CSS322

Public Key Crypto

Principles

Diffic Hallman

Others

Public Key Cryptography

CSS322: Security and Cryptography

Sirindhorn International Institute of Technology
Thammasat University

Prepared by Steven Gordon on 29 December 2011 CSS322Y11S2L07, Steve/Courses/2011/S2/CSS322/Lectures/rsa.tex, r2070

Contents

Principles

Principles of Public-Key Cryptosystems

Principles

D100 - 11-11---

Other

Birth of Public-Key Cryptosystems

- ▶ Beginning to 1960's: permutations and substitutions (Caesar, rotor machines, DES, ...)
- ▶ 1960's: NSA secretly discovered public-key cryptography
- ▶ 1970: first known (secret) report on public-key cryptography by CESG, UK
- ▶ 1976: Diffie and Hellman public introduction to public-key cryptography
 - Avoid reliance on third-parties for key distribution
 - Allow digital signatures

Other

Principles of Public-Key Cryptosystems

- Symmetric algorithms used same secret key for encryption and decryption
- Asymmetric algorithms in public-key cryptography use one key for encryption and different but related key for decryption
- ► Characteristics of asymmetric algorithms:
 - Require: Computationally infeasible to determine decryption key given only algorithm and encryption key
 - ▶ Optional: Either of two related keys can be used for encryption, with other used for decryption

Public and Private Keys

Principles

Diffie-Hellm:

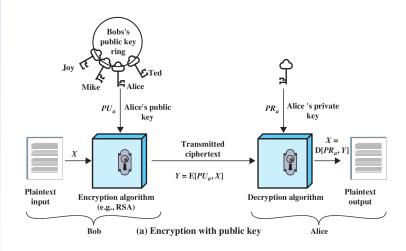
Other

Public Key

- ► For secrecy: used in encryption
- ► For authentication: used in decryption
- Available to anyone

Private Key

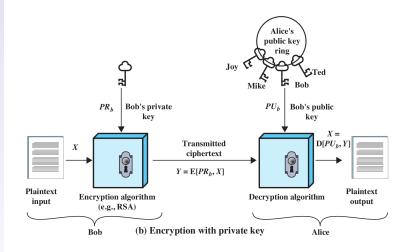
- ► For secrecy: used in decryption
- ▶ For authentication: used in decryption
- Secrect, known only by owner


Public-Private Key Pair

► User A has pair of related keys, public and private: (PU_a, PR_a)

Encryption with Public Key

Principles


Encryption with Private Key

Principles

Tillciple

Diffie-Hellma

Other:

Conventional vs Public-Key Encryption

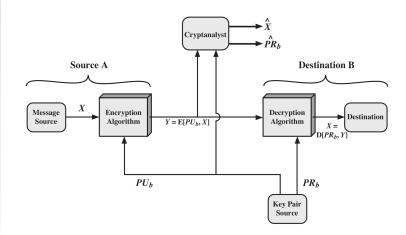
п	 ٠	- 3	 les

Principles

RSA

Diffie-Hellma

Otner


Public-Key Encryption		
Needed to Work:		
One algorithm is used for encryption and decryption with a pair of keys, one for encryption and one for decryption.		
The sender and receiver must each have one of the matched pair of keys (not the content of		
same one).		
Needed for Security:		
One of the two keys must be kept secret.		
It must be impossible or at least impractical to decipher a message if no		
other information is available.		
 Knowledge of the algorithm plus one of the keys plus samples of ciphertext must be insufficient to determine the other key. 		

Secrecy in a Public Key Cryptosystem

Principles

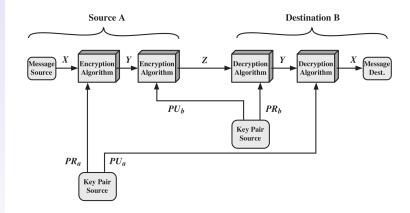

Tillciple

Diffie-Hellma

Authentication in a Public Key Cryptosystem

Principles

ypto


Principles

Frinciple

Diffie-Hellma

Others

Secrecy and Authentication in a Public Key Cryptosystem

Principles

NJA

Diffie-Hellma

Other

Applications of Public Key Cryptosystems

- ► Secrecy, encryption/decryption of messages
- ▶ Digital signature, *sign* message with private key
- ► Key exchange, share secret session keys

