Introduction to CSS 322 – Security and Cryptography

Dr Steve Gordon ICT, SIIT

Welcome

- To a first course on the theory and technologies that provide secure computers and networks
- A 3rd year course for computer scientists
- Course website available from http://ict.siit.tu.ac.th/

Who Am I?

- Steve Gordon
- Assistant Professor in ICT (started in October 2006)
- 2001-2006: Researcher/Lecturer in Australia
 - Telecommunications, Internet, Wireless Networks, ...
- Contact details:
 - Email: <u>steve@siit.tu.ac.th</u>
 - Office: 2304-7, Bangkadi (IT&MT Building)
 - Phone: ext 2014
 - Consultation: email or phone for appointment; see website for availability

Prerequisites

- There are no formal prerequisites, but I assume you know:
 - Discrete mathematics (logic, prime numbers, ...)
 - Basics of data communications (OSI 7-layers)
 - Operating system concepts (processes, RPC, ...)
 - Software design principles (divide-and-conquer, functions, ...)
 - Programming languages (e.g. C, C++, Java or similar)

What will you learn in CSS 322?

- The role of security in computers and networks
- Theory and concepts behind secure systems
 - Cryptography
- Details of important and popular algorithms
 - DES, AES, RSA, Digital Signatures, ...
- Internet security techniques and attacks
 - Layered security, viruses, spyware, ...
- Details of Internet security protocols
 - IPsec, SSL/TLS, PGP, ...
- Legal and ethical issues and current trends

Why is CSS 322 Useful?

- It will help you get a job!
 - Designing and writing secure applications
 - Designing and managing secure systems (networks, computers)
 - Security certifications (e.g. CISSP, GIAC) are much more valuable than networking/computer certifications (e.g. Microsoft, Cisco)
- You will have an understanding of:
 - The concepts behind most of today's security protocols
 - Details of popular Internet security protocols and systems
 - Techniques for attacking and defending networks
 - Legal and ethical issues that arise in computer security

Course Structure

- Lectures
 - 3 hours per week
- Self study
 - At least 6 hours per week
 - Browsing lecture notes BEFORE and AFTER class, reading the textbook and other materials, studying for quizzes and exams, preparing assignments, consultations, group discussions, ...
- Assessment

Assessment

Quizzes

- 10 minute quizzes at the beginning of selected lectures
- Cover the topics since the last quiz
- Test your understanding of lectures, reading materials and homework problems
- Closed book
- 8 quizzes; 5 best marks will count
- 15% total (3% each)

Assignment

- Set of problems for you to complete over a number of weeks
- Test your in-depth understanding of concepts and protocols
- Open book
- 20%

Assessment

Mid-term Exam

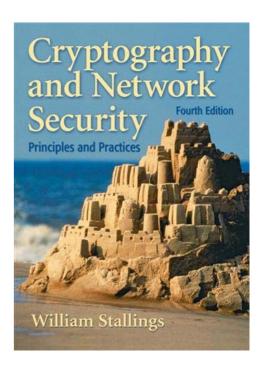
- Test your knowledge and understanding of all material to date
- Use as practice for final exam
- Closed book
- 20%

Final Exam

- Closed book
- **45%**

For advice:

- Closed book assessment is not a memory test (e.g. I won't test your ability to remember S-boxes) – it's a test of understanding
- We will discuss types of questions and topics before exam


Academic Misconduct

- What is it?
 - Plagiarism, cheating, copying, "lending", ...
- Examples
 - Copying assignment answers from friend (verbal or written)
 - Giving your assignment (or some answers) to a friend
 - Looking at neighbours answers during quiz/exam
 - Copying sentences/paragraphs/code from textbooks/Internet without acknowledgement
- Results
 - If detected, questions or entire assessment item may get 0 marks
- Discussion with friends is encouraged; telling your friends answers is not!

Learning Materials

Lectures

- Attend, listen and ask questions!
- Will include examples and demonstrations
- Lecture notes
 - PDF of Powerpoint slides
 - Available on website and from document services
 - Aim to have available 1 day before lecture
 - Make your own notes
- Recommended Textbook
 - "Cryptography and Network Security" by Stallings
 - 4th Edition (90% of my content is based on this)
- Other Useful Textbooks
 - Earlier editions of Stallings textbook
 - "Network Security" by Kaufman, Perlman, Speciner
 - These other textbooks should only be used as supplementary readings

Learning Materials

Recommended Readings

- For selected topics I will list papers/chapters/websites/standards that should be read
- These will be publicly available on the Internet or available through the Library (electronic or hardcopy)

Homework Problems

- Problems from the textbook and other sources will be given
- Answers will not be assessed, but discussed in lectures

Course Website

- All materials will be available from the website
- Announcements, selected solutions will be on the website
- Mailing list (access via course website)
 - You must subscribe (as will be used for announcements)

Is This Course Difficult?

- Computer and network security looks very hard!
 - Theory of computer security includes lot of mathematics
 - Example: Stallings textbook contains details of many algorithms
 - Network security protocols can be very complex
 - Example: IPsec (and associated IKE) 200+ pages of standards
- I will try to make it look easy!
 - Not all mathematical details will be covered
 - Go through algorithms S L O W L Y, using examples
 - Combine technical details of protocols/algorithms with demonstrations of real systems
 - Cover only selected (interesting!) protocols
 - May adapt topics based on your feedback (including quiz results)