\qquad

Sirindhorn International Institute of Technology Thammasat University

Midterm Exam: Semester 2, 2010
Course Title: CSS322 Security and Cryptography
Instructor: Steven Gordon
Date/Time: Wednesday 29 December 2010; 9:00-12:00

Instructions:

- This examination paper has 11 pages (including this page).
- Conditions of Examination: Closed book; No dictionary; Non-programmable calculator is allowed
- Students are not allowed to be out of the exam room during examination. Going to the restroom may result in score deduction.
- Students are not allowed to have communication devices (e.g. mobile phone) in their possession.
- Write your name, student ID, section, and seat number clearly on the front page of the exam, and on any separate sheets (if they exist).
- The space on the back of each page can be used if necessary.

Question 1 [7 marks]

(a) Two security services are confidentiality and authentication. List and describe the other four security services. [4 marks]
(b) Describe the difference between a passive and active attack on security. [1 mark]
(c) Describe two types of passive attacks. [2 marks]

Question 2 [8 marks]

Consider a 4-bit block cipher, called Steve's Simple Cipher or SSC for short, shown in the table below. The table gives the ciphertext C produced when encrypting the plaintext P with one of the four keys.

P	$\mathrm{C}(\mathrm{K}=00)$	$\mathrm{C}(\mathrm{K}=01)$	$\mathrm{C}(\mathrm{K}=10)$	$\mathrm{C}(\mathrm{K}=11)$
0000	0110	1100	0001	0010
0001	1101	0100	1010	0000
0010	0010	0001	1111	1011
0011	0100	1101	0011	1001
0100	1100	0111	1001	0011
0101	1111	0101	0010	1000
0110	0000	0011	0111	1111
0111	0111	1011	1101	0001
1000	1010	1001	1000	0100
1001	0001	0000	1110	0111
1010	1001	0110	0110	1100
1011	1110	0010	1011	1101
1100	1011	1111	0000	0101
1101	1000	1010	0100	1110
1110	0011	1110	1100	0110
1111	0101	1000	0101	1010

(a) SSC is not an ideal block cipher. If SSC was to be extended to an ideal 4-bit block cipher, how many possible keys would it have? [1 mark]
(b) If SSC was extended to be an ideal 4-bit block cipher, how long would each key be? [1 mark]
(c) Give a reason why ideal block ciphers are not suitable in practice. [1 mark]

Consider a block cipher, Double-SSC, which involves applying the block cipher SSC two times (e.g. encrypt the plaintext to obtain a temporary value, then encrypt the temporary value to obtain the ciphertext), each time using a potentially different 2-bit key.
(d) Show how the meet-in-the-middle attack works by applying it against Double-SSC. Use the attack to find the key used if the attacker already knows the (plaintext, ciphertext) pairs: $(1101,1100)$ and $(1001,1101)$. Explain clearly the steps applied by the attacker and how the key is identified. Write your answer below, and show calculations on next page. [5 marks]

Key = \qquad

Question 3 [9 marks]

(a) Consider the Linear Congruential Generator as a PRNG:

$$
X_{n+1}=\left(a X_{n}+c\right) \bmod m
$$

For the values of $a=7, c=1, m=31$ and a seed of 12 , what are the next 4 numbers in the pseudo-random sequence? [3 marks]
(b) Which of the parameters of the above LCG should be changed to produce a sequence with a larger period? What is a suggested value? [1 mark]
(c) Assume the block cipher $S S C$ is used in counter mode as a PRNG, where the initial counter value is 0 , and the seed is 01 . What are the first 16 bits of the pseudo-random sequence? [3 marks]
(d) Comparing LCG and using a block cipher in counter mode, what is the disadvantage of LCG as a PRNG? (This questions is about the general approach of using LCG and block ciphers when "good" parameter values and block/key sizes are chosen; it is not about the specific instances above, where the parameter values and key/block ciphers are inappropriate for practical usage). [2 marks]

Question 4 [8 marks]

For reference, you may use the following mapping of English characters to numbers:

```
a b c d e f g h i j k l m n o p q r s t u v w x y z
```