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

Requirements of Public-Key Cryptography

Principles

Diffie-Hellma

Other

- 1. Computationally easy for B to generate pair (PU_b, PR_b)
- 2. Computationally easy for A, knowing PU_b and message M, to generate ciphertext:

$$C = E(PU_b, M)$$

3. Computationally easy for B to decrypt ciphertext using PR_b :

$$M = D(PR_b, C) = D[PR_b, E(PU_b, M)]$$

- 4. Computationally infeasible for attacker, knowing PU_b and C, to determine PR_b
- 5. Computationally infeasible for attacher, knowing PU_b and C, to determine M
- 6. (Optional) Two keys can be applied in either order:

$$M = D[PU_b, E(PR_b, M)] = D[PR_b, E(PU_b, M)]$$

Requirements of Public-Key Cryptography

Principles

Diffie-Hellma

Othe

6 requirements lead to need for trap-door one-way function

- Every function value has unique inverse
- ► Calculation of function is easy
- ► Calculation of inverse is infeasible, unless certain information is known

$$Y = f_k(X)$$
 easy, if k and Y are known $X = f_k^{-1}(Y)$ easy, if k and Y are known $X = f_k^{-1}(Y)$ infeasible, if Y is known but k is not

- ▶ What is easy? What is infeasible?
 - Computational complexity of algorithm gives an indication
 - Easy if can be solved in polynomial time as function of input

CSS32

Public Key Crypto

Principles

564

Diffie-Hellma

Othe

Public-Key Cryptanalysis

Brute Force Attacks

- ► Use large key to avoid brute force attacks
- Public key algorithms less efficient with larger keys
- ► Public-key cryptography mainly used for key management and signatures

Compute Private Key from Public Key

▶ No known feasible methods using standard computing

Probable-Message Attack

- ► Encrypt all possible M' using PU_b —for the C' that matches C, attacker knows M
- ► Only feasible of *M* is short
- ► Solution for short messages: append random bits to make it longer

Contents

RSA

The RSA Algorithm

RSA

- Ron Rivest, Adi Shamir and Len Adleman
- Created in 1978; RSA Security sells related products
- Most widely used public-key algorithm
- ▶ Block cipher: plaintext and ciphertext are integers

The RSA Algorithm

- Plaintext encrypted in blocks, each block binary value less than n
- ▶ In practice, block size *i* bits where $2^i < n < 2^{i+1}$; *n* is 1024 bits
- Encryption of plaintext M:

$$C = M^e \mod n$$

Decryption of ciphertext C:

$$M = C^d \mod n$$

= $(M^e)^d \mod n = M^{ed} \mod n$

- ▶ Sender A and receiver B know n; Sender A knows e; Receiver B knows d
- $PU_b = \{e, n\}, PR_b = \{d, n\}$

Requirements of the RSA Algorithm

- 1. Possible to find values of e, d, n such that $M^{ed} \mod n = M$ for all M < n
- 2. Easy to calculate $M^e \mod n$ and $C^d \mod n$ for all values of M < n
- 3. Infeasible to determine d given e and n
- ▶ Requirement 1 met if e and d are relatively prime
- ► Choose primes *p* and *q*, and calculate:

$$n=pq$$
 $1< e<\phi(n)$ $ed\equiv 1\pmod{\phi(n)}$ or $d\equiv e^{-1}\pmod{\phi(n)}$

n and e are public; p, q and d are private

The RSA Algorithm

Princip

RSA

Diffie-Hellman

Others

Select p, q p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e

 $\gcd(\phi(n), e) = 1; \ 1 < e < \phi(n)$

Calculate d

 $d \equiv e^{-1} \; (\bmod \; \phi(n))$

Public kev

 $PU = \{e, n\}$

Private key

 $PR = \{d, n\}$

Encryption by Bob with Alice's Public Key

Plaintext:

M < n

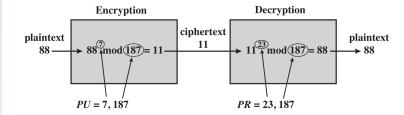
Ciphertext:

 $C = M^e \mod n$

Decryption by Alice with Alice's Private Key

Ciphertext:

Plaintext:

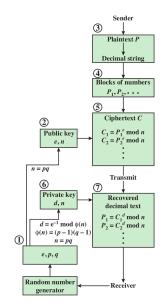

 $M = C^d \mod n$

Example of RSA Algorithm

Principl

RSA

Diffie-Hellma

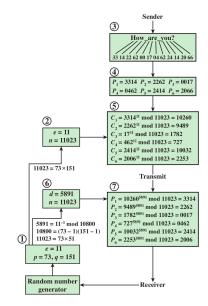


RSA Processing of Multiple Blocks

B . . .

