\qquad

Sirindhorn International Institute of Technology Thammasat University

Midterm Exam: Semester 2, 2012
Course Title: CSS322 Security and Cryptography
Instructor: Steven Gordon
Date/Time: Friday 21 December 2012; 13:30-16:30

Instructions:

- This examination paper has 16 pages (including this page).
- Conditions of Examination: Closed book; No dictionary; Non-programmable calculator is allowed
- Students are not allowed to be out of the exam room during examination. Going to the restroom may result in score deduction.
- Students are not allowed to have communication devices (e.g. mobile phone) in their possession.
- Write your name, student ID, section, and seat number clearly on the front page of the exam, and on any separate sheets (if they exist).

Reference Material

S-DES operations

P8: 637485109 P10: 35274101986
IP: 26314857 E/P: 41232341 P4: 2431

$$
S 0=\left[\begin{array}{llll}
01 & 00 & 11 & 10 \\
11 & 10 & 01 & 00 \\
00 & 10 & 01 & 11 \\
11 & 01 & 11 & 10
\end{array}\right] \quad S 1=\left[\begin{array}{llll}
00 & 01 & 10 & 11 \\
10 & 00 & 01 & 11 \\
11 & 00 & 01 & 00 \\
10 & 01 & 00 & 11
\end{array}\right]
$$

Figure 1: S-DES Key Generation and Encryption

Mapping of English characters to numbers

$\begin{array}{llllllllllllllllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25\end{array}$

Fermat's theorem if p is prime and a is a positive integer, then $a^{p} \equiv a(\bmod p)$
Euler's theorem For positive integers a and $n, a^{\phi(n)+1} \equiv a(\bmod n)$

First 20 prime numbers $2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59$, 61, 67, 71.

Linear Congruential Generator

$$
X_{n+1}=\left(a X_{n}+c\right) \bmod m
$$

Blum Blum Shub p, q are large prime numbers such that $p \equiv q \equiv 3(\bmod 4)$; $n=p \times q ; s$, random number relatively prime to n. Generate sequence of bits, B_{i} :

$$
\begin{aligned}
X_{0} & =s^{2} \bmod n \\
\text { for } i & =1 \rightarrow \infty \\
X_{i} & =\left(X_{i-1}\right)^{2} \bmod n \\
B_{i} & =X_{i} \bmod 2
\end{aligned}
$$

ANSI X9.17 See figure below:

Modes of operation

Figure 2: CBC mode of operation

Figure 3: CFB mode of operation

Figure 4: OFB mode of operation

Figure 5: CTR mode of operation

