#### Protocols

#### Motivation

Simple Architecture

TCP/IP

Standards

Addressing

TCP/IP Operation

Applications

# Protocol Architectures and Internet Applications

### ITS323: Introduction to Data Communications

Sirindhorn International Institute of Technology Thammasat University

Prepared by Steven Gordon on 8 June 2011 ITS323Y11S1L02, Steve/Courses/ITS323/Lectures/protocols.tex, r1801

#### Protocols

#### Motivation

Simple Architecture TCP/IP Standards Addressing TCP/IP Operatio

## Contents

## The Need for a Protocol Architecture

A Simple Protocol Architecture

The TCP/IP Protocol Architecture

Protocols and Standards

Addressing in TCP/IP

Example of TCP/IP Operation

Internet Applications and Performance

#### Protocols

#### Motivation

- Simple Architectur
- TCP/IP
- Standards
- Addressing
- TCP/IP Operation
- Applications

# What is a Protocol?

- Set of rules that two (or more) peer entities obey in order to communicate
- Syntax: format of data blocks; types of messages
- Procedures: set of rules each peer must follow; timing information

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Protocols

#### Motivation

- Simple Architectur
- TCP/IP
- Standards
- Addressing
- TCP/IP Operation
- Applications

# The Need for a Protocol Architecture

- Data communications is complex!
- Apply divide-and-conquer principle:
  - Break communication tasks into subtasks
  - Implement subtasks separately in layers
  - Layers arranged in vertical stack
    - Layer N uses services of layer N-1
    - Layer N provides services to layer N + 1
  - Peer layers communicate with a protocol
  - Combine the layers to get protocol architecture

Protocols

#### Motivation

Simple Architecture

TCP/IP

Standards

Addressing

TCP/IP Operation

Applications

# Contents

The Need for a Protocol Architecture

## A Simple Protocol Architecture

he TCP/IP Protocol Architecture

Protocols and Standards

Addressing in TCP/IP

Example of TCP/IP Operation

Internet Applications and Performance

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Protocols

#### Motivation

Simple Architecture

- TCP/IP
- Standards
- Addressing
- TCP/IP Operation

Applications

# A Simple Protocol Architecture

## Simple view of data communications

- Applications, e.g. file transfer, email, web browsing, remote login
- Computers
- Networks

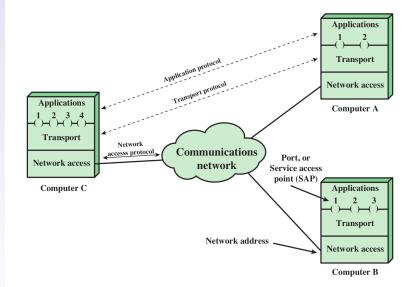
## Divide tasks into 3 layers

- Application layer: protocols to support each specific application
- Transport layer: reliability mechanisms for all applications
- Network access layer: exchange data between computers over network

#### Protocols

#### Motivation




Standards

Addressing

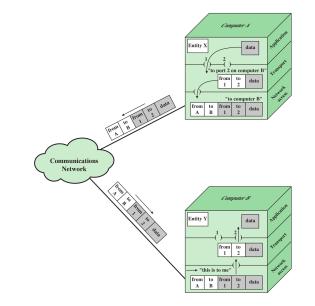
TCP/IP Operation

Applications

# Protocol Architectures and Networks



▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで


#### Protocols

#### Motivation

#### Simple Architecture

- TCP/IP
- Standards
- Addressing
- TCP/IP Operation
- Applications

# Protocols in a Simplified Architecture



◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)

#### Protocols

#### Motivation

Simple Architecture

- TCP/IP
- Standards
- Addressing
- TCP/IP Operation
- Applications

# Common Features of Protocols

- Headers are added to data to carry control information; referred to as encapsulation
  - E.g. source/destination address, sequence number, error-detection code
- Header + data is called Protocol Data Unit (PDU)
- Segmentation: sometimes data must be divided into smaller chunks at source (and re-assembled at destination)

