
SIIT  CSS 322 – Security and Cryptography 

Public Key Cryptography 7 Jan 2008 1 

Public Key Cryptography 
Examples 
Steven Gordon 

 

1 RSA Conditions 
 

If the RSA encryption algorithm is C = Me mod n, and the decryption algorithm is M = Cd mod n, 
then that implies that: 

 M = Cd mod n 

  = (Me mod n)d mod n 

  = (Me)d mod n 

  = Med mod n 

 

So for the encryption algorithm and decryption algorithm to work, then e, d and n must be chosen 
such that: M = Med mod n 

Lets look at Euler’s theorem: ( ) ( )na n mod1≡φ  where a and n are relatively prime. Or an 
alternative form is: ( ) ( )naa n mod1 ≡+φ  and in this form a and n are NOT required to be relatively 
prime. Compare this to our condition above: 

( )nMM ed mod≡   

This is true if ( ) edn =+1φ . This implies: ( )( ) 1mod ≡ned φ  or in other words, e and d are 
multiplicative inverses in modular arithmetic ( )nφ .  

A number e has a multiplicative inverse in mod ( )nφ  if e and ( )nφ  are relatively prime. Therefore 
we choose a number e such that it is relatively prime to ( )nφ  (that is, gcd(e, ( )nφ ) = 1) and less 
than ( )nφ . Then d can be calculated (Euclids algorithm is an efficient way to determine d).  

What about choosing n? As we will show in Section  3, it should be hard to calculate ( )nφ  if you 
are an attacker. But for the person generating the keys, it should be easy to calculate ( )nφ . So, if n 
= pq, where p and q are (very large) prime numbers, then: 

( ) ( )
( ) ( )

( )( )11 −−=
=

=

qp
qp
pqn

φφ
φφ

 

If you know p and q, then it is very easy to calculate ( )nφ . But if you don’t know p and q, and 
only know n, then it is very hard to calculate ( )nφ . See Section  3.  



SIIT  CSS 322 – Security and Cryptography 

Public Key Cryptography 7 Jan 2008 2 

2 RSA Encryption and Decryption 

2.1 Key Generation 
 

1. Select the prime numbers p = 17 and q = 11. 
a. n = pq = 187 
b. ∅(n) = (p-1)(q-1) = 16 x 10 = 160 

2. Select e such that it is relatively prime to 160 and less than 160. Lets choose e = 7. 
3. Choose d such that de ≡ 1 (mod 160) and d < 160 

a. d = 23. Since 23 x 7 = 161 = 10 x 160 + 1 (extended Euclid’s algorithm can be 
used to calculate d) 

 
Therefore: 

Public Key = (e,n) = (7,187) 
Private Key = (d,n) = (23,187) 

 
(Note that the item that must be secret is d. Both e and n are publicly available). 
 

2.2 Encryption 
Remember, the plaintext and ciphertext in RSA are integers. 
 
Now encrypt M = 88 
 
C  = 887 mod 187 

= ((884 mod 187) x (882 mod 187) x (881 mod 187)) mod 187 
= (132 x 77 x 88) mod 187 
= 894432 mod 187 
= 11 

 

2.3 Decryption 
 
M  = 1123 mod 187 

= (11 x 121 x 55 x 33 x 33) mod 187 
= 79720245 mod 187 
= 88 

 

3 RSA Attack 
The attacker knows: C, e, and n (as well as the algorithms). What do they need to do to find M or 
d? 

 

To find M: the attacker knows: C = Me mod n. The attacker knows three of the four variables in 
this equation, and therefore one could expect it is easy to calculate M. But (for reasonably large 
values of M and e), it is not because the inverse of the exponentiation (finding the eth root of M 
modulo n) is vary hard to calculate. In fact, currently there are no known methods of doing so that 
are faster than factoring n (to derive d – see below). 

 



SIIT  CSS 322 – Security and Cryptography 

Public Key Cryptography 7 Jan 2008 3 

To find d: the attacker knows: e, n and ( )( ) 1mod ≡ned φ . Hence, again we have an equation with 
three variables, of which two are known. But again, its not easy to determine the third variable d! 
Two approaches: 

1. Calculate ( )nφ  using an algorithm that counts the relatively prime numbers less than n. 
For a large n (and n is large - remember it is the result of multiplying two large numbers p 
and q), there are no known algorithms that can calculate ( )nφ  faster than the factoring 
problem in approach 2 below. 

2. Factor n into its prime factors, p and q, and then simply calculate ∅(n) = (p-1)(q-1). This 
is considered the fastest technique for breaking RSA, and hence all measures of security 
of RSA are based on how long it takes to factor a large number into its prime factors. 
However, factoring a large number n into its primes is hard! For a value of n with 640 bits 
(slightly less than 200 decimal digits), in 2005 it took about 30 2.2GHz-Opteron-CPU 
years (about 5 months real time) to find the factors. Currently, most users of RSA use 
1024 or 2048 bit keys (size of n). It is expected it could take 100 times longer for a 1024 
bit key, and millions of times longer for a 2048 bit key. 

 

Hence, breaking RSA through calculating M or d is not feasible. However, as with every security 
algorithm there are special cases that make attacks possible (for example, bad values of 
parameters can be chosen to make an attack practical). But if it is used correctly, RSA is secure. 

 

4 Diffie Hellman Example 
Choose a prime number q = 353. 

Choose α a primitive root of q, 3. 

α and q are known to both A and B (and anyone else, including attacker). 

 

A selects XA = 97    B selects XB = 233 

YA  = αXA mod q    YB  = αXB mod q 

 = 397 mod 353    = 3233 mod 353 

 = 40     = 248 

 

A and B exchange their keys, YA and YB. This can be done publicly (that is, the attacker can see 
the keys). 

 

A calculates:     B calculates: 

YB
XA mod q     XB

YA mod q 

 = 24897 mod 353    = 40233 mod 353 

 = 160      = 160 

 

The secret key is 160.  

 



SIIT  CSS 322 – Security and Cryptography 

Public Key Cryptography 7 Jan 2008 4 

The attacker has the following information: α=3, q=353, YA = 40, YB = 248. Can they determine 
the secret key? 

To find the secret, they need to solve: 

3XA mod 353 = 40   or  3XB mod 353 = 248 

A brute force attack would apply every possible value of XA (or XB) to find the answer. To 
counter this attack, large values of XA and XB are used. For large values of XA and XB, 
calculating the inverse of the exponentiation (that is the discrete logarithm) is very difficult! 
Hence, hard to break. 


