CSS322 - Quiz 5

Security and Cryptography, Semester 2, 2010
Prepared by Steven Gordon on 30 January 2011
CSS322Y10S2Q05, Steve/Courses/CSS322/Assessment/Quiz5.tex, r1651

Question 1 [3 marks]

Consider the mechanism illustrated below and the six security services: confidentiality, authentication, non-repudiation, data integrity, access control and availability.
[|||]

(a) What security service(s) does the mechanism provide? [1 mark]

Answer.
i. Confidentiality, Authentication, Data Integrity
ii. Authentication, Data Integrity

iii. Authentication, Data Integrity
iv. Confidentiality, Authentication, Data Integrity
(b) Assuming it is impossible for an attacker to discover K or break E() or D() , explain what an attacker needs to do break the above mechanism (that is, so one of the security services is compromised). [2 marks]
(c) If encryption was not used (i.e. E() and D() operations not applied) in the above mechanism, then explain what an attacker needs to do to break the mechanism. [2 marks]

Answer.

i. Both M and $\mathrm{H}(M)$ are sent in the clear. The attacker modifies M and also recalculates the hash, and forwards to B. B cannot detect the modification.
ii. If attacker can find another message M^{\prime} that has the same hash value as M, i.e. $\mathrm{H}\left(M^{\prime}\right)=\mathrm{H}(M)$, then attacker can create modified message without being identified.
iii. If attacker can discover the input of the hash function from the hash value, i.e. given h, where $h=\mathrm{H}(M \| S)$, find $M \| S$, then the attacker can find the secret S.
iv. Same as (iii).

Question 2 [3 marks]

Consider the mechanism illustrated below.

(a) The mechanism is a special case of authentication. What is its name? [1 mark]

Answer. Digital Signature
(b) An example of E()$/ \mathrm{D}()$ in the above mechanisms may be RSA. Explain why if 3DES was used as E()$/ \mathrm{D}()$ instead, then the above mechanism would not provide the same service as when RSA was used. [2 marks]

Answer. Using symmetric key encryption (e.g. 3DES) means both A and B have the shared secret key. The message could have been encrypted by either A or B, meaning the message could have originated at either A or B. Using public key encryption (e.g. RSA) means only A could have encrypted the message, confirming that the message originated at A.

Question 3 [4 marks]

Considered the key distribution scheme below.

(a) For this scheme to work, what keys are known by A and B before the 3 steps are taken? [1 mark]

Answer. A and B both must know K_{m}.
(b) Assume an attacker sent message 1 pretending to by A (instead of A sending message 1). Explain how either A or B would detect this attack. [2 marks]

Answer. B responds. If A receives the response unaltered, then it is decrypted with K_{m} and A will recognise that it did not send the initial request with nonce N_{1}, hence identifying the attack. If attacker interecpted message (2) before it arrived at A, then the attacker cannot decrypt (doesn't know K_{m}), and therefore does not know N_{2} or K_{s}. If attacker tries to respond with message 3, B will detect the attack because it will contain the wrong value and encrypted with wrong key. If attacker does not send message 3 then B will detect an attack (because it expects to receive message 3).
(c) Describe an advantage of the above scheme. [1 mark]
(d) Describe an disadvantage of the above scheme. [1 mark]

Answer. An advantage is that it doesn't rely on a trusted third party (KDC). This is useful of you do not trust a central party or the third party is slow. A disadvantage is that for large number of users, many master keys must be manually distribted beforehand.