#### Protocols

Motivation

Simple Architecture

 $\mathsf{TCP}/\mathsf{IP}$ 

Standards

Addressing

TCP/IP Operation

Applications

Contents

The Need for a Protocol Architecture

Simple Protocol Architecture

The TCP/IP Protocol Architecture

Protocols and Standards

Addressing in TCP/IP

Example of TCP/IP Operation

Internet Applications and Performance

#### Protocols

#### Motivation

Simple Architecture

### TCP/IP

- Standards
- Addressing
- TCP/IP Operation
- Applications

# Origins and Terminology

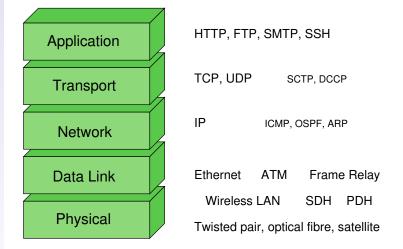
- ARPANET uses two key protocols, TCP and IP; together (as well as other related protocols) referred to as TCP/IP protocol suite
  - Used in global Internet today
  - Many protocol standardised by Internet Architecture Board (IAB) and Internet Engineering Task Force (IETF)
  - No official protocol architecture; generally divided into 5 layers
- ISO developed Open Systems Interconnection (OSI) protocol architecture in 1970's
  - Protocol architecture: 7-layer OSI Reference Model
  - TCP/IP won!
  - Not used in practice today; principles and terminology still applied

#### Protocols

#### Motivation

Simple Architectur

### TCP/IP


Standards

Addressing

TCP/IP Operation

Application





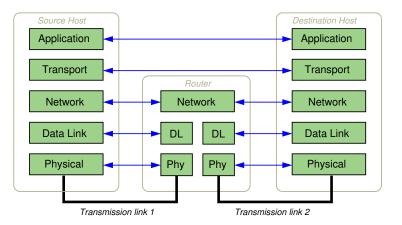
▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

#### Protocols

#### Motivation

Simple Architectur

### TCP/IP


Standards

Addressing

TCP/IP Operation

Applications

# TCP/IP Layering Concepts



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

#### Protocols

#### Motivation

Simple Architecture

 $\mathsf{TCP}/\mathsf{IP}$ 

Standards

Addressing

TCP/IP Operation

Applications

# TCP/IP Layers

## 1. Physical Layer

Physical interface between transmission device and medium; how to send bits over transmission medium: data rate, signalling, electrical signals, codecs, modems, ...

## 2. Data Link Layer

Transmission of data over link to which the device is attached; addressing scheme of destination device; allows layers above to ignore details of links; may provide reliability; sometimes called: "network Access", "MAC", "Link", "Hardware" layer

#### Protocols

#### Motivation

Simple Architecture

### $\mathsf{TCP}/\mathsf{IP}$

Standards

Addressing

TCP/IP Operation

Applications

# TCP/IP Layers

## 3. Network Layer

Allows hosts to communicate across different networks; provides routing across the Internet; may provide congestion control, quality of service; sometimes called: "IP", "Internet" layer

## 4. Transport Layer

Transfer of data between end-points; connect processes running in OS of host; may provide error control, flow control, congestion control, reliable delivery .

## 5. Application Layer

Provides functionality needed for various applications

#### Protocols

#### Motivation

Simple Architecture

### TCP/IP

Standards

Addressing

TCP/IP Operation

Applications

# Other Protocol Architectures

- OSI 7-layer Reference Model
- Older architectures: IBM SNA, Appletalk, Novell IPX
- Domain specific architectures: Signalling System 7 (SS7) for telephone signalling; UMTS for 3G mobile telecommunications; . . .

