1) Assume your lastname in lowercase is your password. If someone chose a random password of the same length as you, what is the entropy of their password?

If your lastname has n letters from the English alphabet, then the total possible passwords that are n letters long when choosing from 26 characters is:
26^{n}
The entropy is the number of bits needed to represent 26^{n} possible values, i.e.
$\log _{2}\left(26^{n}\right)$

1) Assume your firstname in lowercase is your username. All usernames are the same length as yours. A 128-bit MD5 hash is used to store passwords (no salt). Given a hash value, what is the worst case time for an attacker to find the password if can calculate 10^{9} hashes per second?

There are 26^{n} possible passwords. A brute force attack involves calculating the hash of all of them at a speed of 10^{9} per second. Hence the time in seconds is:
$26^{7} / 10^{9}$

1) An attacker wants to use pre-calculated hashes to speed up password cracking. How much space is needed to store all precalculated values, uncompressed (no rainbow table)?

The attacker must store the 26^{n} possible passwords (n Bytes) and their 128-bit (16 Byte) hash. Hence the total size is:
$26^{n}(\mathrm{n}+16)$ Bytes

