Two parabolic antennas with diameter 1 metre; frequency 5 GHz; transmit power 1 W; distance 1 km. What is required receive power threshold of receiver?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Transmission Media

Design Factors

Guided Media

Wireless Transmission

Wireless Media

Contents

Design Factors

Guided Media

Wireless Transmission

Wireless Media

Transmission Media

Design Factors

Guided Media

Wireless Transmissior

Wireless Media

Terrestrial Microwave

- Parabolic antenna (usually 1-3 m) used to transmit point-to-point to another antenna
- Line-of-sight communications; often antennas are placed high (towers, buildings) to avoid obstacles
- Long-distance telecommunications (alternative to optical fibre, coaxial cable), e.g. voice and TV transmission
- Short communications between buildings (e.g. office buildings in city)
- Mobile telephone systems (GSM, CDMA, 3G)

Band (GHz)	Bandwidth (MHz)	Data Rate (Mbps)
2	7	12
6	30	90
11	40	135
18	220	274

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Transmission Media

Design Factors

Guided Media

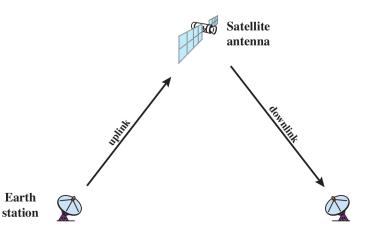
Wireless Transmission

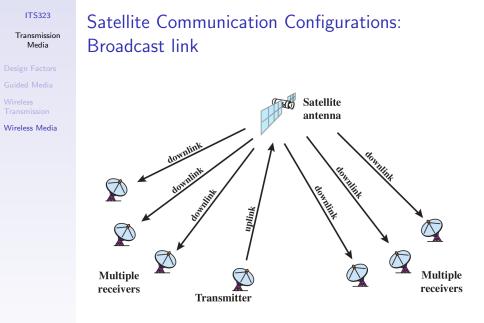
Wireless Media

Satellite Microwave

- Communications satellite acts as microwave relay station
- Links two or more ground/earth stations
- Receives signal on one frequency (uplink), repeats or amplifies, and transmits on another frequency (downlink)
- Point-to-point or broadcast configuration
- Geostationary Orbit (GEO): satellite appears stationary from Earth; cover about ¹/₃ Earth surface; 36,000 km above Earth
- Low Earth Orbit (LEO): 100's of km above Earth; orbit Earth every 1–2 hours; footprint with radius of 3000–4000 km

Transmission Media


Design Factors


Guided Media

Wireless Transmissio

Wireless Media

Satellite Communication Configurations: Point-to-point link

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Transmission Media

Design Factors

Guided Media

Wireless Transmission

Wireless Media

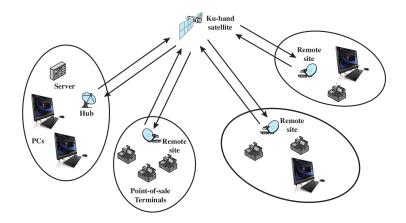
Applications for Satellites

- TV distribution
- Long-distance telephone transmission
- Private business networks
 - Very Small Aperture Terminals (VSATs) allow for low cost Earth stations

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Global positioning, e.g. GPS

Transmission Media


Design Factors

Guided Media

Wireless Transmissio

Wireless Media

Typical VSAT Configuration

Transmission Media

Design Factors

Guided Media

Wireless Transmission

Wireless Media

Example of Satellite Technology

See http://www.ipstar.com/ (especially the PDF specifications of the satellite and terminals)

- Transmission Media
- Design Factors
- Guided Media
- Wireless Transmission
- Wireless Media

Broadcast Radio

 Microwave uses directional antennas; broadcast radio can use omni-directional

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- ▶ Frequencies from 30 MHz to 1 GHz
- FM radio
- UHF and VHF television
- Wireless networking