(a) The ciphertext SGWRIJGMII was obtained by encrypting using the Vigenère cipher with keyword steve. What was the plaintext? [3 marks]
\qquad
(b) The ciphertext XNTPUXNJNE was obtained by encrypting using the one-time pad with keyword xabtqgibsa. What was the plaintext? [3 marks]

P = \qquad
(c) The one-time pad is considered to be unconditionally secure. What does unconditionally secure mean? [1 mark]
(d) Explain the weakness of the Vigenère cipher. [1 mark]

Question 5 [9 marks]

A generalisation of the Caesar cipher is known as the Affine Caesar cipher. For each plaintext letter p, the ciphertext letter C is:

$$
C=\mathrm{E}([a, b], p)=(a p+b) \bmod 26
$$

For the Affine Caesar cipher to have a one-to-one mapping, the multiplicative inverse of a, or $\mathrm{MI}(a)$, in mod 26 must exist.
(a) Explain what is meant by a one-to-one mapping for a cipher. [1 mark]
(b) For $b=4$ and $a>3$, what is a value of a for which the Affine Caesar cipher has a one-to-one mapping? [1 mark]
(c) For $b=4$ and $a>3$, what is a value of a for which the Affine Caesar cipher does not have a one-to-one mapping? [1 mark]
(d) Using the syntax $\operatorname{MI}(a)$ for the multiplicative inverse of a, write an equation for the decryption operation of the Affine Caesar cipher. [3 marks]
(e) Assume the Affine Caesar cipher is extended for an n-character alphabet, i.e. instead of $\bmod 26$ it is $\bmod n$. Write an expression that gives the number of values of a for which a one-to-one mapping exists. Explain your reasoning, i.e. why the expression is valid. [3 marks]

Question 6 [8 marks]

The following information may (or may not) be useful in this question:

- Fermat's theorem: if p is prime and a is a positive integer, then $a^{p} \equiv a(\bmod p)$
- Euler's theorem: For positive integers a and $n, a^{\phi(n)+1} \equiv a(\bmod n)$
- First 20 prime numbers: $2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59$, 61, 67, 71.

For the following questions, you must show your steps that simplify the calculation, explaining which theorems can be used and why. You cannot simply use a calculator to find the answer directly. However you can use a calculator to check your answer, as well as to perform basic multiplication and division calculations (that is, you do not need to show calculations for, for example, 23×46).
(a) Find the answer of $49^{55} \bmod 53$. [4 marks]
(b) Find the answer of $1930^{2761} \bmod$ 2867. [4 marks]

Question 7 [8 marks]

Consider a public-key crytposystem with three users: A, B, and C. Assume all necessary keys have been created and distributed to the relevant users.
(a) List the set of keys that user A knows (or can easily discover). [1 mark]
(b) List the set of keys that user A knows, but users B and C do not. [1 mark]
(c) If user A wants to send a confidential message M to user B, then explain what user A does. [1.5 marks]
(d) Explain why the message M is confidential, i.e. user C cannot read it. [1.5 marks]
(e) If user C wants to send an authenticated message M to user B, then explain what user C does. [1.5 marks]
(f) Explain how B is certain the message comes from B, and not A pretending to be B. [1.5 marks]

Question 8 [6 marks]

Assuming the output of the first application (round) of f_{K} of S-DES is 11010111 and K_{2} is 10111001, what is the output ciphertext? You may use the information below (note: you need to determine $I P^{-1}$ yourself).
$\mathrm{C}=$

(write your final answer above; show calculations below)
IP: 26314857 E/P: 41232341 P4: 2431

$$
S 0=\left[\begin{array}{llll}
01 & 00 & 11 & 10 \\
11 & 10 & 01 & 00 \\
00 & 10 & 01 & 11 \\
11 & 01 & 11 & 10
\end{array}\right] \quad S 1=\left[\begin{array}{llll}
00 & 01 & 10 & 11 \\
10 & 00 & 01 & 11 \\
11 & 00 & 01 & 00 \\
10 & 01 & 00 & 11
\end{array}\right]
$$

Question 9 [7 marks]

The following ciphertext C was obtained by encrypting the original plaintext P with a Rows/Column Transposition cipher using a 5 digit key K. What is the original plaintext P and key K ?

C = EFSAAAHNPDENPWYRAYTEUOOXY

P =
K = \qquad
(Write your answer above; perform calculations below)