#### Protocols

Motivation

Simple Architecture

TCP/IP

Standards

Addressing TCP/IP Operation Contents

The Need for a Protocol Architecture

A Simple Protocol Architecture

The TCP/IP Protocol Architecture

Protocols and Standards

Addressing in TCP/IP

Example of TCP/IP Operation

Internet Applications and Performance

#### Protocols

#### Motivation

Simple Architecture

TCP/IP

### Standards

Addressing

TCP/IP Operation

Applications

# Protocols and Standards

## Protocols

- Rules that communicating entities follow
- Implemented in hardware and software on computing devices

## Standards

 Agreed-upon rules; protocols that some organisation has agreed upon

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Create open and competitive market
- Allow national and international interoperability

Protocols

#### Motivation

Simple Architecture

TCP/IP

### Standards

- Addressing
- TCP/IP Operation

Applications

# Standard Development Organisations

- International Organisation for Standardisation (ISO): formed from national standards bodies to create global standards
- International Telecommunication Union(ITU): formed from national telecom operators and other organisations to create global standards for telecoms
- Institute of Electrical and Electronics Engineers (IEEE): professional engineering society that develops standards in electronics, radio and electrical engineering
- Internet Engineering Task Force (IETF): develops most standards for the Internet
- World Wide Web Consortium (W3C): develops web based standards (e.g. HTML)
- Forums and Special Interest Groups: companies working together on specific technologies
- Regulatory agencies: set regulations on use of communication technologies

#### Protocols

Motivation

Simple Architectur

TCP/IP

Standards

Addressing

TCP/IP Operation

Contents

The Need for a Protocol Architecture

A Simple Protocol Architecture

The TCP/IP Protocol Architecture

Protocols and Standards

Addressing in  $\mathsf{TCP}/\mathsf{IP}$ 

Example of TCP/IP Operation

Internet Applications and Performance

#### Protocols

#### Motivation

- Simple Architectu
- TCP/IP
- Standards
- Addressing
- TCP/IP Operation
- Applications

# Addressing in TCP/IP: Identifying Computers

- Computers attach to network via network interface
- Within single network, all computers must use same addressing scheme; referred to as hardware address or "physical", "data link", "MAC" address
- Different network technologies may use different, incompatible addressing schemes:
  - E.g. Ethernet LAN: IEEE 48-bit address; Bluetooth/ZigBee: IEEE 64-bit address; X.25: telephone number style address
- Separate "logical" address needed to communicate across different network technologies
  - IP address: IPv4 32-bits; IPv6 128-bits
- Each network interface usually has two addresses: hardware and IP

#### Protocols

#### Motivation

Simple Architectur

TCP/IP

Standards

Addressing

TCP/IP Operation

Applications

# Addressing in TCP/IP: Identifying Applications

- Multiple applications may execute on one computer
- Port numbers (or transport address or service access point) used to identify application processes
- User-friendly and application-specific addresses may also be used

E.g. www.google.com, steve@siit.tu.ac.th

#### Protocols

#### Motivation

Simple Architecture

TCP/IP

Standards

### Addressing

TCP/IP Operation

Applications

# Addressing Examples

Try commands ifconfig<sup>1</sup>, arp, nslookup and netstat on your computer. Find the different types of addresses.

<sup>1</sup>ipconfig in Windows

#### Protocols

#### Motivation

Simple Architectur

TCP/IP

Standards

Addressing

TCP/IP Operation

Applications

## Contents

The Need for a Protocol Architecture

A Simple Protocol Architecture

The TCP/IP Protocol Architecture

Protocols and Standards

Addressing in TCP/IP

Example of TCP/IP Operation

Internet Applications and Performance

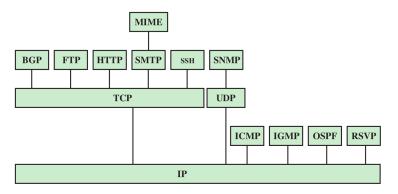
▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

#### Protocols



Simple Architectu

TCP/IF


Standards

Addressing

TCP/IP Operation

Applications





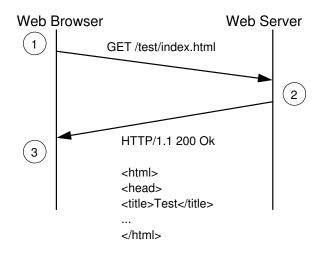
Below IP are the Data Link and Physical layer protocols. These are specific to LAN/WAN technologies.