RSA

Diffie-Hellman



Example of RSA Processing of Multiple Blocks

1 HIIICI

RSA

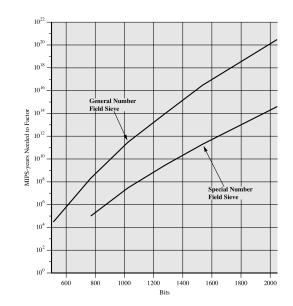
Diffie-Hellman

Computational Efficiency of RSA

- Encryption and decryption require exponentiation
 - Very large numbers; using properties of modular arithmetic makes it easier:

$$[(a \bmod n) \times (b \bmod n)] \bmod n = (a \times b) \bmod n$$

- Choosing e
 - ▶ Values such as 3, 17 and 65537 are popular: make exponentiation faster
 - ▶ Small e vulnerable to attack: add random padding to each M
- Choosing d
 - Small d vulnerable to attack
 - Decryption using large d made faster using Chinese Remainder Theorem and Fermat's Theorem
- Choosing p and q
 - p and q must be very large primes
 - ► Choose random odd number and test if its prime (probabilistic test)



Security of RSA

- Brute-Force attack: choose large d (but makes) algorithm slower)
- Mathematical attacks:
 - 1. Factor *n* into its two prime factors
 - 2. Determine $\phi(n)$ directly, without determining p or q
 - 3. Determine d directly, without determining $\phi(n)$
 - ► Factoring *n* is considered fastest approach; hence used as measure of RSA security
- ▶ Timing attacks: practical, but countermeasures easy to add (e.g. random delay). 2 to 10% performance penalty
- Chosen ciphertext attack: countermeasure is to use padding (Optimal Asymmetric Encryption Padding)

MIPS-Years Needed To Factor

RSA

CSS322

Public Key Crypto

Progress in Factorization

Princip RSA

Diffie-Hellma

Others

Number of Decimal Digits	Approximate Number of Bits	Date Achieved	MIPS-Years	Algorithm
100	332	April 1991	7	Quadratic sieve
110	365	April 1992	75	Quadratic sieve
120	398	June 1993	830	Quadratic sieve
129	428	April 1994	5000	Quadratic sieve
130	431	April 1996	1000	Generalized number field sieve
140	465	February 1999	2000	Generalized number field sieve
155	512	August 1999	8000	Generalized number field sieve
160	530	April 2003	_	Lattice sieve
174	576	December 2003	_	Lattice sieve
200	663	May 2005	_	Lattice sieve

See http://www.rsa.com/rsalabs/node.asp?id=2092 for update. RSA-768 has been solved.

Contents

Principle

.

Diffie-Hellman

Othors

Principles of Public-Key Cryptosystems

The RSA Algorithm

Diffie-Hellman Key Exchange

Other Public-Key Cryptosystems

Diffie-Hellman Key Exchange

- ▶ Diffie and Hellman proposed public key cryptosystem in 1976
- Algorithm for exchanging secret key (not for secrecy of data)
- Based on discrete logarithms
- Easy to calculate exponentials modulo a prime
- ▶ Infeasible to calculate inverse, i.e. discrete logarithm

Diffie-Hellman Key Exchange Algorithm

Diffie-Hellman

prime number

 $\alpha < q$ and α a primitive root of qα

User A Key Generation

Select private X_A $X_A < q$

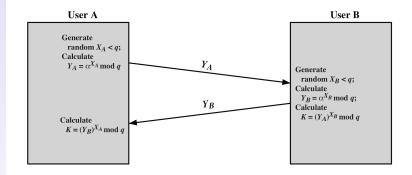
 $Y_4 = \alpha^{X_A} \mod q$ Calculate public Y₄

User B Key Generation

Select private X_R $X_B < q$

 $Y_B = \alpha^{X_B} \mod q$ Calculate public Y_R

Calculation of Secret Kev by User A


 $K = (Y_p)^{X_A} \mod q$

Calculation of Secret Key by User B

 $K = (Y_A)^{X_B} \mod a$

Diffie-Hellman Key Exchange

Diffie-Hellman

Diffie-Hellman

Security of Diffie-Hellman Key Exchange

- ► Insecure against man-in-the-middle-attack
- Countermeasure is to use digital signatures and public-key certificates

Contents

Principle

....

Diffie-Hellma

Others

Principles of Public-Key Cryptosystems

The RSA Algorithm

Diffie-Hellman Key Exchange

Other Public-Key Cryptosystems

Princi

D:00 - 11-11---

Others

ElGamal Cryptosystem

- ► Similar concepts to Diffie-Hellman
- Used in Digital Signature Standard and secure email

Elliptic Curve Cryptography

- Uses elliptic curve arithmetic (instead of modular arithmetic in RSA)
- Equivalent security to RSA with smaller keys (better performance)
- ▶ Used for key exchange and digital signatures