CSS322 - Quiz 2

Security and Cryptography, Semester 2, 2010

Prepared by Steven Gordon on 2 December 2010 CSS322Y10S2Q02, Steve/Courses/CSS322/Assessment/Quiz2.tex, r1541

Question 1 [2 marks]

The DES encryption operation, which has 16 rounds, can be written as:

$$ciphertext = IP^{-1}\left(f_{K_{16}}\left(SW\left(f_{K_{15}}\left(SW\left(\dots\left(f_{K_{2}}\left(SW\left(f_{K_{1}}\left(IP\left(plaintext\right)\right)\right)\right)\right)\right)\right)\right)\right)$$

where IP is an initial permutation, f_{K_x} is a round function using key K_x and SW is a switch operation. Write an equation for the DES decryption operation.

Answer. DES decryption follows the same steps as encryption (i.e. the algorithm is the same) however the keys are used in the opposite order.

$$plaintext = IP^{-1} (f_{K_1} (SW (f_{K_2} (SW (... (f_{K_{15}} (SW (f_{K_{16}} (IP (ciphertext)))))))))))$$

Question 2 [3 marks]

- (a) DES is no longer recommended for use today because:
 - i. The key space is too small
 - ii. The S-Boxes are considered insecure
 - iii. The avalanche effect is not present
 - iv. There are not enough rounds
- (b) DES is no longer recommended for use today because:
 - i. Practical timing attacks are possible against it
 - ii. The avalance effect is not present
 - iii. The key length is too short
 - iv. The block size is too short
- (c) An ideal *n*-bit block cipher would have:
 - i. 2n possible different plaintext blocks
 - ii. $2^n!$ possible different plaintext blocks
 - iii. 2^n possible keys (or transformations)
 - iv. $2^n!$ possible keys (or transformations)

- (d) A meet-in-the-middle attack on a Double-DES cipher:
 - i. Requires an average of approximately 2^{112} operations
 - ii. Involves storing approximately 2^{56} blocks in memory to work in practice
 - iii. Requires the attacker to know more than 2^{40} plaintext/ciphertext pairs to work in practice
 - iv. Does not involve applying a brute-force attack on (single) DES
- (e) An ideal 4-bit block cipher would have:
 - i. 16 possible keys (or transformations)
 - ii. 16! possible keys (or transformations)
 - iii. 8 possible different plaintext blocks
 - iv. 16! possible different plaintext blocks

Question 3 [3 marks]

- (a) The Feistel structure for block ciphers achieves security by using multiple rounds, where in each round it alternates between *substitutions* and *transpositions*.
- (b) The concept of diffusion in block ciphers aims to reduce the statistical nature of input plaintext in the output ciphertext.
- (c) Two commonly used block ciphers today are 3DES and AES or Blowfish or Twofish.
- (d) A *stream* cipher is well suited for real-time encryption, whereas a *block* cipher is better suited for encrypting files.
- (e) Techniques that hide messages in fake messages in order to avoid others knowing secret communications are taking place are referred to as *steganography*.
- (f) The classical rails fence and rows/column ciphers are known as *transposition* ciphers.

Question 4 [2 marks]

If the initial permutation, IP, of S-DES was [[3 7 8 1 5 6 2 4] | [2 8 7 5 3 4 6 1]] then IP^{-1} would be:

Answer. If you apply IP on a sequence of input bits and then apply IP^{-1} on the output then you must obtain the original input bits. If the input bits are:

```
[1 2 3 4 5 6 7 8]
and IP is:
[3 7 8 1 5 6 2 4]
```

then the 1st bit of the input would become the 4th bit after IP. Therefore after applying IP^{-1} the 4th bit must become the 1st bit. Hence IP^{-1} is:

[47185623]

Similarly, if IP is [2 8 7 5 3 4 6 1] then IP^{-1} is [8 1 5 6 4 7 3 2].