## CSS322 - Quiz 4 Answers

Name: $\qquad$
ID: $\qquad$ Mark: $\qquad$ (out of 10)

Question 1 [5 marks]
There are 4 users in a network: Napat, Jira, Apiwat, Funtida. Each user has their own pair of public/private keys: $P U_{\text {user }}$ and $P R_{\text {user }}$ (e.g. $P U_{\text {Napat }}$ and $P R_{\text {Napat }}$ ). Using a public key algorithm, the encrypt and decrypt operations performed with a particular key can be written as:

$$
C=\mathrm{E}_{\text {key }}(P) \quad P=\mathrm{D}_{\text {key }}(C)
$$

Answer the following questions assuming all appropriate keys have been generated and distributed. Use the notation for keys and encrypt/decrypt as given above.
a) List all the keys known (or that can be easily obtained) by Napat/Jira/Apiwat/Funtida. [2 marks]

## Answer

Each user knows their own key pair, as well as the public keys of other users. For example, Napat would know:

$$
P U_{\text {Napat }}, P R_{\text {Napat }}, P U_{\text {Jira }}, P U_{\text {Apiwat }}, P U_{\text {Funtida }}
$$

b) If Napat/Funtida/Napat/Funtida wants to send a confidential/authenticated message $M$ to Jira/Apiwat/Funtida/Jira, then write the operation the sender performs on M. [2 marks]

## Answer

To send a confidential message, the message must be encrypted with the recipients public key. For example, for Napat to send to Jira:

$$
\mathrm{E}_{\text {PUJira }}(M)
$$

To send an authenticated message, the message must be encrypted with the senders private key. For example, for Napat to send to Jira:
$\mathrm{E}_{\text {PRNapat }}(M)$
c) What key is used by the recipient to decrypt the received message? [1 mark]

## Answer

For confidentiality, the recipient decrypts using their private key, e.g. Jira would decrypt with $P R_{\text {Jira }}$.

For authentication, the recipient decrypts using the senders public key, e.g. Funtida would decrypt using $P U_{\text {Napat }}$.

Question 2 [5 marks]
Using RSA, encrypt the message $M=4 / 3 / 6 / 3$, assuming the two primes chosen to generate the keys are $p=13 / 11 / 17 / 13$ and $q=7 / 7 / 5 / 11$. You should choose the smallest possible $e>1$. Show your calculations and assumptions.

## Answer

First calculate the value of $n$ from $p$ and $q$ :

$$
n=p^{*} q
$$

The totient of $n$ is easily calculated since we know $n$ 's prime factors, $p$ and $q$ :

$$
\Phi(n)=(p-1)^{*}(q-1)
$$

Now we need to choose a value of $e$ which is relatively prime to $\Phi(n)$. Consider the factors of $\Phi(n)$ and then choose an e which does not have a common factor.
Finally the encryption is:
$C=M^{e} \bmod n$

| $p$ | $q$ | $n$ | $\Phi(n)$ | Factors of $\Phi(n)$ | Possible $e$ | $M$ | $C$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 13 | 7 | 91 | 72 | $2,3,4,6,8,9, \ldots$ | 5,7 | 4 | 23 |
| 11 | 7 | 77 | 60 | $2,3,4,5,6, \ldots$ | 7 | 3 | 31 |
| 17 | 5 | 85 | 64 | $2,4, \ldots$ | $3,5,7,9$ | 6 | 46 |
| 13 | 11 | 143 | 120 | $2,3,4,5,6,8, \ldots$ | 7 | 3 | 42 |

