ITS323 - Quiz 6 Answers

Name: \qquad
ID: \qquad Mark: \qquad (out of 7)

Question 1 [4 marks]

The following diagram shows a network of nodes with the costs shown for each link (the costs are the same in both directions of the link). Assuming least-cost routing, complete the routing table for node 1/8/6.

Node		
Destination	Next Node	Cost

Answers

Node 1			
Destination	Path	Cost	Next Node
2	$1-2$	4	2
3	$1-2-3$	5	2
4	$1-4$	2	4
5	$1-4-5$	3	4
6	$1-4-5-6$	5	4
7	$1-4-5-6-7$	7	4
8	$1-2-3-8$	9	2

Node 8			
Destination	Path	Cost	Next Node
1	$8-3-2-1$	9	3
2	$8-3-2$	5	3
3	$8-3$	4	3
4	$8-7-6-5-4$	8	7
5	$8-7-6-5$	7	7
6	$8-7-6$	5	7
7	$8-7$	3	7

Node 6			
Destination	Path	Cost	Next Node
1	$6-5-4-1$	5	5
2	$6-7-3-1$	6	7
3	$6-7-3$	5	7
4	$6-5-4$	3	5
5	$6-5$	2	5
7	$6-7$	2	7
8	$6-7-8$	5	7

Node 1			
Destination	Path	Cost	Next Node
2	$1-2$	3	2
3	$1-2-3$	6	2
4	$1-4$	3	4
5	$1-4-5$	4	4
6	$1-4-5-6$	5	4
7	$1-4-7$	7	4
8	$1-4-5-8$	6	4

Node 8			
Destination	Path	Cost	Next Node
1	$8-5-4-1$	6	5
2	$8-5-6-3-2$	7	5
3	$8-5-6-3$	4	5
4	$8-5-4$	3	5
5	$8-5$	2	5
6	$8-5-6$	3	5
7	$8-7$	4	7

Node 6			
Destination	Path	Cost	Next Node
1	$6-5-4-1$	5	5
2	$6-3-2$	4	3
3	$6-3$	1	3
4	$6-5-4$	2	5
5	$6-5$	1	5
7	$6-5-4-7$	6	5
8	$6-5-8$	3	5

Question 2 [1 mark]
a) What is an advantage of using a hop count in flooding protocols?
b) What is a disadvantage of using a hop count in flooding protocols?
c) What is an advantage of using a sequence number in flooding protocols?
d) What is a disadvantage of using a sequence number in flooding protocols?

Answers

Hop count advantage: limit the number of packets sent in the network, thereby potentially reducing network overhead.
Hop count disadvantage: extra field in packet header contributes overhead; packet may not reach destination.
Sequence number advantage: allows nodes to determine if a duplicate packet has been received (and hence does not need to re-send, reducing network overhead).
Sequence number disadvantage: extra field in packet header contributes overhead.

Question 3 [2 marks]

a) One aim of Medium Access Control (MAC) in LANs is to ensure frames (or transmissions) do not collide with each other.

T/F
b) One aim of Medium Access Control (MAC) in LANs is to ensure only one user (computer) transmits at a time.

T/F
c) Distributed control for Medium Access Control protocols has the advantage of avoiding performance bottlenecks at a central node.

T / F
d) Centralised control for Medium Access Control (MAC) has the advantage (compared to distributed control) that if the controlling station fails, the network can still operate.

T / F
e) The IEEE 802 series of LAN standards focus on the Physical Layer, Data Link Layer and Network Layer of the OSI model.
f) The IEEE 802 series of LAN standards focus on the Physical Layer and Data Link Layer of the OSI model.
g) A contention-based MAC protocol allows stations to reserve time slots for transmissions in the future.

T/F
h) A contention-based MAC protocol gives each station a turn at transmitting in an ordered manner (e.g. station 1, station 2, station 3, ...).

T/F

Question 1 [2 marks]
In an internet, three types of fragmentation (and re-assembly) are possible
Type 1: \quad Fragment at source, re-assemble at destination
Type 2: \quad Fragment at source and routers, re-assemble at destination
Type 3: \quad Fragment at source and routers, re-assemble at routers and destination
Consider the path as shown below, where the maximum frame size (in Bytes) for each link is shown.

$$
\mathrm{A} \leftarrow-1500 \longrightarrow \mathrm{~B} \leftarrow-1000 \longrightarrow \mathrm{C} \leftarrow-500 \rightarrow \mathrm{D} \leftarrow-2000 \longrightarrow \mathrm{E}
$$

If Type $1 / 2 / 3$ fragmentation and re-assembly is used, list the fragments that would be sent over the $2^{\text {nd }}$ link (from B to C) if source A had 4000 Bytes of data to send to destination E. For each fragment, indicate its size.

Answer

Type 1: 8×500 B fragments
Type 2: $3 \times 1000+2 \times 500$ B fragments
Type 3: 4×1000 B fragments

Question 2 [2 marks]

The two special cases addresses (directed broadcast and network) are not allowed to assigned to interfaces of hosts or routers. Assume a router on a LAN has IP address
96.107.19.4/160.203.156.23/208.92.68.12. What is the maximum number of IP hosts that can be attached to the same LAN as the router? Explain your answer.

Answer

96.107.19.4 is a Class A address. Therefore there are 24 bits in the host portion, giving 2^{24} possible addresses. Subtract the two special cases and the router, there can be $2^{24}-3$ hosts. 160.203.156.23 is a Class B address. There are 16 bits in the host portion, meaning $2^{16}-3$ hosts. 208.92.68.12 is a Class C address. There are 8 bits in the host portion, meaning $2^{8}-3$ hosts.

Question 3 [1 mark]
Explain the main difference between a host and a router?

Answer

A router will forward packets, a host will not.

Question 1 [1 mark]

Which of the following services/features are part of IP (circle one answer):
Error control Ordered Delivery Connection-less Security

Connection-oriented	Addressing	Flow control	Circuit switching
Quality of service	Error control	Datagram packet switching	Connection setup

```
Answer
Connection-less
Addressing
Datagram packet switching
```

Question 2 [2 marks]
Assume IP Fragmentation and Re-assembly is used for sending 3000/4000/4000 Bytes of data from A to D . The diagram below shows the maximum datagram size for each link in bytes.
A ---- 1000 ---- B ---- 500 ---- C ----2000 ---- D
A ---- 3000 ---- B ---- 2000 ---- C ----1000 ---- D
A ---- 3000 ---- B ---- 2000 ---- C ----1500 ---- D

For the link from C to D / B to C / B to C, list the fragments sent over the link, including the size of each fragment.

```
Answer
A ---- 1000 ---- B ---- 500 ---- C ----2000 ---- D
A ---- 3000 ---- B ---- 2000 ---- C ----1000 ---- D
1\times3000+1 x 1000 1 x 2000+2\times1000 4 x 1000
A ---- 3000 ---- B ---- 1500 ---- C ----1500 ---- D
1\times3000+1\times1000 1\times2000+2\times1000 2 x 1000 + 1x 1500 + 1x500
```

Question 3 [2 marks]
Assume classful addressing is used.
a) Host $161.205 .111 .38 / 97.161 .222 .74 / 209.108 .113 .54$ is on a LAN. What is the network address for the LAN?
b) What class of IP address what be ideal for a network with 100/1000/10000 hosts?

Answer		
161.205.0.0	97.0 .0 .0	209.108.113.0
Class C	Class B	Class B

Class C
Class B Class B