#### Protocols

#### Motivation

Simple Architectu

TCP/IP


Standards

Addressing

TCP/IP Operation

Applications

# Example Application: Web Browsing with HTTP



▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

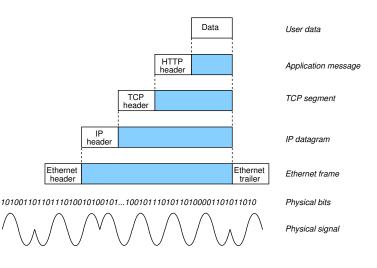
Protocols

#### Motivation

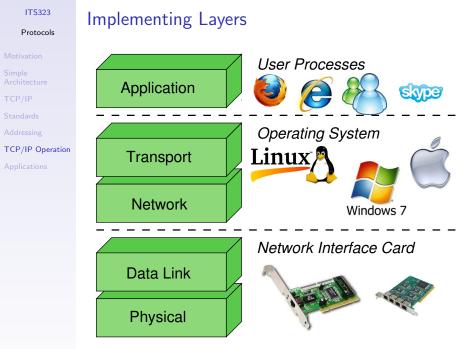
Simple Architectur

TCP/IP

Standards


Addressing

 $\mathsf{TCP}/\mathsf{IP}\ \mathsf{Operation}$ 


Applications

# Encapsulation in $\mathsf{TCP}/\mathsf{IP}$

Example: web browser has requested web page from server; server needs to send the page requested back to browser



▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)



#### Protocols

#### Motivation

Simple Architecture TCP/IP Standards Addressing

TCP/IP Operation

Applications

# Contents

The Need for a Protocol Architecture

A Simple Protocol Architecture

The TCP/IP Protocol Architecture

Protocols and Standards

Addressing in TCP/IP

Example of TCP/IP Operation

Internet Applications and Performance

#### Protocols

#### Motivation

Simple Architectur

TCP/IP

Standards

Addressing

TCP/IP Operation

Applications

# Internet Applications

## Standalone Applications

- User interface
- Application logic

## Network or Distributed Applications

- User interface
- Application logic
- Communication mechanisms

### Protocols

#### Motivation

- Simple Architectur
- TCP/IP
- Standards
- Addressing
- TCP/IP Operation
- Applications

# Types of Internet Applications

## Traditional Internet-Based Applications

- File transfer, email, web browsing, remote login, database
- Accuracy is most important

## Multimedia or Real-time Applications

 Audio/video streaming, voice/video calls, gaming, collaborations

Timeliness is most important

#### Protocols

#### Motivation

Simple Architectur

TCP/IP

Standards

Addressing

TCP/IP Operation

Applications

# Performance Metrics

## Bandwidth

- Range of frequencies a channel can pass
- Units: Hertz

## Data Rate

- Number of bits a channel or network can transmit
- Units: bits per second

## Throughput

Amount of data successfully delivered to destination

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Units: bits per second

Protocols

#### Motivation

Simple Architectu

TCP/IP

Standards

Addressing

TCP/IP Operation

Applications

# Performance Metrics

### Delay

- Time to transmit data from source to destination
- Units: seconds
- Four components:
  - 1. Transmission delay: time to transmit data on to link
  - 2. Propagation delay: time for a signal element (or bit) to propagate across link

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- 3. Processing delay: time for device to process data
- 4. Queuing delay: time data spent waiting in queue (memory) inside device

## Packet Delay Variation

- Variance of delay between subsequent packets
- Units: seconds

#### Protocols

#### Motivation

Simple Architectu

TCP/IP

Standards

Addressing

TCP/IP Operation

Applications

# Performance Metrics Examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?